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Prediction of microalgae hydrothermal liquefaction 
products from feedstock biochemical composition† 

Shijie Leow,a John R. Witter,a Derek R. Vardon,a,b Brajendra K. Sharma,c   
Jeremy S. Guesta and Timothy J. Strathmanna*  

Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200-
350°C, 5-20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on 
factors influencing microalgae cell composition during cultivation and separate reports on HTL 
products linked to cell composition, the field still lacks a quantitative model to predict HTL 
conversion product yield and qualities from feedstock biochemical composition; the tailoring of 
microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae 
biofuels that must be leveraged upon for optimization of the whole process. This study 
developed predictive relationships for HTL biocrude yield and other conversion product 
characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range 
of compositions (23–59%dw lipids, 58–17%dw proteins, 12–22%dw carbohydrates) and a 
defatted batch (0%dw lipids, 75%dw proteins, 19%dw carbohydrates). HTL biocrude yield (33–
68%dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) 
content. A component additivity model (predicting biocrude yield from lipid, protein, and 
carbohydrates) was more accurate predicting literature yields for diverse microalgae species 
than previous additivity models derived from model compounds. FA profiling of the biocrude 
product showed strong links to the initial feedstock FA profile of the lipid component, 
demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA 
structural components could be represented using the defatted batch. These findings were 
used to introduce a new FA-based model that predicts biocrude oil yields along with other 
critical parameters, and is capable of adjusting for the wide variations in HTL methodology and 
microalgae species through the defatted batch. The FA model was linked to an upstream 
cultivation model (Phototrophic Process Model), providing for the first time an integrated 
modeling framework to overcome a critical barrier to microalgae-derived HTL biofuels and 
enable predictive analysis of the overall microalgal-to-biofuel process. 

1. Introduction

The growing scarcity of fossil fuel resources combined with 
transportation systems and infrastructure that rely heavily on low-
cost liquid fuels has created a critical need for the development of 
economical and sustainable pathways for production of 
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bio-renewable liquid fuels.1,2 Algal biofuels have attracted 
growing attention based on the documented advantages of 
microalgae feedstocks, including relatively low nutritional 
requirements and use of non-arable land for cultivation.1,3–6 There 
is growing interest in converting whole wet biomass like 
microalgae to liquid “biocrude” oil via hydrothermal liquefaction 
(HTL‡) processes that use subcritical water at elevated 
temperatures (200–350 °C) and pressures (5–15 MPa) as the 
reaction medium,7,8 conveniently eliminating energy intensive 
drying steps.9 A unique facet of microalgae feedstocks pertinent to 
HTL is the high degree of control over biochemical composition 
during cultivation,10,11 such as the accumulation of energy-dense 
lipids or fatty acids (FA) in cells under depletion of nitrogen in 
culture media.11,12 Since HTL is directly affected by cell 
composition,13–15 it follows that the composition of feedstocks can 
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be tailored to achieve optimized HTL product yields, biocrude oil 
quality, and net energy recovery of the biofuel production system 
(Fig. 1). 
 Such synergy unique to microalgae-HTL processing is 
achievable only through a detailed understanding of the 
relationships between feedstock biochemical composition and 
HTL product characteristics which, to date, remains poorly 
understood. This knowledge gap results in a lack of predictive 
models quantitatively linking HTL product yield and quality to 
feedstock characteristics. Development of robust prediction 
models allows for integration with upstream microalgae 
cultivation models such as the Phototrophic Process Model 
(PPM),11 forming an integrated modeling framework (Fig. 1) that 
can predict important outcomes of the overall microalgae-HTL 
process using cultivation inputs (e.g., energy demand, nutrients, 
irradiance) to yield biocrude conversion outputs (e.g., biocrude 
yield, energy density). This framework would, for the first time, 
allow a comprehensive system-scale modeling of broad interest to 
microalgae HTL research areas, and to address a long-standing 
critical barrier to the integration of hydrothermal processing into 
microalgae biofuel production systems.1,3,4 
 Previous work focusing on microalgae HTL has shown that 
product yield, chemical properties of the biocrude, and the carbon 
and nitrogen distributions between the different HTL product 
fractions (i.e., biocrude, aqueous, solid, gas) are intrinsically tied 
to all or some portion of the biomass composition.13,16 To this end, 
initial predictive model development by Biller and Ross13 sought 
to estimate biocrude yield by linear summation of the yields 
obtained from HTL of individual model lipid, protein, and 
carbohydrate compounds (termed here as component additivity). 
The component additivity model was more recently revised by 
Teri et al.17 utilizing various mixtures of the same model 
compounds as Biller and Ross. Valdez and co-workers18 

introduced an alternative kinetics-based reaction network model 
which accounts for how the biochemical components and product 
distribution shift with respect to reaction time and temperature. 
Component additivity models, while useful for estimating 
biocrude yield with proximate composition analysis, are unable to 
account for neutral and polar lipid fractions or FA profiles of 
biomass, which are known to affect biocrude elemental 
composition, higher heating values (HHV), and molecular weight 
distribution.19,20 Developing a model to predict additional 
parameters (e.g., %C and %N of the biocrude, C and N 
distribution to the product fractions, net energy recovery) is 
further critical to enable incorporation into overall algal biofuel 
system process models, techno-economic analyses (TEAs), and 
life-cycle assessments (LCAs).21,22 
 Attempts to develop a broadly applicable additivity model that 
accurately characterizes the influence of biochemical composition 
on microalgae HTL product quality have been limited in part 
because past efforts used non-algal based model compounds (e.g., 
sunflower oil, soy protein, corn starch), or focused on comparing 
HTL of different algae species, each with a single biochemical 
composition.13,17,18 Differences in species-specific factors such as 
cell wall thickness and ash compositions might affect the HTL 
process,23 introducing variability that obscures the true 
relationships between biochemical composition and HTL 
products; these limitations may be overcome by comparing HTL 
products obtained from a single microalgae species grown to 
variable cell compositions. Moving beyond the limitations of 
additivity models to enable prediction of biocrude quality, a new 
model structure is needed that incorporates more detailed 
feedstock characterization (i.e., beyond crude proximate 
composition), especially the energy dense lipid fraction, which 
may reveal important effects from components that makeup these 
proximate classes (e.g., FAs). The use of FAs as the main variable

