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Fig. 1 Data fluctuation of spectral intensities in 120 times of LIBS measurements at a same position of the 
surface of 6# sample ( BYG199506)  

(a) Frequency histogram of spectral intensities in 120 repetitions of measurement  
62x46mm (600 x 600 DPI)  
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Fig.1 Data fluctuation of spectral intensities in 120 times of LIBS measurements at a same position of the 
surface of 6# sample ( BYG199506)  

(b)The normal probability plot of the intensities of multiple measurements  
62x46mm (600 x 600 DPI)  
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Fig. 2 Different schemes of the segmented weighting function of WLS-SVM and RLS-SVM  
64x49mm (600 x 600 DPI)  
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Fig. 3 Schematic experimental setup of LIBS measurement  
54x35mm (600 x 600 DPI)  
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Fig. 4 A typical LIBS spectrum of brass samples  
63x48mm (600 x 600 DPI)  
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Fig. 5 Pulse-to-pulse spectra fluctuations of the intensity (BYG119504 427.511nm)  
62x46mm (600 x 600 DPI)  
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Fig. 6 RSD values of the characteristic line intensity at 427.511nm of Cu normalized for all 16 brass samples 
62x46mm (600 x 600 DPI)  
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Fig. 7 The RSD values of predictions by different input variables  
62x46mm (600 x 600 DPI)  
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Fig. 8 The frequency histogram of error variable and normal probability plot  
(a) Frequency histogram of error variable ek  

62x46mm (600 x 600 DPI)  
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Fig. 8 The frequency histogram of error variable and normal probability plot  
(b)The normal probability plot of error variable ek  

62x46mm (600 x 600 DPI)  
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Fig. 9 Prediction results of different regression models  
(a)Prediction results of WLS-SVM  

62x46mm (600 x 600 DPI)  
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Fig. 9 Prediction results of different regression models  
(b) Prediction results of proposed RLS-SVM  

62x46mm (600 x 600 DPI)  
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Fig .10   RSD values of predictions of different regression models  
62x46mm (600 x 600 DPI)  
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Fig. 11 RLS-SVM regression results of different datasets generated from sinc function with Gaussian noise  
(a) 15% outliers(143 samples)  
62x46mm (600 x 600 DPI)  
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Fig. 11 RLS-SVM regression results of different datasets generated from sinc function with Gaussian noise  
(b)30% outliers(143 samples)  
62x46mm (600 x 600 DPI)  
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Fig. 11 RLS-SVM regression results of different datasets generated from sinc function with Gaussian noise  
(c) 45% outliers(143 samples)  
62x46mm (600 x 600 DPI)  
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Fig. 11 RLS-SVM regression results of different datasets generated from sinc function with Gaussian noise  
(d) 72 samples(25% outliers)  
62x46mm (600 x 600 DPI)  
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Fig. 11 RLS-SVM regression results of different datasets generated from sinc function with Gaussian noise  
(e) 143 samples(25% outliers)  
62x46mm (600 x 600 DPI)  
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Fig. 11 RLS-SVM regression results of different datasets generated from sinc function with Gaussian noise  
(f) 286 samples(25% outliers)  
62x46mm (600 x 600 DPI)  
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 Table 1 The elemental concentrations of the samples 

No. of 

sample 

No. of Steel 

Grade 

Cu(%) Zn(%) Pb(%) Fe(%) 

1# BYG199501 96.86 3.06 0.008 0.024 

2# BYG199502 95.1 4.78 0.0236 0.066 

3# BYG199503 94.46 5.26 0.05 0.182 

4# BYG199504 92.7 6.81 0.098 0.336 

5# BYG199505 89.97 9.83 0.0301 0.124 

6# BYG199506 90.76 9.15 0.012 0.051 

7# BYG199507 85.49 14.41 0.0283 0.097 

8# BYG199508 79.1 20.74 0.029 0.098 

9# BYG199509 70.44 29.04 0.132 0.182 

10# BYG199510 69.25 30.66 0.0105 0.016 

11# BYG199511 67.59 32.17 0.06 0.101 

12# BYG199512 66.11 33.72 0.026 0.0353 

13# BYG199513 64.32 35.51 0.0697 0.067 

14# BYG199514 63.42 36.18 0.163 0.140 

15# BYG199515 60.81 38.59 0.294 0.236 

16# BYG199516 57.98 41.04 0.591 0.427 

 

 

Table 2  The selected analytical lines of the Cu  

Number Atom/ion Wavelength (nm) 

1 CuI 261.837 

2 CuI 282.437 

3 CuI 296.116 

4 CuI 427.511 

5 CuI 458.695 

6 CuI 570.024 

7 CuI 578.213 

8 CuII 204.38 

9 CuII 221.027 

10 CuII 224.7 
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Table 3   Prediction results of different models for Cu concentration 

