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Reduction-induced facile isomerisation of metallacarboranes: 
synthesis and crystallographic characterisation of 4-Cp-4,1,2-
closo-CoC2B9H11 † 

Wing. Y. Man, Georgina M. Rosair and Alan J. Welch*

One-electron reduction of 3-Cp-3,1,2-closo-CoC2B9H11 followed by 

heating to reflux in DME (bp 85 °C) induces isomerisation to 4-Cp-

4,1,2-closo-CoC2B9H11, a compound previously only synthesised at 

much higher temperatures (>380 °C).  The 4,1,2- isomer has been 

thoroughly characterised both spectroscopically and 

crystallographically. 

It is exactly 50 years since Hawthorne’s first synthesis of 

metallacarboranes, specifically the icosahedral sandwich 

anions [Fe(C2B9H11)2]
n–

 (n = 1, 2).
1
  Throughout the intervening 

period metallacarborane chemistry has been very heavily 

dominated by the icosahedron (reflecting the exceptional 

stability of closo-C2B10 and closo-CB11 carboranes) with 

thousands of icosahedral closo-MC2B9 species having been 

synthesised and characterised.
2
 

Cyclopentadienyl cobaltacarboranes can be considered as 

the archetypal metallacarboranes since {CpCo} is a simple and 

readily-available fragment isolobal with {BH}, and in fact 

CpCoC2B9H11 is known for seven of the nine possible isomers 

shown in Fig. 1, specifically the 3,1,2-, 2,1,7-, 2,1,12-, 4,1,2-, 

2,1,8-, 2,1,9- and 9,1,7- isomers.  3-Cp-3,1,2-closo-CoC2B9H11,
3
 

2-Cp-2,1,7-closo-CoC2B9H11 
4
 and 2-Cp-2,1,12-closo-CoC2B9H11 

5
 

are prepared by metallation of the [7,8-nido-C2B9H11]
2–

, [7,9-

nido-C2B9H11]
2–

 and [2,9-nido-C2B9H11]
2–

 anions, respectively 

(which, in turn, are afforded by deboronation of commercially-

available 1,2-, 1,7- and 1,12-closo-C2B10H12).  Gas-phase 

thermolysis of 3-Cp-3,1,2-closo-CoC2B9H11 leads to varying 

amounts of all the other six known isomers of CpCoC2B9H11 

dependent on the temperature employed.
6
  The two “missing” 

isomers, 8-Cp-8,1,2-closo-CoC2B9H11 and 9-Cp-9,1,2-closo-

CoC2B9H11, both have adjacent cage C atoms (neither of which 

are directly bound to the metal) and so these isomers would 

be most unlikely to result from high-temperature thermolysis 

 
Fig. 1  The nine isomers of an icosahedral MC2B9 metallacarborane. 

 reactions since thermolysis classically causes C atom 

separation.  However, derivatives of these isomers with the 

cage C atoms tethered together (via a trimethylene unit) could 

be obtained by gas-phase thermolysis of the tethered 3,1,2- 

precursor.
6
 

Clearly the syntheses of 4-Cp-4,1,2-closo-CoC2B9H11, 8-Cp-

8,1,2-closo-CoC2B9H11 and 9-Cp-9,1,2-closo-CoC2B9H11 (the 

three isomers of CpCoC2B9H11 apart from 3-Cp-3,1,2-closo-

CoC2B9H11 that have adjacent cage C atoms, by conventional 

chemistry) represent significant challenges.  As part of our 

interest in this area we recently prepared 8-Cp-8,1,2-closo-

CoC2B9H11 (and its 2,1,8- analogue) by a low-temperature 
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Fig. 2  Perspective view of 4-Cp-4,1,2-closo-CoC2B9H11.  Selected interatomic distances 

(Å): Co4–C1, 2.0115(19); Co4–B3, 2.023(2); Co4–B8, 2.079(2); Co4–B9, 2.102(2); Co4–

B5, 2.079(2); Co4–Cp, 2.0655(18)-2.0857(18); C1–C2, 1.657(3). 

route, specifically decapitation of the 13-vertex 

metallacarborane 4-Cp-4,1,8-closo-CoC2B10H12 followed by 

oxidative closure of the 12-vertex dianion thereby produced.
7
  

Both species were characterised spectroscopically and 

crystallographically, taking to five the number of isomers of 

CpCoC2B9H11 to have been structurally characterised, 

previously the 3,1,2-,
8
 2,1,7- 

4a,b
 and 2,1,12- 

4a
 isomers and 

now the 8,1,2- 
7
 and 2,1,8- isomers.