Fig. 1 The integrated modeling framework allows for prediction and optimization of system-scale parameters for the microalgae-HTL biofuel system. The top half of the 
figure represents the integrated processing scheme for microalgae HTL, with the black arrows representing decisions on cultivation times that lead to downstream 
implications. The bottom half represents the current research progress towards formulating an integrated predictive framework.  
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would also allow seamless integration with the PPM, which 
outputs biomass productivity in terms of functional cell biomass 
and accumulation products (i.e., FAs).11 The model would ideally 
also be capable of adjusting for the variability in microalgae-HTL 
processing methodology (e.g., reaction time, temperature, 
microalgae species, recovery methods).14,24 
 The objective of this contribution is to quantitatively assess 
the influence of variable microalgae biochemical compositions on 
the yields and characteristics of HTL products, and use this 
information to develop quantitative predictive models for 
microalgae HTL processing including: (1) an improved 
component additivity model; and, if supported by analytical 
evidence from the in-depth analytical suite employed in this study, 
(2) a new predictive model formulation that can be more easily
applied to diverse microalgae species and HTL conditions. This
was accomplished by HTL of a single microalgae species,
Nannochloropsis oculata, cultivated under conditions designed to 
systematically vary cell composition. Nannochloropsis was
selected as a model microalgae species because of the wide range 
of achievable lipid contents10,12 and extensive reports on HTL of
commercially available Nannochloropsis.18,25,26 Distribution of
mass yields and biomass carbon and nitrogen between the HTL
products were compared for different harvested batches. Biocrude 
bulk and chemical properties were also extensively characterized. 
Data was used to develop and calibrate models linking HTL
products to feedstock composition, and model predictions were
validated by comparison with HTL measurements of diverse
microalgae feedstocks reported in literature. Robust HTL
conversion models can potentially be used in conjunction with the
PPM11 to predict key outcomes of the overall microalgae biofuel
process, linking once-separate upstream cultivation and
downstream conversion steps through a unified modeling
framework.

2. Experimental

2.1. Acquisition of algae biomass 

A flat-panel, acrylic photobioreactor (PBR) with a working 
volume of 3.5 L and 1 in. light path was constructed as previously 
described.11 Detailed operational methods and conditions of the 
PBR are provided in the ESI† (ESI-1). Starter cultures of 
Nannochloropsis oculata (strain CCMP525) obtained from the 
National Center for Marine Algae and Microbiota (East Boothbay, 
ME) were used to inoculate the PBRs immediately upon arrival of 
cultures. Six batches of biomass with varying compositions were 
obtained by harvesting after varying periods of growth between 
3–14 days. Batches harvested at longer cultivation times were 
expected to have larger lipid contents (and thus smaller protein 
and carbohydrate contents) as cultures typically transitioned from 
N-replete to N-deplete conditions after six days of growth. In
order to demonstrate that the composition of a harvested batch and 
its subsequent HTL conversion were reproducible, two additional 
batches were harvested under conditions identical to the batch
with the lowest lipid content. A defatted batch of Nannochloropsis
was also prepared by extracting the lipids from harvested biomass

using a 2:1 chloroform-methanol mix (Folch method described in 
Section 2.2) and freeze-drying the residual biomass solids after 
filtration and removal of extraction solvents.15 To supplement the 
cultivated batches, a slurry of Nannochloropsis (>70 wt% 
moisture) was purchased from Reed Mariculture (Campbell, CA) 
similar to previous HTL studies,20,25 and was processed as 
described above (two repetitions of rinsing and centrifugation 
followed by lyophilization) prior to use. Supplier documentation 
indicated the biomass was grown from the same strain used in 
batch cultivations here. 

2.2. Biomass composition analysis 

All biomass composition analyses were conducted on freeze-dried 
biomass samples. Moisture content was determined 
gravimetrically after drying samples at 105 °C for 1 h and 
desiccating for 30 min before weighing, and ash content was 
measured after heating the dried biomass at 550 °C for 30 min and 
desiccating for 30 min.11 C, H and N content was measured at the 
University of Illinois Microanalysis Laboratory (Urbana, IL) 
using an Exeter CE-440 Elemental Analyzer. Oxygen content was 
estimated by difference (%O = 100% − %C − %H − %N − %Ash) 
assuming sulfur was insignificant based on previous reports and 
analysis conducted here on representative batches (see ESI† ESI-
2).20,27 HHV was estimated from the elemental composition using 
the method of Dulong.13,20 Crude protein content was estimated by 
multiplying %N by 6.25.27 Crude carbohydrate content was 
analyzed with the DuBois method.28 Crude lipid content was 
analyzed according to the Folch method.29 To further characterize 
the lipid content, neutral lipid (NL) and polar lipid (PL) fractions 
of the crude lipid extract were separated by solid phase extraction 
(SPE) and determined gravimetrically after evaporation of 
eluents.30,31 Details of the SPE method and classification of NL 
and PL are provided in the ESI† (ESI-3). Fatty acid profiles of the 
biomass were determined by in-situ transesterification fatty acid 
methyl esters (FAMEs) analysis according to Laurens et al. (see 
ESI† for details; ESI-4).32 
 Raw results from the proximate biochemical analyses are 
provided in the ESI† (Table S2). Summation of crude lipids, 
proteins, and carbohydrates together with the ash and moisture 
contents ranged from 94.6–106.7 wt%, indicating that the 
methods used provided good mass balance closure, albeit with 
slight overestimations given that some of the proximate methods 
count the same components within biomass twice (e.g., 
glycoproteins contain both protein and carbohydrate).33 For 
subsequent analysis and model development, the proximate 
analyses of lipid, protein, carbohydrate, and ash contents of the 
Nannochloropsis batches were corrected to a summation of 
100 %dw (% dry weight, by dividing by the summed total of all 
components and then adjusting for moisture) as shown in Table 1. 

2.3. HTL of biomass 

HTL of the harvested batches were conducted in duplicate using 6 
mL 316-stainless steel tube batch reactors.18,20,25,34 Full details of 
the procedure can be found in the ESI† (ESI-5). Briefly, de-
ionized water was added to freeze-dried biomass samples to 
achieve an 80 wt% moisture slurry, approximately 4 g of which 
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was loaded into the tube reactor under ambient air. Reactors were 
sealed and placed in a preheated muffle furnace (Type 30400, 
Thermolyne) at 300 °C for 30 min, followed by quenching the 
reaction by submerging in cold water. Biocrude oil, aqueous 
phase-dissolved solids, filtered solids and gas products were 
recovered and separated (ESI-5), and then measured 
gravimetrically and mass yields of the four product phases were 
reported as %dw of the input feedstock. A single set of HTL 
conditions was used here to enable greater focus on establishing 
the influence of microalgae cell composition on HTL products. 
The test conditions were selected based on optimal conditions in 
terms of yield and net energy efficiency widely reported to be 
within 300–350 °C and 30–60 min for both algal and 
lignocellulosic biomass feedstocks.14,25,35,36 