 

Model RMSE(%) MRE(%) 

PLS 

SVM 

10.569 

8.237 

9.78 

8.95 

LS-SVM 6.164 7.59 

WLS-SVM 3.895 5.21 

RLS-SVM 1.537 1.73 

 

 

Table 4   Comparison of different weighting scheme for LIBS predictions 

Weighting schemes The average values of 

RSD (%) 

RMSE (%) Iteration times 

Huber 6.62 4.172 20 

Hampel 6.39 3.895 4 

Logistic 3.85 2.231 10 

Myriad 3.02 1.556 26 

  The proposed function 3.06 1.537 5 

 

 

Table 5 The influence of different proportions of outliers on the regression results 

Outliers proportion RMSE MRE SKE 

15% 0.7887 1.4685 0.3828 

30% 1.0088 1.6171 0.5591 

45% 1.3721 3.8815 1.6033 

 

Table 6 The effect of the number of samples against the regression results 

Number of samples RMSE MRE SKE 

72 0.8261 1.6737 0.5122 

143 0.8502 1.5365 0.3295 

286 1.1459 1.6287 0.4097 
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Laser Induced Breakdown Spectroscopy quantitative analysis 

method based on Robust Least Squares Support Vector Machine 

regression model 

Jianhong Yanga,* ,Cancan Yia , Jinwu Xua, Xianghong Mab 
a School of Mechanical Engineering, University of Science and Technology Beijing, 

Beijing, 100083, China 
b School of Engineering & Applied Science, Aston University, Birmingham,  

B4 7ET, UK 

Abstract: Data fluctuation in multiple measurements of Laser Induced Breakdown 

Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new 

LIBS quantitative analysis method based on Robust Least Squares Support Vector 

Machine (RLS-SVM) regression model is proposed. The usual way to enhance the 

analysis accuracy is to improve the quality and consistency of the emission signal, 

such as averaging the spectral signals or spectrum standardization over a number of 

laser shots. The proposed method focuses more on how to enhance the robustness of 

the quantitative analysis regression model. The proposed RLS-SVM regression model 

originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but 

has an improved segmented weighting function and residual error calculation 

according to the statistical distribution of measured spectral data. Through the 

improved segmented weighting function, the information of the spectral data in the 

normal distribution will be retained in the regression model while the information of 

the outliers will be restrained or removed. Copper elemental concentration analysis 

experiments of 16 certified standard brass samples were carried out. The average 

value of relative standard deviation obtained from the RLS-SVM model was 3.06% 

and the root mean square error was 1.537%. The experiment results showed that the 

proposed method achieved better prediction accuracy and better modeling robustness 

compared with the quantitative analysis methods based on Partial Least Squares (PLS) 

regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also 

demonstrated that the improved weighting function had better comprehensive 

performance in model robustness and convergence speed, compared with the known 

four weighting functions. 

Keywords: Laser Induced Breakdown Spectroscopy; Quantitative Analysis; Robust 

Regression; Least Squares Support Vector Machine 

1 Introduction 

Laser Induced Breakdown Spectroscopy (LIBS) is a type of atomic emission 

                                                
*
 Corresponding author. Tel.:+86-10-62332329; Fax: +86-10-62332329 

 E-mail: yangjianhong@me.ustb.edu.cn 
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spectroscopy which has well-known advantages of low requirement of sample 

preparation, micro-destructiveness, short measurement time and suitability of 

multi-element analysis in situ [1-3].  

Although LIBS quantitative analysis technique has a wide application [4-6], the 

accuracy of LIBS quantitative analysis is affected by the fluctuation of spectral data 

due to poor repeatability of LIBS measurement [7-8]. The spectral data fluctuation 

problem in the LIBS analysis is caused by a few complicated factors such as laser 

pulse fluctuation, inhomogeneity of sample composition, instability of plasma 

position, variation of focus depth, environmental noise, instrumental errors and 

operational errors. In order to enhance the accuracy of the quantitative regression 

analysis, the simplest and most frequently applied method is to improve the 

consistency of spectral data by averaging the spectral intensities of multiple measured 

emission signals [9-10]. Ideally, the spectral intensities of the LIBS spectra collected 

from a number of laser shot on the surface of one same sample should strictly obey 

normal distribution. In reality, the spectral intensities only follow an approximate 

normal distribution, in which some outliers with particularly large or small values 

may exist. Thus, the averaging results will be inaccurate especially when the outliers 

deviate severely from the normal values. Currently, the common method to deal with 

the outliers in the quantitative regression analysis is to preprocess the spectral data 

before building the regression model. The common preprocessing techniques include 

the normalization and standardization of the spectrum [11-13], the optimization of the 

plasma characteristic parameters [14]. However, a great deal of priori knowledge is 

required and some parameters have to be determined by numerous trial-and-error tests. 