7
  We now report the 

synthesis by conventional chemistry of another of these 

“challenging” isomers. 

Instead of high-temperature thermolysis, an alternative way 

to isomerise metallacarboranes is by 1-e reduction, sometimes 

in conjunction with mild heating,
9
 and Hanusa and Todd used 

this approach to prepare both the 2,1,7- and 2,1,12- isomers of 

CpCoC2B9H11 from 3-Cp-3,1,2-closo-CoC2B9H11.
9a

  In repeating 

this synthesis we have now discovered that a small amount of 

the compound 4-Cp-4,1,2-closo-CoC2B9H11,‡ which we have 

fully characterised both spectroscopically and 

crystallographically,§ is also afforded.  This represents only the 

second synthesis of this compound and the first at relatively 

low temperature. 

Treatment of 3-Cp-3,1,2-closo-CoC2B9H11 with 1.1 

equivalents of sodium naphthalenide in DME followed by 

heating to reflux (85 °C) for 56 hrs and subsequent aerial 

oxidation resulted in partial isomerisation to a mixture of the 

2,1,8-, 8,1,2-, 2,1,7- and 4,1,2- isomers, separated initially by 

column chromatography and ultimately by thin-layer 

chromatography.  All products were identified by a 

combination of 
1
H and 

11
B NMR spectroscopies against 

authentic samples (2,1,8-isomer,
7
 8,1,2-isomer 

7
 and 2,1,7-

isomer 
4b

).  In the 
1
H spectrum of 4-Cp-4,1,2-closo-CoC2B9H11 

are observed a sharp integral-5 singlet at  5.44 ppm assigned 

to the Cp protons and two broad integral-1 resonances at  

3.36 and 2.80 ppm assigned to the CcageH atoms.  The 
11

B NMR 

 
Fig. 3  Relative energies (kcal mol–1) of the nine isomers of CpCoC2B9H11  (data taken 

from ref. 17). 

spectrum consists of eight resonances between  9.1 and –

17.5 ppm with integrals in the ratio 1:1:1:2:1:1:1:1 from high 

frequency to low frequency, confirming the asymmetric nature 

of the species. 

The precise nature of the compound was established by a 

crystallographic study (Fig. 2) as part of which the identities of 

the cage C atoms were unambiguously determined by both the 

Vertex-to-Centroid Distance 
10

 and Boron-Hydrogen Distance 
11

 

methods.  Key interatomic distances appear in the legend to 

Fig. 2.  The Cp ligand is essentially parallel to the least-squares 

planes through atoms C1,B3,B8,B9,B5 [dihedral angle 0.37(8)°] 

and the plane through atoms C2,B6,B10,B12,B7 [dihedral angle 

1.51(8)°]. 

4-Cp-4,1,2-closo-CoC2B9H11 is the sixth of nine possible 

isomers of CpCoC2B9H11 to be structurally studied leaving only 

the 9,1,2-, 2,1,9- and 9,1,7- isomers remaining.  There are two 

polymorphic forms of each of the 3,1,2- and 2,1,7- isomers, 

taking to eight the number of crystallographic studies of 

CpCoC2B9H11 and, somewhat surprisingly, none of these show 

isomorphism (see ESI). 

There are nine examples of 4,1,2-MC2B9 compounds in the 

Cambridge Structural Database,
12

 but only one of these is the 

result of direct metallation of a 2,7-nido-C2B9 anion.
13

  In every 

other case the initial metallation is of a 7,8-nido-C2B9 anion 

followed by isomerisation of the 3,1,2-MC2B9 species thus 

formed (sometimes only transiently) into the 4,1,2-MC2B9 final 

product.  Although there is evidence that the relief of steric 

crowding plays a part in several of these 3,1,2- to 4,1,2- 

isomerisations,
14

 this is not obvious in every case.
15

  Moreover, 

in examples where the cage C atoms are not tethered together 

it is not at all clear why the more common 3,1,2- to 2,1,8- 

isomerisation 
16

 is not observed.  On the other hand a common 

feature of many of the 3,1,2-MC2B9 species which isomerise to 

4,1,2-MC2B9 is that they have a relatively electron-rich metal 
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centre (Ni
II
 or Pd

II
), perhaps suggesting an analogy with the 

reduction-induced 3,1,2- to 4,1,2- isomerisation of 

CpCoC2B9H11 observed herein. 