2.4. Product analysis and energy, C, and N distribution 

The biocrude product was analyzed for elemental composition and 
HHV via similar methods described for the biomass samples, 
except the ash content of biocrude was assumed to be negligible 
(%C + %H + %N + %O = 100 %).37 C and N content was used to 
calculate the distribution of biomass carbon and nitrogen to the 
biocrude product. Size Exclusion Chromatography (SEC; 
molecular weight distribution) and Simulated Distillation 
(SimDist; approximate boiling point distribution) were performed 
on biocrude products according to methods described 
previously.15,16 Fatty acid reference standards (Sigma-Aldrich) 
were also analyzed via SimDist to identify individual peaks 
observed in the biocrude boiling point profile. The FA profile of 
the biocrude was also quantified via the same FAMEs analysis 
procedure described for biomass samples.32 The Energy 
Consumption Ratio (ECR), defined as the ratio of input energy 
required for reactor heating to the output combustion energy 
available in the biocrude oil product,13,15 and the Energy Recovery 
Percentage (ER%), defined as the fraction of energy in the dry 
biomass feedstock recovered as energy in the biocrude oil,13,25 
were also calculated; detailed descriptions of the mathematical 
expressions, assumptions and parameters are provided in the ESI† 
(ESI-6). 
 Total Kjeldahl nitrogen (TKN), ammonia (NH3), nitrate and 
nitrite (NO3

- + NO2
-) and orthophosphate (PO4

3-) concentrations in 
the aqueous phase were analyzed by Midwest Laboratories 
(Omaha, NE). The fraction of microalgae-derived carbon 
distributing to the HTL aqueous phase product was determined by 
analysis of total organic carbon (TOC; Shimadzu TOC-V CPN 
TOC analyzer), which has been reported as the dominant type of 
carbon (i.e., minimal inorganic carbon production).38 The fraction 
of nitrogen distributing to the aqueous phase product was 
determined by total nitrogen (TN), defined as the sum of TKN and 
NO3

-/NO2
-. Headspace gas was assumed to be 100% CO2 for the 

purpose of estimating biomass carbon distribution, based on past 
reports that the gas phase product from HTL of Nannochloropsis 
is predominantly CO2 (91.5 mol% for HTL at 300 °C for 1 h and 
>93 mol% under alternative HTL conditions).20,25 C, H, and N
contents of the solid phase products were analyzed via similar
methods described for the biomass samples, except that composite 
samples were required for some batches (solid products were

combined for Batches 4 and 5, and another for Batches 6–8) due 
to the low yield of solids generated during HTL reactions of these 
batches (results and details in ESI† Table S4). The measured C 
and N values were used to estimate the biomass carbon and 
nitrogen distribution to the solid phase products. 

2.5. Predictive modeling 

Calibration of a linear component additivity model for predicting 
biocrude yield was performed by multiple linear regression of 
biomass composition parameters (i.e., lipid, protein, and 
carbohydrates) against corresponding HTL biocrude product 
yields using the regression function available in the Microsoft 
Excel 2010 Data Analysis package (Analysis ToolPak). 
Regression confidence level was 95% and intercept was set to 
zero. Calibration of an FA-based model was dependent on 
experimental observations and is described in greater detail in 
Section 3.4. 
 Model validation was accomplished by comparing predictions 
with measurements reported in microalgae HTL literature. Batch 
composition data and corresponding yields were obtained from 14 
peer-reviewed journal papers for a total of 21 marine and 
freshwater microalgae species, and more than one composition for 
the same species was included if unique data were reported.15,18–

20,23,25,26,38–44 The entire list of studies is provided in the ESI† 
(Table S1) along with species, proximate compositions, and 
biocrude yields. Results for HTL conducted at 300 °C, regardless 
of reaction time, were used to validate the component additivity 
model calibrated in this paper.15,18,20,25,26,38–44 Model accuracy was 
compared against the component additivity models previously 
calibrated with model compounds.13,17 and the reaction network 
model18 by calculating the coefficient of determination (r2) values. 
Residuals were also analyzed to identify patterns, if any. 
Validation of the FA model was done using experimental data 
from the ten harvested batches, since FAMEs analysis has not 
typically been conducted in prior reports on microalgae HTL. 
 To conceptually demonstrate an integrated modeling approach 
predicting overall system outputs and product characteristics from 
upstream cultivation inputs, the FA model developed in this paper 
was combined with a lumped pathway metabolic model (the 
Phototrophic Process Model, PPM)11. Parameters used for the 
PPM modeling are described in the ESI† (ESI-7). The execution 
of the integrated framework was meant as a demonstration of the 
potential of coordinated modeling of upstream cultivation and 
downstream conversion, and thus no further calibration was 
performed beyond that as described in Guest et al.11 

3. Results and discussion

3.1 Composition of Nannochloropsis feedstocks 

Batches 1–8 were organized in order of increasing lipid content 
(Table 1). Batch 1 was obtained after solvent extraction of lipids 
(defatting), and Batch 2 was obtained from a commercial source 
(Reed Mariculture). Batches 3–8 were cultivated biomass samples 
harvested during exponential growth and after increasingly 
prolonged periods of N-starvation, resulting in batches with
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increasing lipid content (23.0–58.7 %dw, including Batch 2) and 
correspondingly decreasing protein content (58.1–17.1 %dw). 
Carbohydrate content varied to a lesser degree (13.2–22.2 %dw). 
The defatted Batch 1 was primarily made up of proteins 
(74.7 %dw) and carbohydrates (19.4 %dw), which extended the 
range of compositions beyond those that could be achieved 
through cultivation alone. Elemental analysis (Table 1) showed 
that %C and %H increased while %N decreased with increasing 
lipid fraction, whereas %O remained fairly constant. As a result, 
estimated HHV values of the HTL feedstocks increased from 19.3 
to 30.1 MJ/kg, reflecting the growing content of energy dense 
lipids in the HTL feedstocks. Reproducibility of harvested cell 
compositions was demonstrated (see ESI†, Table S3). 
 The range of proximate compositions of Nannochloropsis 
batches used in this study overlapped with both marine and 
freshwater microalgae species that have been previously studied 
as HTL feedstocks (Fig. 2). The limited range of carbohydrates of 
harvested batches (15–25 %afdw) is not expected to appreciably 
affect model development given that carbohydrates are considered 
to be the least significant contributor to HTL biocrude yields by a 
large margin.13,17 Apart from that, the harvested batches extended 
well beyond the general range of compositions previously 
investigated, suggesting that conclusions drawn from conversions 
of Nannochloropsis (a marine microalgae) in this study may be 
applicable to other marine and freshwater microalgae species as 
biofuel feedstocks.10 
 Analysis of lipid speciation was conducted to determine if 
fatty acid (FA) content could be used as a key determinant for 
modeling purposes. Results (Table 1) revealed that the 
differences in lipid content were strongly attributable to the 