A different and more feasible way is to build a robust regression model to tolerate the 

fluctuation [15-17] of spectral data. In this paper, a LIBS quantitative regression 

analysis method based on RLS-SVM is proposed in order to reduce the negative 

effects caused by the abnormal data through enhancing the robustness and error 

tolerance of the regression model itself.  

The regression model is the core of LIBS quantitative analysis method with 

calibrated curves of standard samples. The regression model is built or trained to 

describe the relationship between the elemental concentrations and the analytical 

spectral intensities of emission spectra collected from the plasma. The multivariate 

techniques of principal component regression (PCR) [18], partial least squares 

regression (PLS) [19], random forest regression (RFR) [20] have been used in LIBS 
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quantitative analysis. The methods of both PCR and PLS are linear regression models 

which may not be suitable for describing the nonlinear relationship between the 

spectral line intensities and the elemental concentrations, especially for the samples 

with high elemental concentrations. Zhang et al. [20] reported that RFR had a better 

performance potential in LIBS quantitative analysis compared with the methods of 

SVM and PLS when a feature spectral band was regarded as the input variables and a 

preprocessing of smoothing and de-noising of the spectra was made before modeling. 

However, the predictive ability of RFR method highly depends on the two parameters, 

the number of the trees in the forest and the number of the peaks randomly selected as 

the candidates for splitting at each node [20]. A desired regression model not only 

should be robust since the measured spectral intensities may fluctuate even under the 

same condition, but also should have nonlinear fitting ability [21-22] because the 

relationship between the elemental concentrations and the analytical spectral 

intensities usually exhibits strong nonlinearity due to the matrix effect, the absorption 

effect and the influence of background radiation. The Support Vector Machine (SVM) 

[23] and its improved variations, such as Least Squares Support Vector Machine 

(LS-SVM) [24] and Weighted Least Squares Support Vector Machine (WLS-SVM) 

[25], are the most commonly used nonlinear regression models for limited samples 

based on structural risk minimization. Structural risk minimization (SRM) is an 

inductive principle of use in machine learning. Commonly in machine learning, a 

generalized model must be is usually established selected from a finite training data 

set, with the consequent problem of overfitting, that is, the model becoming too 

strongly tailored to the particularities of the training set and generalizing poorly to 

new data. The SRM principle addresses this problem by balancing the model's 

complexity against its success at fitting the training data. The SVM method has 

already been widely used in LIBS quantitative analysis [26-30]. A spectral algorithm 

based on SVM was used as a classifier to automatically identify areas with aluminum 

presence [26]. Pokrajac et al.[27] utilized the SVM method in automatic classification 

of LIBS data of protein biomarker solutions. SVM was used in advanced statistical 

analysis of LIBS data to discriminate sedimentary rocks [28]. SVM classification of 

suspect powders using LIBS spectral data was proposed by Cisewski et al.[29]. Yu et 

al. proposed an approach to polymer identification by LIBS with adjusting spectral 

weightings and SVM aiming at improving the identification accuracy [30]. In the 

current applications in LIBS, SVM is usually used as a statistical tool. But, the 
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predictions of SVM model are easy to be influenced by abnormal data [31]. Therefore, 

more robust statistical model should be considered in LIBS quantitative analysis. The 

WLS-SVM has a better model robustness than SVM. However, the weighting strategy 

of WLS-SVM is rigid and does not consider the actual data distribution. The 

predictions of WLS-SVM regression model will be poor when the percentage of the 

abnormal data is large. Traditional robust learning is to find ways of reducing the 

effects of outliers. The idea of such an approach is to minimize the values of weights 

during the process of minimizing errors. Thus, the weighting function has a great 

importance in improving the model robustness. Brabanter et al. [32] compared four 

commonly used weighting functions, the Myriad, Huber, Hampel and Logistic 

weighting function, according to their performance in providing model robustness and 

fast convergence. Based on WLS-SVM, an improved regression model named Robust 

Least Square-Support Vector Machine (RLS-SVM), which has a new segmented 

weighting scheme, is proposed for LIBS quantitative analysis, to handle with the 

abnormal data according to the actual spectral intensity distribution.  

The proposed RLS-SVM regression model was tested in the copper 

concentration analysis experiments of 16 certified standard brass samples. The 

experimental results showed that the RLS-SVM model had a good performance in 

suppressing the negative effect caused by the data fluctuation of multiple 

measurements and the average values of Relative Standard Deviation (RSD) obtained 

from the RLS-SVM model was 3.06%, the root mean square prediction error (RMSE) 

was 1.537%. All of which were better compared with the WLS-SVM and the 

LS-SVM regression model. Also, it was demonstrated that the improved weighting 

function had better comprehensive performance in model robustness and convergence 

speed, compared with the known four weighting functions. 

