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A mononuclear Fe(II) complex bearing 1-

aminocyclopropane-1-carboxylic acid (ACCH) was 

synthesized and characterized. X-ray crystallography 

demonstrated that ACC binds to the Fe(II) ion in a bidentate 

mode constituting the first structural mimic of the expected 10 

binding of ACC to the Fe(II) center of the ethylene forming 

enzyme ACC-oxidase (ACCO). [Fe(BPMEN)ACC]SbF6 also 

constitutes a functional biomimetic complex of ACCO, as it 

reacted with hydrogen peroxide producing ethylene.  

The final step in the biosynthesis of the phytohormone ethylene1 
15 

is the oxidation of 1-aminocyclopropane-1-carboxylic acid 
(ACCH)2 catalyzed by ACC-oxidase (ACCO).3 The X-ray crystal 
structure of substrate-free ACCO4 has confirmed the anticipated 
makeup of its active site i.e. a non-heme Fe(II) cation coordinated 
by the classical N,N,O facial triad5,6. In contrast, the ambiguous 20 

binding of 1-aminocyclopropane-1-carboxylate (ACC) in the 
active site of ACCO has only been probed by spectroscopic 
studies, which have nonetheless concluded that ACC binds the 
Fe(II) of the active site in a bidentate mode via both its amine and 
carboxylate functions.7 Accordingly, the structural 25 

characterization of a dinuclear ACC-containing Fe(III) complex, 
[Fe2(TACN)2(µ-O)(µ-ACCH)2]

4+ (TACN = 1,4,7-
triazacyclononane) has shown that ACC can bind iron centres. In 
this case however, two ACCH fragments are bridging two Fe(III) 
cations by their carboxylate functions.8 Bidentate ACC has only 30 

been reported in a few Cu(II)—ACC complexes,9 and has never 
been observed in the case of mononuclear Fe(II) complexes. 
Indeed, the good water solubility of amino acids is inappropriate 
for the synthesis of Fe(II) complexes, which are best obtained in 
aprotic poorly-coordinating solvents that conversely do not 35 

dissolve amino acids.10 To the best of our knowledge, structural 
characterization of amino acid-containing Fe(II) complexes has 
only been reported in the case of a proline-containing complex.11 
Proline is structurally distinguished from other natural α-amino 
acids by a secondary amine function engaged in a 5-membered 40 

ring and therefore is inappropriate to structurally mimic the 
coordination of other natural α-amino acids. Furthermore, the 
synthesis of the proline-containing Fe(II) complex relied on the 
solubilization of proline in DMSO, which did not allow to get 
structural information when either phenylalanine, tryptophan or 45 

valine were used instead of proline.11 
 

Here, in order to overcome solubility limitations, we treated an 
aqueous solution of ACCH with one equivalent of tetra-n-
butylammonium hydroxide (N(n-Bu)4OH). Subsequent water 50 

evaporation provided an ionic liquid fully miscible with 
acetonitrile, which allowed its combination with an acetonitrile 
solution of the previously described 
[Fe(BPMEN)(CH3CN)2](SbF6)2 complex (1) (BPMEN = N,N’-
dimethyl-N,N’-bis(pyridylmethyl)ethane-1,2-diamine) (scheme 55 

1).12 

 

Scheme 1. Preparation of the [Fe(BPMEN)ACC]SbF6 complex (2) from 
[Fe(BPMEN)(CH3CN)2](SbF6)2 (1) under inert atmosphere. 

When one equivalent of N(n-Bu)4ACC was added to an 60 

acetonitrile solution of complex (1), the solution turned from 
purple to a pale yellow color. The monitoring of the UV-vis 
absorbance as a function of the increasing amounts of N(n-
Bu)4ACC added to (1) (figure 1) showed the progressive 
evolution of the spectrum of (1) (λmax = 373 nm, ε = 3340 M-1 cm-

65 

1, MLCT band)13 into a new spectrum (λmax = 395 nm, ε = 860 M-

1 cm-1). The occurrence of an isosbestic point at 410 nm clearly 
indicated a single transformation of the starting material into the 
new species. The transformation was optimal for one equivalent 
of N(n-Bu)4ACC added. Further addition of N(n-Bu)4ACC led to 70 

a decrease of the characteristic MLCT band at 395 nm that 
completely disappeared after the addition of three equivalents of 
N(n-Bu)4ACC (figure S1). 
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Fig.1 Evolution of the UV-vis spectrum of a 0.5 mM acetonitrile solution 
of [Fe(BPMEN)(CH3CN)2](SbF6)2 (1) (bold black line) upon successive 
additions of up to 1 equiv. (red line) of N(n-Bu)4ACC. 