Fig. 2 Ternary plot of biomass compositions of Nannochloropsis from this study 
compared to reported microalgae HTL feedstock compositions in the literature. The 
complete list of references is available in Table S1 (ESI†). Ash-free dry weight 
(%afdw) is used only in reference to data shown in this figure; all other results in 
this study are presented as %dw. The colored intersecting lines are located at 
reference fractions of 33.3 %afdw for lipids (red), proteins (green) and 
carbohydrates (blue), respectively. 
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accumulation of neutral lipids (NL, 7.0–50.0 %dw; NL/protein 
ratio of 0.1–2.9), while retaining a fairly constant polar lipid (PL) 
content as indicated by the comparatively stable PL/protein ratio 
(0.3–0.6). Previous studies on the cultivation of Nannochloropsis 
have shown that increases in the NL fraction can be primarily 
attributed to the accumulation of triacylglycerides (TAGs).12,45 
FAMEs analysis of the batches showed a trend similar to the NL 
content (13.6–52.0 %dw), consistent with the fact that the NLs are 
predominantly TAGs, which are the main source of FAs in 
microalgae biomass (noting that polar lipids do include FA-
containing phospholipids).46 In all batches, palmitic (C16:0) and 
palmitoleic (C16:1) acids were the predominant FAs, along with 
comparatively smaller portions of myristic (C14:0), oleic (C18:1), 
eicosatrienoic (C20:3n3), and eicosapentaenoic (C20:3n5) acids. 
The predominance of these FAs is consistent with previous 
reports of FA content of Nannochloropsis species,12,27,45 though 
their exact distribution among these FAs can vary widely with 
cultivation methods and across growth phases.47 

3.2. Influence of biochemical composition on product yields 

Product yield distribution results from the HTL conversion of 
Nannochloropsis batches are shown in Fig. 3A, arranged in order 
of increasing lipid content of the HTL feedstock batches. 
Biocrude oil yield increased from 33.2 to 68.3 %dw as feedstock 
lipid content increased, while aqueous phase yield decreased from 
36.2 to 13.1 %dw. Replicate HTL of Batch 3 produced near-
identical product distributions (see ESI† Table S3), demonstrating 
minimal variance of HTL products resulting from batches of near-
identical biochemical compositions. Biocrude yield from HTL of 
commercial Nannochloropsis (Batch 2 – 51.3 %dw at 23 %dw 
lipids) agreed with results reported by Valdez et al. (39 %dw yield 
at 9 %dw lipids)18 in that the smaller lipid content (likely due to 
the rinsing done here which removed salt as ash content) resulted 
in a corresponding decrease in biocrude yield as expected from 
the linear trend (r2 of 0.969) to lipid content shown in Fig. 3A 
(i.e., ~40 %dw biocrude yield is expected at 10 %dw lipid 
content). Batches 1–3 produced similar biocrude yields to other 
microalgae species with comparable compositions such as 
Chlorella and Dunaliella (43 %dw and 42 %dw yields, 
respectively).23,39 Results similar to lipid-rich Batches 4–8 (with 
lipid content >46.8 %dw)  have also been observed for lipid-rich 
Chlorella (63 %dw yield for feedstock with 60 %dw lipids)44 
under identical HTL conditions. 
 Larger amounts of biomass carbon partitioned to the biocrude 
product (increasing from 49.0 to 83.0%; ESI† Table S4 and Fig. 
3B) as feedstock lipid content increased, which was largely 
matched by reduced carbon partitioning to the aqueous phase 
(decreasing from 33.6 to 9.6%; Table S4). The trends observed in 
Fig. 3 indicate that the lipid content or some component thereof 
(likely the FAs as shown in Section 3.1) heavily influences the 
yield and carbon distributions of HTL biocrude and aqueous 
products. Additional analysis of the biocrude product would 
pinpoint the responsible component to be used as a baseline for 
predictive model calibration. 
 In comparison to biocrude and aqueous yields, solid and gas 
phase yields from HTL are much lower (sum of both phases <25 

Fig. 3 (A) HTL product yield and (B) carbon distribution as a function of 
Nannochloropsis feedstock lipid content. Symbols indicate the mean of duplicate 
analysis with error bars showing min/max values. Total product recovery for all 
batches ranged from 93.1–99.7 %dw of loaded biomass. Total carbon recovery for 
all batches was 95.2–102% of loaded biomass carbon (see ESI† Table S4 for 
complete data including estimated gas phase carbon distribution results). Linear fit 
r2 values shown only for biocrude oil and aqueous phase products. 

%dw for all batches; Fig. 3A). Solid phase yields decreased from 
11.7 %dw with the defatted Nannochloropsis batch to 1.8–4.4 
%dw for Batches 3–8. Gas phase yields were fairly static and 
showed no discernable trend with varying lipid content. 
Subsequent analysis and discussion will therefore focus on the 
biocrude and aqueous phase products because of their 
predominance in the observed mass balances. 

3.3. Influence of biochemical composition on elemental 
distribution and energy balance 

The elemental composition and HHV of biocrude products and 
energy recovery analysis (ECR and ER%) of the varying batches 
are shown in Table 2. Slight increases for the %C and %H and 
decreases in %O of the biocrude were observed with increasing 
feedstock lipid content. Feedstocks produced HTL biocrude with 
lower %N (decreasing from 9.1 to 2.0 %N) as protein contents 
decreased, in agreement with previous reports that nitrogen-rich 
biomass produces HTL biocrude containing larger quantities of 
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nitrogenous compounds.13,16 If the biocrude is not subjected to 
hydrodenitrogenation or other upgrading techniques to remove 
nitrogen, the %N is undesirable as a source for higher NOx 
emissions during combustion.16,48 Significantly lower %N in the 
biocrude could therefore be an important advantage that lipid-
accumulated biomass offers over protein-rich feedstock. 
Interestingly, as the decreasing %N of biocrude would otherwise 
suggest, a larger percentage of feedstock N is actually transferred 
to the biocrude product as feedstock protein content decreased 
(ESI† Table S4), in part due to the much higher yield of biocrude 
for low protein feedstocks (i.e., there is relatively more biocrude 
volume to which partitioning of N-containing products can occur). 
 Variation in the estimated HHVs of the biocrudes was found 
to be comparatively smaller (32.7–40.6 MJ/kg, Table 2), relative 
to the breadth of biocrude yields observed (33.2–68.3 %dw, Fig. 
3A). Thus, the marked improvement in ER% and ECR observed 
with increasing lipid content of the feedstocks (increase in ER% 
from 56.3 to 92.0% and decrease in ECR from 0.325 to 0.127, 
respectively) was attributable disproportionately to the 
improvements in biocrude yield. ECR is highly dependent on 
moisture content of the HTL feedstock slurry, becoming more 
favorable at lower water contents.15 Given that the energy demand 
for dewatering steps during the harvesting of microalgae biomass 
has been identified as a major hurdle to the successful 
implementation of microalgae biofuels,1,3 lipid-rich microalgae 
feedstocks exhibiting higher HTL yields and HHV may be more 
amenable to processing with higher moisture contents (i.e., 
favorable ECR with less dewatering).16 Similarly, higher ER% 
values reflect a greater recovery of embedded feedstock energy in 
the biocrude product, suggesting that a batch with more lipids 
would be advantageous if maximizing energy recovery in the form 
of biocrude oil is the primary goal. However, it must be noted that 
both the ER% and ECR only consider the HTL processing step 
and do not account for the energy inputs during upstream 
cultivation, harvesting or dewatering. Thus, economic and life 
cycle optimization of the overall microalgae HTL biofuel 