2  Theory 

2.1 Data fluctuation in LIBS measurement 

LIBS technology is sensitive to the measurement parameters, such as the laser 

energy, the plasma volume, the background radiation and the instrumental error etc. 

The distribution of spectral lines intensity of CuI427.511nm in the LIBS spectra 

collected from 120 times laser shot on the same position of the standard sample 

BYG199506 in which the concentration of Cu is 90.76%, is shown in Fig.1. The 

histogram of spectral line intensity distribution is shown in Fig.1(a) and the normal 

probability plot is drawn in Fig.1(b). In the practice of quantitative analysis of LIBS, a 
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number of measurements are usually implemented in order to obtain a relatively 

stable and correct spectrum. Averaging is the most often used technique to deal with 

the data fluctuation problem in the multiple measured spectra. However, the 

distribution of analytical line intensities in the measured spectra from multiple tests 

forms only an approximate normal distribution. In a normal probability plot (also 

called a "normal plot"), the sorted data are plotted vs. values selected to make the 

resulting image look close to a straight line if the data are approximately normally 

distributed. Deviations from a straight line suggest departures from normality. From 

Fig.1 we can find that there are some outliers whose values are relatively large or 

small and do not fit the normal distribution. It is a significant task to determine how to 

select or prepare the model training dataset from the collection of the spectra of 

multiple measurements. The existence of outliers brings challenges to the averaging 

technique because before applying the averaging technique, the outliers must be 

dropped by proper statistical methods, in which careful consideration should be taken 

when determining the threshold parameters of outliers. In this paper, a feasible 

alternative, that is to put all the measured results into the training dataset but give each 

value a weight according to its credibility in the whole distribution, is proposed and 

developed. 

 

[Fig.1  Data fluctuation of spectral intensities in 120 times of LIBS measurements at a 

same position of the surface of 6# sample ( BYG199506)] 

[(a)Frequency histogram of spectral intensities in 120 repetitions of measurement] 

[(b)The normal probability plot of the intensities of multiple measurements] 

 

2.2 The regression model based on the Weighted Least Squares Support Vector 

Machine 

The main idea of quantitative analysis method with calibration curves of 

standard samples is to establish a statistical regression model between the elemental 

concentrations and spectral intensities. In the quantitative analysis of LIBS, for the 

j-th training standard sample, a set of input-target 

pairs{ }
1

, j

N

k
k

x y
=
,

d

kx R∈ , y R∈ , 1j M= L ,where kx and jy denote the analytical line 

intensities and the corresponding elemental concentrations respectively, N  is the 

number of measurements for each sample, M is the number of samples, d is the 

number of the analytical lines, will be used to train the regression model. 

In the Weighted Least Squares Support Vector Machine, the regression model 
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can be considered as the following optimization problem in primal weight space[25]: 

T 2

1

1 1
min

2 2

N

k k

k

J ww v eγ
=

= + ∑                    (1) 

T. ( )k k ks t w x b e yΦ + + =  

  
 where J  is the cost function, ( )xΦ  is a function which maps the input space 

into a so-called higher dimensional feature space, w  is the weight vector in primal 

weight space, ke is the error variable , b is the bias term, γ is a regularization term 

and kv is the weight. 

    With a Lagrangian multipliers kα , Eq. (1) can be rewritten as 

T 2

1 1

1 1
[ ( ) ]

2 2

N N

k k k k k k

k k

L ww v e w x b e yγ α
= =

= + − Φ + + −∑ ∑        (2) 

The conditions for optimality are given by 

1

1

0 ( )

0 0

0

0 ( ) 0

N

k k

k

N

k

k

k k k

k

T

k k k

k

L
w x

w

L

b

L
v e

e

L
w x b e y

α

α

α γ

α

=

=

∂
= → = Φ∂

∂
= → =∂

 ∂ = → =
∂


∂ = → Φ + + − =
∂

∑

∑
         (3) 

After elimination of w , ke , one obtains the solution[25] 

0 1 0

1

b

V yγ α
     

=     Ω+     
                  (4) 

where
T

1[ ]Ny y ,..., y= ,
T

11 [1 1 ]N,...,= ,
T

1[ ]N,...,α α α= ,
1

1 1

N

V diag ,...,
v v

γ γ γ
 

=  
 

,

{ 1 }kl | k,l ,...,NΩ = Ω = , ( ) ( ) ( )kl k l k lx x K x ,xΩ = Φ Φ = . Therefore, the resulting 

WLS-SVM model for function estimation becomes 
1

( , )
N

k i

k

y K x x bα
=

= +∑ .Where 

K ⋅（） is the kernel function and the Gaussian kernel function defined by Eq.(5) is 
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normally used, whereδ is the kernel parameter: 

               
2 2( ) = exp(- / )k l k lK x ,x x x δ−                   （5） 

The choice of the weight kv  is determined based upon the error variable 

k ke = /α γ  and the value is obtained by taking: 

1

2

1 2

2 1

4

1

10

k

r c

c r
v c r c

c c

other−

 <


−
= < <

−



               （6） 

where ker s= , 1.483 ( )ks MAD e=  is a robust estimate of the standard 

deviation of the WLS-SVM error variables, ( ) ( { })k k kMAD e med e med e= −  

stands for the median absolute deviation,med stands for median.The constants 

1c and 2c  are typically chosen as 1 2.5c =  and 2 3c = [25]. 