In Fig. 3 are shown the relative energies of the nine isomers 

of CpCoC2B9H11 from DFT calculations.
17

  They fall into two 

distinct groups, those with the cage C atoms adjacent (3,1,2-, 

4,1,2-, 9,1,2- and 8,1,2-) at relatively high energy and those 

with the cage C atoms separated (2,1,9-, 2,1,7-, 2,1,8-, 9,1,7- 

and 2,1,12-) at lower energy.  This work has demonstrated a 

low-temperature synthesis of the second-least 

thermodynamically stable isomer. 

Conclusions 

In conclusion we have shown that 1-e reduction of 3-Cp-3,1,2-

closo-CoC2B9H11 followed by relatively mild heating affords (a 

small amount of) the isomer 4-Cp-4,1,2-closo-CoC2B9H11, which 

we have fully characterised including a crystallographic study.  

This takes to six the number of isomers of CpCoC2B9H11 to be 

isolated by low-temperature routes, and experiments 

targeting the remaining isomers yet to be afforded by 

conventional chemistry (9,1,2-, 2,1,9- and 9,1,7-) are currently 

in hand.  Access to a complete set of isomers of this archetypal 

metallacarborane will afford a unique opportunity for detailed 

comparative study which we believe will be of fundamental 

interest. 
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Notes and references 

‡ Experimental procedure: to a freshly prepared solution of sodium naphthalenide 

(1.1 eq, 0.64 mmol) was added a solution of 3-Cp-3,1,2-closo-CoC2B9H11 (0.15 g, 

0.58 mmol) in dry, degassed DME (12 ml).  The reagents were heated to reflux for 

56 h, oxidised using a water aspirator and the solvent removed in vacuo.  

Purification of the crude residue using column chromatography in an eluent system 

of 30:70 dichloromethane:petroleum ether gave naphthalene (Rf = 0.76), two 

yellow bands, yellow1 (Rf = 0.46) and yellow2 (Rf = 0.28), and unreacted 

cobaltacarborane starting material (Rf = 0.14).  Using 1H and 11B NMR 

spectroscopies, yellow1 was identified as 2-Cp-2,1,8-closo-CoC2B9H11 with a trace 

of 8-Cp-8,1,2-closo-CoC2B9H11 whilst re-purification of yellow2 using preparative 

TLC in an eluent system of 20:80 ethyl acetate:petroleum ether gave 2-Cp-2,1,7-

closo-CoC2B9H11 (Rf = 0.18) and 4-Cp-4,1,2-closo-CoC2B9H11 (Rf = 0.10) in trace 

amounts.  For 4-Cp-4,1,2-closo-CoC2B9H11: 
1H NMR (CDCl3, 298 K); δ 5.44 (s, 5H, 

C5H5), 3.36 (s, 1H, CcageH), 2.80 (s, 1H, CcageH).  11B NMR (CDCl3, 298 K); δ 9.1 (1B), 

0.8 (1B), -1.9 (1B), -5.7 (2B), -7.3 (1B), -12.0 (1B), -15.3 (1B), -17.5 (1B).  EIMS; m/z 

256.1(M+). 
§ Crystal data: C7H16B9Co, M = 256.42, monoclinic, P21/c, a = 11.6409(12), b = 

6.6488(6), c = 16.1299(15) Å,  = 93.823(5)º, V = 1245.6(2) Å3, Z = 4, Dc = 1.367 Mg 

m−3,  = 1.336 mm−1, F(000) = 520.  Data to max = 32.00º collected at 100(2) K on a 

Bruker X8 diffractometer using Mo-K  radiation.  4297 independent reflections out 

of 29748 measured, Rint = 0.0421.  S = 1.102 for all data, and R1 = 0.0377, wR2 = 

0.0803 for 3596 data with I>2 (I).  Max. and min. e-density 0.872 and -0.573 eÅ
−3

, 
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One-electron reduction of 3-Cp-3,1,2-closo-CoC2B9H11 followed by heating to reflux in 

DME (bp 85 °C) induces isomerisation to 4-Cp-4,1,2-closo-CoC2B9H11. 
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