High resolution electrospray ionization mass spectrometry (HR 
ESI-MS) analysis was carried out on the pale yellow solution 5 

obtained after addition of one equivalent of amino acid (figure 2). 
The results revealed the formation of a single new compound 
characterized by a peak at m/z 426.1604, which is in agreement 
with the complexation of one ACC molecule to the Fe(II) ion of 
complex (1) in place of the two acetonitrile molecules observed 10 

in the X-ray crystal structure (figure S2). 

 

Fig. 2 HR ESI-MS spectrum obtained upon additions of 1 equiv. of N(n-
Bu)4ACC onto [Fe(BPMEN)(CH3CN)2](SbF6)2 (1). 

The new pale yellow species was then precipitated by addition of 15 

ether in the acetonitrile solution and recrystallized from slow 
ether diffusion in acetonitrile to afford monocrystals suitable for 
X-ray diffraction analysis. The resulting diffraction pattern was in 
agreement with a [Fe(BPMEN)ACC]SbF6 molecular formula for 
complex (2) and a structure in which ACC is bound to the Fe(II) 20 

center in a bidentate mode via both its amine and carboxylate 
functions, as projected for the enzymatic active site (figure 3, 
tables S1 and S2).5 In addition, both the UV-vis spectrum and the 
mass spectrum of complex (2) obtained from the solid state 
matched those of the species formed in solution. In comparison 25 

with the X-ray structure of complex (1), the distorted octahedral 
geometry is maintained in complex (2), but the average metal-
ligand distance has increased from 1.98 Å in (1) to 2.18 Å in (2). 
It is noteworthy that average Fe-N distances below 2.0 Å in (1) 
and above 2.1 Å in (2) suggest a low spin to high spin transition 30 

upon complexation of the amino acid to the Fe(II) center.14 
Bulk magnetization data were collected from crystalline samples 
of complex (2). The corresponding χmT vs. T plot (Figure S3) 
showed an initial sharp increase (up to ca. 50 K) followed by a 
slight monotonic increase of χmT with increasing temperature. 35 

Both the overall shape of χmT vs. T and a χmT value reaching 3.48 
cm3.K.Mol-1 at 400 K concur with a high spin monuclear Fe(II) 
center (S = 2, g = 2.1). Therefore, complex (2) is in the high spin 
state as suggested by the bond lengths obtained from the crystal 
structure. The coordination of the amino acid on the Fe(II) ion 40 

stabilizes the high spin state whereas, complex (1) is known to be 
in the low spin state at low temperature, in spin transition at room 
temperature and only high spin above 400 K.15 

 

Fig. 3 X-ray crystal structure of the [Fe(BPMEN)ACC]SbF6 complex (2) 45 

(Thermal ellipsoids are set at 50 % probability). The hydrogen atoms 
and the counter ion are omitted for the sake of clarity. Selected bond 
lengths: Fe-N1 2.203(2) Å, Fe-N2 2.232(2) Å, Fe-N3 2.242(3) Å, Fe-N4 
2.203(2) Å, Fe-N5 2.211(2) Å, Fe-O1 2.0164(19) Å. 

Although the enzymatic system contains an Fe(II) ion in its active 50 

site, no functional mimic of ACCO reported so far involved 
Fe(II). Therefore, we tested complex (2) in the oxidation of ACC 
into ethylene first using O2 and then in the presence of H2O2. The 
UV-vis spectrum of acetonitrile solutions of complex (2) did not 
change when O2 was introduced. In contrast, when 10 equivalents 55 

of H2O2 were added to an acetonitrile solution of complex (2), its 
UV-vis spectrum changed drastically, however, no clean 
transformation with isosbestic points could be observed (figure 
S4). The addition of up to 100 equivalents of H2O2 to complex 
(2) was then performed in sealed tubes and GC analysis of the 60 

resulting gas revealed that the formation of ethylene reached ca. 
23 % yield when 5 to 10 equivalents of H2O2 were added, 
compared to a 15 % yield in the blank experiment using a 1:1 
mixture of iron(II) triflate and N(n-Bu)4ACC. The rather low 
ACC oxidation yield is not surprising considering the fact that 65 

complex (2) is hexacoordinated and thus, a direct interaction 
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between the iron cation and hydrogen peroxide requires the de-
coordination of one of the six ligands of the iron. The formation 
of ethylene suggests that one of these six ligands is indeed labile 
enough to allow hydrogen peroxide activation at the metal center. 
In summary, our work describes the synthesis, the reactivity and 5 

the characterization in solution and in the solid state of the first 
mononuclear Fe(II) complex bearing an ACC ligand. This 
complex demonstrates that ACC can bind to the Fe(II) ion in a 
bidentate mode, constituting a structural mimic of the binding of 
ACC to the Fe(II) center of ACCO.  10 
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Miming plants: An original synthesis led to the preparation of the first model of the 

active site of the ethylene-forming enzyme ACC-oxidase. The prepared complex is a 

structural and a functional model as it reacts with hydrogen peroxide to produce the 

phytohormone ethylene. 
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