The WLS-SVM model has two shortcomings. First, the result can’t converge by 

means of iterative calculation because the residual vector is defined as 

k ke = /α γ where kv  was not involved in calculation. Second, the model’s prediction 

ability is poor when the quantity of abnormal data among the training dataset is large. 

2.3 The regression model based on Robust Least Squares Support Vector Machine 

Based on the WLS-SVM, the main improvements of the proposed RLS-SVM 

include two aspects. First, different from the WLS-SVM, the new calculated residual 

vector is k ke = / kvα γ . Thus, the information of the weight variable kv  could be 

taken into consideration during the iterative optimization process and the residual 

vector could be updated according to the adjustment of the weight variable. Second, 

when the error variable ke  does not satisfy the normal distribution, a novel segmented 

weighting function kµ  defined in Eq. (7), which is originated from an adaptive 

factor of robust filtering for kinematic geodetic positioning [33], is put forward to 

replace the old function kv  in Eq. (6).  
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0

2

1

1

1 0

1

1

0

0
k 0

r k

k rk
= k r k

r k k

r k

µ

 <

  − 

≤ ≤  
− 

 >

                   (7)  

In Eq.(7), ker s= , 1.483 ( )ks MAD e= is a robust estimate of the standard 

deviation of the RLS-SVM error variables. The parameters are typically chosen 

as 0 1 5k .= and 1 2 5k .= , on account that the probabilities of residual errors beyond the 

scope of 1 5. σ± and 2 5. σ± are 0.13 and 0.01 respectively, where σ  stands for the 

standard deviation. The segmented weighting function is divided into three parts: 

retaining weights area corresponding to the credible data, dropping weights area 

corresponding to the suspicious data and eliminating area corresponding to the 

outliers. The weighting function is bounded, segmented, continuous and efficient. 

Schematic diagrams of different weighting functions are shown in Fig.2. Fig.2(a) 

illustrates the weighting function of WLS-SVM and Fig.2(b) demonstrates the 

segmented weighting function of RLS-SVM. For a series of spectra collected from the 

multiple LIBS measurements, draw the distribution of the analytical line intensities 

firstly, and then assign the weights for each spectrum according to Eq. (7). For the 

main body of the measurements whose spectral intensities are within the range of 

1 5. σ± , the weights should be set as 1; for the measurements whose spectral 

intensities are within the range between 1 5. σ± and 2 5. σ± , the weights should be set 

as dropping weights according to Eq. (7); and for the outliers which are out of the 

range of 2 5. σ± , the weights should be set as zero which means the outliers should be 

removed from the training dataset. Compared with weighting function defined in 

Eq.(6), the segmented weighting scheme in RLS-SVM has slower dropping weights 

for the suspicious measured data and directly eliminates the outliers other than assigns 

a relatively small weight. The parameters 0k  and 1k  are selected according to the 

characteristic of norm distribution. 

 

[Fig.2 Different schemes of the segmented weighting function of WLS-SVM and RLS-SVM] 

 

The calculation steps of the proposed RLS-SVM regression model in LIBS 

quantitative analysis are as follows: 
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Step1: For N  measurements of M different spectral standard samples, a set of 

total input-target pairs{ }
1

,
P

k k k
x y

=
, P M N= ⋅  ,

d

kx R∈ , y R∈ , are used to train the 

regression model according to Eq. (1) to Eq. (4).Where kx and ky denote the analytical 

line intensities and the corresponding elemental concentrations respectively, d is the 

number of the analytical lines. The appropriate regularization parameter γ and kernel 

parameter δ  can be achieved by cross validation method. The initial weight is 

1k=µ . 

Step2: Calculate the residual vector k ke = / [ ]kα µ γ⋅  and the robust estimate 

of the error variables
(i)1.483 ( )ks MAD e=  for each standard samples, where i  is the 

number of iteration. 

Step3: ( )ir  can be calculated by 
( ) ( )i i

kr e s= and the weighting vector can be 

obtained from Eq. (7) for each standard samples. 