Table 2 HTL biocrude product bulk properties and energy 
balancesa 

Batch %C %H %N %O 
HHV 

(MJ/kg) 
ECRb 

(-) ER%c 
1 68.3 8.5 9.1 14.1 32.7 0.325 56.3 

2 69.8 9.5 6.1 14.6 34.5 0.199 71.7 

3 71.8 10.2 5.5 12.5 36.5 0.180 77.3 

4 74.3 11.1 3.4 11.2 38.9 0.142 88.0 

5 74.2 11.1 3.7 11.0 38.9 0.143 86.0 

6 74.0 11.1 3.4 11.4 38.8 0.149 80.8 

7 75.7 11.5 2.7 10.1 40.2 0.132 87.5 

8 75.6 11.8 2.0 10.5 40.6 0.127 92.0 
a All values (unless otherwise stated) reported in % as the mean of 
duplicate analysis with min/max values (±) shown only if > ±0.5%. b 
Energy Conversion Ratio. c Energy Recovery Percent. 

process may involve trade-offs that lead to an optimum harvested 
cell composition that is not simply targeting maximum lipid 
content. 
 Recycling of the nutrient-rich aqueous phase product to 
upstream microalgae cultivation processes has been proposed as a 
key feature of microalgae HTL,8,39,42 insofar as suggesting it is 
essential for the microalgae HTL process to be feasible.1 The 
aqueous phase products from HTL conversion of the varying 
biomass batches in this study were analyzed for typical 
phototrophic nutrients (ESI† Table S5). TOC and TKN generally 
decreased as batch lipid content increased. Ammonia 
concentrations were roughly 50% of TKN for all batches, similar 
to previous reports for HTL of Nannochloropsis at comparable 
HTL conditions.24 Collective information from the literature 
reporting the successful cultivation of different species of 
microalgae from recycled HTL aqueous phases suggest that 
concentrations of 200–400 mg/L TOC, 50–150mg/L TKN and 
10–60 mg/L PO4

3- allow algae to thrive in the aqueous phase-
derived media.39,42,49 Decreasing dilution factors (estimated at 150 
for Batch 1 to 40 for Batch 8, data not shown) to meet these 
concentrations indicate that HTL produces aqueous phase 
products that require smaller amounts of valuable water resources 
for dilution as biomass lipid content increases (Table S5).39 

3.4. Influence of biochemical composition on biocrude oil 
characteristics 

In addition to yield and elemental content, HTL biocrudes were 
characterized through the determination of molecular weight 
(MW) and boiling point (BP) distributions, and FAMEs analysis. 
The MW distributions of the biocrude products displayed a 
similar pattern across the cultivated batches (ESI† Fig. SI1). The 
profiles converged towards the 200–300 Da range as biomass 
lipid content increased from Batch 2 to Batch 8, as indicated by 
the major peak centered around 250 Da. SEC analysis of HTL 
biocrude from other microalgae species have shown distinctive 
MW distributions.15,50 The consistent profile patterns in Fig. SI1 
(ESI†) therefore suggest that the biocrudes contained mostly 
similar compounds, with the major difference attributed to 
variations in quantity of a certain group of lipid-type molecules 
with MWs in the 200–300 Da region (e.g., FAs such as C16:0 – 
256 Da and C18:1 – 282 Da). 
 Simulated distillation (SimDist) analysis (Fig. 4) showed that 
regardless of composition, the largest fraction of each biocrude 
fell in the 300–400 °C BP range, and the second largest in the 
400–500 °C range, consistent with the boiling point fractions 
reported for other microalgae-derived HTL biocrudes.8,15,16 These 
two BP ranges make up the majority fraction of heavy vacuum 
gas oil (343–538 °C),16 which is typically catalytically upgraded 
in petroleum refineries into more valuable transportation fuels 
(e.g., gasoline, kerosene).51 Vardon et al.15 observed minimal 
differences in the BP profiles of biocrudes from Spirulina and 
Scenedesmus species (e.g., ~31% in the 300–400 °C BP fraction 
for both microalgae) despite significant differences in biomass 
compositions. In contrast, there was a significant difference in the 
300–400 °C fractions of the harvested batches in this study, 
increasing from 27.6 to 74.7% of the biocrude with increasing 
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Fig 4 A) Biocrude product boiling point (BP) distribution via SimDist analysis. Bars 
are ordered in increasing lipid content (Batch 1 to 8) from left to right. B) BP profile 
within 300–400 °C of individual fatty acids for reference to (C). C) BP profile within 
300–400 °C of biocrudes derived from HTL of three representative batches of 
Nannochloropsis. 

lipid content (0–58.7 %dw lipids), a trend that was compensated 
for by decreasing amounts of biocrude in the other BP ranges. 
 FA profiles of the biocrude products were analyzed to explore 
the fate and recovery of the six major FAs identified in the 
Nannochloropsis feedstock (Section 3.1) during HTL conversion. 
The %dw yields as biocrude (i.e., % FA content × %dw yield) of 
the FAs were quantified and shown in Fig. 5. Only four 
significant FAs (>1 wt% of biocrude; Fig. 5A–D) were observed 

in the biocrude products regardless of batch, with good recovery 
from the feedstocks being observed for the saturated FAs (SAFAs 
– C14:0 and C16:0; >87.8% average recovery) and mono-
unsaturated FAs (MUFAs – C16:1 and C18:1; >83.2% average
recovery). These four FAs became the dominant lipid component
as batch lipid content increased, such as Batch 8 biocrude where
the FAs constituted 62.0% of the biocrude, with C16:0 and C16:1
making up 21% and 22% of the biocrude, respectively (data not
shown; cross-referenced from Fig. 3).

Conversely, almost no recovery of the poly-unsaturated FAs 
(PUFAs; C20:3n3 and C20:5n3) was observed in any biocrude 
(<2.5% average recovery). Brown et al.20 reported similar 
observations for HTL biocrude oil derived from Nannochloropsis, 
even where C20:5n3 was the predominant FA detected in the 
feedstock biomass.20 The susceptibility of PUFAs to reformation 
mechanisms under hydrothermal conditions is commonly 
attributed to the greater degrees of unsaturation.52–54 In particular, 
PUFAs have been shown to undergo polymerization in subcritical 
water,55 forming dimeric fatty acids that likely still partition to the 
biocrude phase despite being transformed. The poor PUFA 
recovery could also suggest that pre-treatment to convert the 
PUFAs into MUFAs or SAFAs (e.g., hydrogenation at lower 
temperature regimes where PUFAs are not susceptible to SCW 
hydrolysis) prior to HTL might be a viable strategy to improve the 
recovery of linear chain FAs, which are more amenable for 
upgrading into liquid fuel-type compounds.48 