Step4: The fitted regression model is 
( ) (i) (i)

1

( )
P

i

k k

k

g x K(x,x ) bα
=

= +∑ , whose 

solution can be obtained according to Eq. (4). 

Step5: The termination condition of the iterative optimization is 

( )( ) ( )i i-1

k kmax α α ε− ≤ , whereε  is a small enough positive number. If the condition 

is satisfied, stop the iteration and the robust regression model obtained in Step 4 is the 

final quantitative analysis model; otherwise, return to step2 and continue the 

optimization iteration. 

     Step6: The elemental concentration predictions for a given 
*x  can be 

computed by (i) (i)

1

P

* k * k

k

y K(x ,x ) bα
=

= +∑ . 

3  Experimental Setup 

The schematic drawing of the LIBS experimental setup used in this investigation 

is shown in Fig. 3. The LIBS device used in the experiment was the Spectrolaser 

4000(XRF, Australia). The laser source employed was a Q-switched Nd:YAG laser 

with a wavelength of 532 nm, energy of 0-190 mJ per pulse, a pulse duration of 5 ns 

and a maximum repetition rate of 10 pulse/s. The laser source was focused on the 
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sample through a 50mm focal lens. The integration time of the detection system is 

fixed at 1ms. The distance between the focal lens and the sample surface is about 

49.5mm. The plasma-emitted radiation was collected with a condenser, which was 

connected to the detection system. The detection system was composed of 4 

Czerny-Turner spectrometers and CCD detectors which covered the spectral range 

from 190 to 940nm, giving a nominal resolution of 0.09nm. The optimal laser energy 

and delay time were set as 100 mJ/pulse and 2us respectively, to ensure the measured 

spectrum could have a high signal-to-background ratio. 

 

 [Fig3   Schematic experimental setup of LIBS measurement] 

 

The samples investigated in this paper were 16 pieces of standard certified brass 

samples from CISRI (Central Iron & Steel Research Institute, China). The main 

elements contained in the samples are Cu, Zn, Pb and Fe, etc. The compositions of 

samples are listed in Table 1 in the descending order of the weight percentage 

concentrations of Cu. The element of cuprum was taken as the main analytical target 

in the experiments. Among the samples, the highest concentration of Cu is 96.86% 

and the lowest is 57.98%. The even-numbered samples were used to train the LIBS 

quantitative analysis model. The rest samples with odd serial numbers were used to 

test the quantitative analysis model. Before data collection, the sample surface was 

carefully cleaned using ethanol and dried in air. The main purpose of the experiments 

was to verify whether the proposed LIBS quantitative analysis method based on 

RLS-SVM could effectively reduce the influence caused by the fluctuations of 

spectral dada. Therefore, for each standard sample, the beam of the pulsed laser was 

focused on the sample surface successively for multiple 40 times and the emission 

radiation were collected for each repetition. Fig.4 shows one LIBS spectrum 

measured in the experiments. 

Table 1 The elemental concentrations of the samples 

No. of 

sample 

No. of Steel 

Grade 

Cu(%) Zn(%) Pb(%) Fe(%) 

1 BYG199501 96.86 3.06 0.008 0.024 

2 BYG199502 95.1 4.78 0.0236 0.066 

3 BYG199503 94.46 5.26 0.05 0.182 

4 BYG199504 92.7 6.81 0.098 0.336 
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5 BYG199505 89.97 9.83 0.0301 0.124 

6 BYG199506 90.76 9.15 0.012 0.051 

7 BYG199507 85.49 14.41 0.0283 0.097 

8 BYG199508 79.1 20.74 0.029 0.098 

9 BYG199509 70.44 29.04 0.132 0.182 

10 BYG199510 69.25 30.66 0.0105 0.016 

11 BYG199511 67.59 32.17 0.06 0.101 

12 BYG199512 66.11 33.72 0.026 0.0353 

13 BYG199513 64.32 35.51 0.0697 0.067 

14 BYG199514 63.42 36.18 0.163 0.140 

15 BYG199515 60.81 38.59 0.294 0.236 

16 BYG199516 57.98 41.04 0.591 0.427 

 

          [Fig.4  A typical LIBS spectrum of brass samples] 

 

4 Experimental analysis results 

The correct selection of analytical lines is an important step to guarantee the 

accuracy of quantitative analysis. The rules of the analytical line selection adopted 

here are as follows. First, the lines which have interference with the adjacent lines of 

other emission species must be avoided; Second, the lines which have larger 

possibilities of self-absorption, such as resonant lines, should not be selected. The 

lines which were clearly separated from other adjacent lines and have high 

signal-to-background ratios were chosen as analytical lines in consideration of the 

larger elemental concentration listed in Table1. Finally, 10 analytical lines of Cu 

element were determined as shown in the Table 2 according to the above rules. The 

wavelengths described in the paper are referred to the identification results by 

comparing the measured spectra with the reference values in the NIST database [34].  

 

Table 2  The selected analytical lines of the Cu  

Number Atom/ion Wavelength (nm) 

1 CuI 261.837 

2 CuI 282.437 

3 CuI 296.116 

4 CuI 427.511 

5 CuI 458.695 

6 CuI 570.024 
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7 CuI 578.213 

8 CuII 204.38 

9 CuII 221.027 

10 CuII 224.7 

After the determination of the analytical lines, the fluctuations of analytical lines 

spectral intensities need to be considered. The main index used to evaluate the degree 

of the data fluctuation is the RSD. A greater RSD value stands for greater data 

fluctuations. Fig. 5 describes the fluctuations of spectral intensity of the line at Cu I 

427.511nm in the ahead of 19 times measurement from a same place of the standard 

sample BYG119504. The horizontal axis represents the different measurements and 

vertical axis represents the spectral line intensity. It can be seen that the spectral 

intensities fluctuate within a certain range during the process of continuous 

measurements. As seen in Fig. 6, the RSDs of the spectral intensity of the line at Cu I 

427.511nm for all the 16 standard samples fluctuate within the range from 16.59% to 

5.62%. 

 

[Fig.5 Pulse-to-pulse spectra fluctuations of the intensity (BYG119504 427.511nm)] 

[Fig.6 RSD values of the characteristic line intensity at 427.511nm of Cu normalized for all 

16 brass samples] 

The spectral intensities of the selected 10 analytical lines listed in Table 2 were 

regarded as the input variables for each sample in the quantitative analysis model 

based on RLS-SVM. For each sample, multiple measurements were carried out and a 

series of spectra were obtained. The 10 analytical line intensities in all the measured 

spectra formed spectral data matrix for each sample. The spectral data matrices of all 

the samples were used to train the regression model. In the experiments, the Kernel 

parameter was 5.75 and regularization parameter γ  was 1.05 by leave-one-out 
cross-validation techniques. The maximal iterations number was set as 100 by the 

convergence requirement. In order to evaluate the effectiveness the proposed method, 

the root mean square error ( RMSE ) and the mean relative error (MRE ) were used as 

the evaluation indicators. 

              
2

1

( )
n

i i

i

C

RMSE
n

µ
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−
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In Eq. (8) to Eq. (9), iC is the certified elemental concentration of Cu of the i-th 

sample, iµ is the predicted elemental concentration of the i-th sample by the 

quantitative analysis model, n is the number of the samples. 

4.1 Experiments on different model inputs 

In the experiments, the training samples consisted of 8 even-numbered samples 

and the samples for model testing included the other 8 odd-numbered samples. For 

each sample, 40 emission spectra were collected from 40 times of focusing laser on a 

same spot on the sample surface. In order to compare the influence of different inputs 

on the predicting results of the RLS-SVM regression model, 6 cases of different form 

of inputs were considered in the experiments. In case 1, the analytical line intensities 

of all the measured spectra from multiple measurements were taken as the input 

variables. In case 2, the analytical line average intensities of all the 40 measured 

spectra were regarded as the input variables. In case 3 to case 6, the analytical line 

average intensities of the first to 10th, the 11th to 20th, the 21th to 30th, the 31th to 

40th measured spectra were regarded as the input variables, respectively. Fig. 7 

demonstrates the RMSE of the regression model predictions in the above 6 cases. It 

can be seen that in case 1 the RMSE has the smallest value which means that taking 

the analytical lines of all the measured spectra as the input variables of the model is 

helpful to enhance the accuracy of prediction. It can be explained from two aspects. 

First, all the measured spectra contain more useful information than the average value. 

Second, the average value is more vulnerable to abnormal data. 

 

[Fig.7  The RSD values of predictions by different input variables] 

4.2 The distribution of error variable ke in LIBS quantitative analysis 

The multiple measurements of standard samples #1 is utilized to test the 

distribution of error variable ke  and the analytical lines are determined as shown in 

Table2 . The LS-SVM regression model is chosen according to Eq. (1) to Eq. (4) and 

the initial weight is 1k=µ . The histogram of error variable ke  distribution is shown in 

Fig.8(a) and Fig.8(b) demonstrates the test of normal distribution. From Fig.8 we can 
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find that the error variable ke  doesn’t from normal distribution strictly and there are 

some abnormal data. Therefore, the weighting function is proposed for the purpose of 

reducing the weights of abnormal data and improving the model robustness. 