Given that the dominant FAs (2 SAFAs and 2 MUFAs) all 
displayed good recovery in HTL biocrude compared to PUFAs, 
these 4 dominant FAs were lumped together as a single parameter 
(C14–18) to determine a collective average recovery of 85.4% for 
SA/MUFAs (Fig. 5E). The good recovery observed for all 
feedstock batches (i.e., linear fit with r2 of 0.989) strongly 
suggests that C14–18 SA/MUFAs, and by extension any other 
SAFA or MUFA present in microalgal biomass, transfer largely 
intact to the biocrude after liberation from their respective TAGs 
and other FA-containing polar phospholipids. This general 
mechanism for the fate of FA-containing cell components 
explains the observed SEC and SimDist results as discussed 
above. The growing peak in the 200–300 Da region of the 
molecular weight distribution profiles observed for feedstocks 
with increasing lipid content (Fig. SI1, ESI†) can thus be 
attributed to an increasing contribution of C14–18 FAs (MWs of 
256–282 Da). SimDist analysis of individual model C14–18 
SAFAs and MUFAs revealed peaks that aligned with those 
observed in HTL biocrude samples derived from different 
Nannochloropsis batches (Figs. 4B and C). Together, this 
provides further confirmation that as the cell structure is broken 
down in subcritical water, the TAGs and phospholipids are 
hydrolyzed to free FAs that subsequently partition with other 
hydrophobic conversion products to form the biocrude 
phase.20,53,56 The near quantitative recovery of SAFAs and 
MUFAs in biocrude also affirm that the collective SA/MUFA 
content of the feedstock biomass would be a promising predictor 
variable when developing models for HTL conversion of 
microalgae feedstocks. 
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Fig. 5 Biocrude product fatty acid (FA) analysis reported as %dw yield for FAs with >1 %dw yield observed. * Average recovery, computed using all batches except the 
defatted batch. Diagonal dashed line indicates 100% recovery of feedstock FA in the biocrude product. Error bars in panel E indicates min/max values from replicate 
analysis; error bars for individual FAs in panels A-D were smaller than the size of the symbols shown. 

3.5. Predictive modeling of biocrude yield and quality from algal 
biomass 

3.5.1. Prediction of biocrude yield and comparison to previous 
models 

Accurate models linking HTL products to feedstock 
characteristics are critical to enable assessment of integrated algal-
based bioenergy production platforms that include this 

downstream processing technology. Biller and Ross13 first 
proposed a linear component additivity modeling approach for 
biocrude yield in the form of Eq. 1: 

Biocrude yield (%dw)  = x × L + y × P + z × C (1) 

where x, y, and z are yield coefficients for conversion of the lipid 
(L), protein (P), and carbohydrate (C) fractions of the feedstock 
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biomass, respectively. Biller and Ross calibrated the model by 
measuring HTL yields (at 350 °C, 60 min) of a model lipid 
(sunflower oil), protein (soy protein) and carbohydrate (starch) 
independently, obtaining Eq. 2: 

(Biller and Ross): Biocrude yield (%dw)  
= 0.80 × L + 0.18 × P + 0.06 × C (2) 

 More recently, Teri et al.17 calibrated Eq. 1 using the same 
approach and identical model compounds but at a HTL condition 
(300 °C, 20 min) more similar to the one in this study. It is noted 
that additional attempts to address cross-interactions between 
components by using mixtures of model compounds (e.g., a batch 
consisting of 33.3% of each component) provided a model with 
poorer accuracy,17 and therefore the model using single model 
compounds was selected here: 

(Teri et al.): Biocrude yield (%dw)  
= 0.95 × L + 0.33 × P + 0.06 × C  (3) 

 As a comparison, Eq. 1 was calibrated by multiple linear 
regression with experimental data derived from the HTL of 10 
batches of Nannochloropsis with varying proximate compositions 
(as %dw; Table 1 and ESI† Table S3). This analysis resulted in 
an alternative set of model coefficients (Eq. 4) 

(This study): Biocrude yield (%dw) = 0.97 (±0.10) × L 
+ 0.42 (±0.07) × P + 0.17 (±0.35) × C (4) 

Errors of coefficients (95% confidence levels) are shown in 
parentheses. Detailed results from the regression analysis 
including ANOVA, residuals, and Cook’s Distance (D) values, 
are provided in the ESI† (Table S6), but the multiple R (0.999) 
and Significance F (6.142 × 10–10) values were highlighted to 
affirm the goodness of fit to Nannochloropsis batch data. 
Calibrated coefficients were insensitive to the compositions of 
individual batches given that Cook’s D values were <0.5 for all 
data points except the defatted batch (Cook’s D of 12.5), which 
was expected since it was an artificially created batch with a 
composition of ~0 %dw lipids. 

The coefficients derived from HTL of Nannochloropsis (Eq. 
4) agreed with the principle of the biochemical components’
relative contribution yield given the coefficients have relative
magnitudes of lipids > proteins > carbohydrates.13,17 However, all 
three coefficients were larger than previous studies obtained from 
model compounds (Eqs. 2 and 3). Yield predictions for all three
component additivity models (Eqs. 2–4) by using compositions
from all known microalgae HTL studies conducted at 300 °C,
regardless of reaction time (Section 2.5) and comparing to
published experimental results (Fig. 6A to C); recent work by
Valdez et al. showed little effect of reaction time on HTL product
yields at t > 20 min.18 Predictions by Eqs. 2 (Fig. 6B) and 3 (Fig.
6C)  generally underestimated the experimental results, which
could suggest that the cross-interaction mechanisms between the
biochemical components during HTL of microalgae biomass

could have had constructive effects on biocrude yields36 which 
were not sufficiently represented by the HTL of model compound 
mixtures.17 Alternatively, the selected model compounds were not 
representative of the component class within microalgae or were 
unable to account for conversion of the same components when 
initially encapsulated within the microalgal cell (i.e., 
complications such as cellular compartmentalization, protein 
matrix, and lipid bodies). In any case, due to the higher 
coefficients obtained using the Nannochloropsis data set, 
predictions with Eq. 4 (Fig. 6A) were generally more accurate 
and balanced in distribution (r2 of 0.463), with similar patterns in 
the residuals among the additivity models (see ESI† Fig. SI2). 
 As an alternative to the linear component additivity approach, 
Valdez et al.18 proposed a reaction network model which 
attempted to account for the kinetics of various transformation 
pathways that individual biochemical components and the 
resultant HTL product fractions undertake during treatment in 
sub-critical water. Model formulation includes a set of first-order 
differential equations that define the evolution of each component 
(obtained via proximate analysis) and product fraction with 
respect to reaction time, and thus requires computational solvers 
to make predictions. One unique aspect of the reaction network 
model is that it seeks to predict the effects of both reaction time 
and temperature (e.g., HTL has been studied in the range of 5–90 
min, 200–375 °C).18 Although the reaction network model was 
designed to apply to a wider set of conditions, here we compared 
predictions with the same validation data set (HTL at 300 °C, all 
reaction times) as Eqs. 2–4 (Fig. 6D). The reaction network 
model predictions were generally more accurate than Eq. 4 for 
experimental results within 35–45 %dw lipids (which constitute a 
significant portion of the calibration data), but over-estimated and 
largely under-predicted the yields for feedstocks with <35 %dw 
and >45 %dw lipids, respectively. Visual inspection of the 
residuals underscores this bias (see ESI† Fig. SI2), suggesting 
that the structure of the reaction network model requires 
refinement to better characterize biocrude yield across a wider 
range of feedstock compositions. Thus, the model trades a 
decrease in average accuracy across a wide range of compositions 
(and hence biocrude yields) for increased accuracy within a small 
band of results (in this case, 35–45 %dw lipids). It is conceivable 
that future work to improve the component additivity model 
presented here (Eq. 4) can adopt the approach used for the 
reaction network model,18 using varying biomass compositions 
tested at a wider range of HTL conditions in order to develop even 
more robust prediction models. 

3.5.2. Predicting biocrude and aqueous phase yield from fatty acid 
content 

The component additivity and reaction network model approaches 
are limited to consideration of proximate components in the 
feedstock, neglecting the variable behavior of important 
subcomponent groups that define these crude classifications. 
Furthermore, use of the component additivity model will always 
be limited by the fact that HTL has been, and will continue to be, 
studied and operated at a wide variety of reaction conditions and 
potential microalgae species. Here, for the first time, the role of
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Fig. 6 Comparison of yield predictions obtained by component additivity models from: (A) this study (Eq. 4); (B) Biller and Ross (Eq. 2); and (C) Teri et al. (Eq. 3). Kinetic-
based reaction network model by Valdez et al. shown in (D). All points are results of HTL of microalgae biomass at 300 °C only; reaction times range 5-90 min. 53 Points 
were demarcated to show: ( ) 9 calibration points for Eq. 4; ( ) 22 calibration points for the kinetic-based model; and ( ) 22 other literature data points. The complete list 
of literature data is available in the ESI† (Table S1). The r2 values were calculated from all 53 points. 

biomass FA content on HTL yield was evaluated in detail. The 
link between HTL yields and FA content was supported by a 
number of prior observations, including: (1) the excellent recovery 
of C14–18 SAFAs and MUFAs in HTL biocrude (Fig. 5E); (2) 
the growing SEC peaks centered at ~250 Da in HTL biocrudes 
derived from batches with increasing FA content (Fig. SI1); and 
(3) the dominance of the 300–400 °C BP fraction, consistent with
the BPs of C14–18 model FAs which are liberated from neutral
TAGs and polar phospholipids by hydrolysis in subcritical water
(Fig. 4).53,54 The evidence collectively suggests that the
SA/MUFA content was a key determinant to the biocrude product 

yield in the 300–400 °C BP fraction, as evidenced by the strong 
linear correlation (Fig. 7A). 
 The strong correlation served as the basis for an alternative 
“FA model” for microalgae that considers the behavior of FA and 
defatted biomass components separately. Compositional analysis 
(Table 1) suggested that for a single species cultivated for lipid 
accumulation, each harvested batch contained a baseline 
composition of structural compounds (e.g., PL/prot ratio 0.3–0.6) 
along with varying degrees of FA accumulation as TAGs (0.59–
52.0 %dw FAMEs). Thus, in the context of HTL conversion, lipid 
accumulation in microalgae biomass could be approximated as 
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Fig. 7 (A) Plot of biocrude yield in the 300-400 °C range and biomass C14-18 FA content. (B) Predicted vs. experimental yields using the FA model (Eq. 5 and 6). Application of 
the N predictor (C; Eq. 8) and FA model (as Eq. 7) predicts elemental composition (D), from which the energy balances (E) and C/N distributions (F; calculated using yields 
shown in B and values from D) were obtained. Defatted batch results used for calibration marked with a cross, and Batches 2-8 were used for validation except in (B) which 
included 3b and 3c (Table S3, ESI†). Error bars in (A) show min/max values of the FA content (smaller than symbol if not shown). 
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increasing FA content on top of a baseline structural composition 
as represented by the defatted Batch 1 (noting that this is an 
approximation given that the defatting process via a Folch 
method29 solvent mixture removes all lipids, some of which may 
be structural or functional). Although the recovery of the 
SA/MUFAs was ~85% (Section 3.4), HTL of model lipids have 
shown that the hydrolysis products of these FAs would be 
incorporated into the biocrude phase (e.g., yield of ~95% biocrude 
from HTL of sunflower oil, after accounting for losses as 
glycerol).17 Despite the poor recovery of intact PUFAs (Section 
3.4), their content was also included together with the SA/MUFAs 
since the hydrolysis products of PUFAs under subcritical water 
conditions, and therefore the PUFAs themselves, are also 
expected to partition quantitatively to the biocrude phase as earlier 
discussed.54,55 The FA model is introduced here for both biocrude 
yield and aqueous phase yield which considers the contribution of 
FA and non-FA biomass components to HTL biocrude yield: 

Biocrude yield (%dw) 
= FAs + (defat BC yield) × (100% – FAs) (5) 

Aqueous phase yield (%dw) 
= (defat AQ yield) × �100% – FAs� (6) 

 Eq. 5 predicts biocrude yield as the summation of biomass FA 
content (FAs = %dw total FAMEs) and the yield from the non-FA 
fraction (100% – FAs) as determined by the HTL of defatted 
biomass of identical species (prepared according to the method in 
Section 2.1). The model entails a straightforward and principally 
sound method to embrace the numerous degrees of freedom (e.g., 
conversion conditions, microalgae species) using the defatted 
batch product yield, which directly accounts for the species-
specific structural content of the target species and variations in 
HTL processing methods. The model also assumes that any 
accumulated carbohydrates would not markedly affect predictions 
given their low contribution to biocrude yield (i.e., coefficient of 
0.17 from Eq. 4). Eq. 6 predicts the aqueous phase yield based on 
the yield obtained by the defatted batch through the same 
principles for biocrude yield as described, and assumes 
insignificant contributions from FA components of the feedstock 
algae. 
 The FA model predicted biocrude yields for batches with 
higher FA content (Batches 4–8; >38.6 %dw as FAMEs) 
accurately (Fig. 7B), while predictions slightly underestimated 
yield for lower FA content batches (<21.0 %dw FAMEs) at 82–
88% accuracy (data not shown). The underestimations for lower 
FA content batches can be attributed, in part, to the significant 
portion of non-FA type lipid compounds (e.g. plant waxes, 
pigments; PL content 14.9–18.5 %dw) contained in these 
feedstocks, which end up being lumped together with the (100% – 
FA) parameter and multiplied by the low yield for defatted 
biomass (0.332). Presumably, a much larger coefficient should be 
applied to this portion of biomass (e.g., 0.97 as shown in Section 
3.5.1, Eq. 4) given their larger contribution to biocrude yields. A 
possible future improvement would be developing a method to 

extract only FA-containing compounds (e.g., TAGs and 
phospholipids) from biomass in preparation of the defatted batch, 
thereby better preserving the non-FA lipids in biomass for 
enhanced model calibration. The aqueous phase predictions were 
opposite in terms of accuracy to the biocrude yields, where 
predictions were fairly accurate for low FA content batches (92–
116%; data not shown) but overestimated for high FA content 
batches (125–152%; data not shown), suggesting more complex 
mechanisms involved in the prediction of aqueous phase yields 
that were not explored in this study. 
 The FA modeling approach can be extended to predict other 
important HTL parameters (e.g., %CHNO, HHV, C/N 
distribution), as expressed in the general form: 

X = (FAs) × (X of FAs) 
+ (100% – FAs) × (X of defat batch) (7) 

where X is the parameter of interest. For simplification, the 
representative parameters for the FAs were obtained from a 
weighted average of the six FAs in Batch 8 biomass (C14:0, 
C16:0, C16:1, C18:0, C20:3n3, and C20:5n3; average %C = 
75.9%, %H = 12.0%, %O = 12.2%). The biocrude %C, %H, and 
%O values were predicted using Eq. 7 (Fig. 7D), and together 
with the predicted yields from Fig. 7B the HHV, ECR and ER% 
could be calculated (Fig. 7E). Predicting the %C in biocrude and 
using predictions provided by Eq. 8 for %N in biocrude 
(discussed in following paragraph) allowed the distribution of 
biomass carbon and nitrogen to the biocrude phase to be 
calculated (Fig. 7F). While predictions were fairly accurate for 
%C, %H, HHV, and ECR, the %O was generally overestimated 
which led to less accurate predictions for the ER% (which is 
dependent on HHV and yield). The FA model can therefore 
provide reasonable estimates of biocrude yield and key quality 
parameters (e.g., %C, %N, HHV, and ECR) after calibrating for 
HTL of the defatted batch (at the chosen conversion condition and 
of the selected microalgae species, respectively), and using only 
the FAMEs and elemental analysis data of biomass for 
predictions. 
 Prediction of nitrogen content in biocrude precludes the use of 
the FA model given that FAs have no %N content. Instead, for 
this parameter a strong linear correlation (r2 of 0.933, Fig. 7C) 
between both %N of biomass and biocrude indicates that a pre-
determined fraction of protein-derived N partitions to the biocrude 
phase regardless of protein content in the feedstock, thereby 
dictating the actual N distribution to the biocrude product, 
explaining the increase of biocrude phase distribution of N earlier 
(Section 3.3). The %N content of biocrude can thus be predicted 
as: 

Biocrude %N  = 0.726 (±0.194) × Biomass %N (8) 

Errors of coefficients (95% confidence levels) are shown in 
parenthesis. This served as a preliminary suggestion in predicting 
the %N content of biocrude based on the biochemical 
composition, and therefore the exact causes or mechanisms were 
not further explored.  
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4. Conclusions and technological applications

A systems-scale modeling approach of the complete microalgae 
cultivation to HTL conversion process by integrating a dynamic 
biological cultivation model (PPM)11 and thermochemical 
conversion model (the FA model introduced here) is demonstrated 
conceptually in Fig. 8. The PPM uses a lumped pathway 
metabolic model of microalgae metabolism to predict the FA and 
non-FA content of cultivated biomass as a function of cultivation 
time and conditions (including light intensity, nutrient content, 
etc.),11 which can be directly linked to the FA model to predict 
downstream biocrude yield and energetic content (as HHV) of the 
biocrude product, in order to predict systems-level metrics (e.g., 
net energy return, NER) by comparing net energy yield to energy 
demand across all processes. For example, the qualitative 
representation in Fig. 8 suggests that for shorter periods of 
cultivation there is a high probability for poor to negative net 
energy returns depending on the amount of energy required for 
cultivation and harvesting of biomass (Fig. 8D). Conversely, 
over-extending the cultivation period does not appear to result in 
significant improvements to biocrude yield and quality or 
potential recoverable energy despite increasing cultivation energy 
demand. The integrated prediction framework instead suggests an 
optimal growth period which balances cultivation and FA 
accumulation (Fig. 8, green region), translating to improved 
biocrude yield and quality over the short period and a positive 
NER of the overall system compared to longer periods of 
cultivation. The model further implies an optimal cultivation 
period which provides the highest NER that systems would seek 
to achieve in order to maximize energy production. 

Ultimately, system optimization would be dependent upon 
microalgae growth and FA accumulation rates, HTL conversion 
conditions, and all other process parameters which would vary 
from system to system,10,14 which is where the PPM-FA-model 
approach would excel given that it can be tailored to each end-
user for a wide variety of predictive and system design 
applications (such as that shown in Fig. 8),3,57 providing 
opportunities to tackle complex and interdependent questions in 
microalgae-HTL research such as the balance of energy-
consuming cultivation for FA accumulation and energy return in 
the form of increased biocrude yield and quality.7,22 This section 
and Fig. 8 demonstrates how overall process predictions that were 
previously unavailable to the microalgae-biofuel research 
community can now be utilized to address a multitude of key 
research questions moving forward.1,3,22 

In conclusion, the analyses of HTL products derived from 
Nannochloropsis batches cultivated with systematically varying 
compositions were used to inform the development of two 
predictive models for HTL biocrude yield, with the FA model 
able to predict other important outputs of the process (e.g., 
aqueous phase product yield, %CHNO, HHV). The FA model 
does not render the additivity model obsolete; it is expected that 
the additivity model would have lower barriers-to-entries of use 
given that the proximate analytical suite (i.e., lipid, carbohydrate, 
protein) is generally less complex compared to FAMEs analysis 
and calibration via HTL of a defatted batch. However, it bears  

Fig. 8 Results demonstrating the integrated modeling framework with cultivation 
time as the system variable. This demonstration is conceptual; quantitative analysis 
requires calibration of the PPM and FA models. 

repeating that the FA model is highly customizable for target HTL 
conditions and microalgae species of interest, allowing seamless 
integration with upstream cultivation models that predict 
composition of harvested biomass, as demonstrated with the 
PPM-FA-model in Section 4, to enable quantitative analysis of 
whole-system biofuel production operational costs, environmental 
sustainability such as the fate of gases produced from HTL 
reactions, and net energy return on investments.3,4 The integrated 
modeling framework, together with future research, will unlock 
the promised synergy in tailoring cell composition of biomass for 
optimizing biofuel production systems,7 presenting a new 
trajectory towards the realization of sustainable microalgal biofuel 
production. Finally, the integrated models would support more 
accurate techno-economic and life cycle assessments (TEA/LCA) 
of microalgae biofuel production systems that incorporate HTL 
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downstream processes, or vice versa, bringing considerable 
advancement in dealing with the multi-faceted, interdependent 
multiple-technology challenges of microalgal-biofuel research.1 
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Models for microalgae hydrothermal liquefaction were developed from conversion of 
Nannochloropsis cultivated to varying biochemical composition and fatty acid content. 
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