                                    

 [Fig.8   The frequency histogram of error variable and normal probability plot ] 

[(a) Frequency histogram of error variable ke ] 

[(b) The normal probability plot of error variable ke ] 

 

4.3 Experiments on different regression models 

The effectiveness of the proposed quantitative analysis method based on 

RLS-SVM model was investigated by a comparative study of the methods based on 

different models including the PLS model, the standard SVM model, the LS-SVM 

model and the WLS-SVM model. In the experiments, the analytical line intensities of 

all the 40 measured spectra were taken as the input variables of all the regression 

models. Fig. 9 shows the predictions of the WLS-SVM regression model and the 

RLS-SVM regression model respectively for pulse-to-pulse measurement spectral 

data. As shown in Fig. 9, the RLS-SVM model has better accuracy of prediction than 

the WLS-SVM model. Also, the smaller distribution range of predictions also shows 

that the RLS-SVM model has better reliability and robustness than the WLS-SVM 

model. Figure 10 shows the RSD values of the predictions of the WLS-SVM model, 

and the RLS-SVM model. The average values of RSD of the WLS-SVM model and 

the RLS-SVM model are 6.39% and 3.06% respectively, which indicates the 

RLS-SVM model is able to improve the predicting capability by reducing the negative 

influence of the spectral data fluctuation. 

 

[Fig.9  Prediction results of different regression models] 

[(a) Prediction results of WLS-SVM] 

[(b) Prediction results of proposed RLS-SVM] 

[Fig .10   RSD values of predictions of different regression models] 

It is necessary to further evaluate the accuracy of quantitative analysis 

by RMSE andMRE . The comparison results are listed in Table 3 from which we also 

can conclude that the proposed new quantitative analysis method RLS-SVM has 

better prediction accuracy and generalization ability compared with the other 

regression models. The possible reasons include that a)the PLS model belongs to 

linear regression methods and has a poor ability to deal with nonlinear problem, b) 

both the SVM and LS-SVM model lack robustness relative to the abnormal data, and 

c) the scheme of weighting function in the WLS-SVM does not consider the actual 
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distribution of the measured spectral data.  

 

Table 3   Prediction results of different models for Cu concentration 

Model RMSE(%) MRE(%) 

PLS 

SVM 

10.569 

8.237 

9.78 

8.95 

LS-SVM 6.164 7.59 

WLS-SVM 3.895 5.21 

RLS-SVM 1.537 1.73 

 

The weighting scheme is a critical procedure of robust regression model. As 

mentioned in ref [32], there are four weight functions often used in regression. 

According to the conclusions in ref [32], the Logistic and Myriad weights are suitable 

reweighting schemes when outliers are present in the data and the Myriad shows 

better performance over the others in the presence of extreme outliers. However, the 

effectiveness of Myriad weighting function was restricted by the selection of function 

parameter, which will cost a heavy workload. In ref [32], the simulated example and 

real life data sets demonstrated that the Myriad weight function is highly robust 

against (extreme) outliers but has a slow speed of convergence. A comparative study 

of different weighting schemes for LIBS quantitative analysis was carried out and the 

results were listed in Table 4. It is noteworthy that the Hampel function is equivalent 

to the original weighting function of WLS-SVM defined in Eq.6 when the parameter 

was set as 1 2.5b = , 2 3b = . The experimental results showed that although the Myriad 

function had a smallest RSD value, its number of iteration times for algorithm 

convergence was the largest, which meant the largest workload of computation. From 

Table 4, it can be found that a good compromise among speed of convergence, 

robustness and accuracy can be achieved by using the proposed weighting function, 

which indicates that the proposed RLS-SVM model has a better potential in LIBS 

quantitative analysis, especially in the situation of real-time analysis.  

 

Table 4   Comparison of different weighting scheme for LIBS predictions 

Weighting schemes The average values of 

RSD (%) 

RMSE (%) Iteration times 

Huber 6.62 4.172 20 

Hampel 6.39 3.895 4 
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Logistic 3.85 2.231 10 

Myriad 3.02 1.556 26 

  The proposed function 3.06 1.537 5 

 

 

5 Discussions 

When predicting the concentrations of the test samples, the variables input into the 

trained regression models in the experiments listed above were also set as the 

analytical line intensities of all the 40 measured spectra of each test sample. However, 

it must be claimed that in practical applications it is not easy to determine how many 

times of measurements should be carried out to achieve the best prediction accuracy. 

It is beneficial to improve the efficiency of the online LIBS quantitative analysis in 

industrial situations with the least necessary number of the multiple measurements. 

Therefore, developing a robust regression model is important to LIBS quantitative 

analysis. This is the aim of the proposed RLS-SVM regression model. In the training 

stage, multiple LIBS measurements of each sample could be performed to train the 

regression model by the spectral data with fluctuations. Once the regression model is 

trained, in the predicting stage, a reduced number of measurements are needed 

because the regression model is robust and can guarantee the prediction accuracy by 

tolerating the fluctuations of the spectral data.  

The weighting scheme selection is important in building LIBS robustness 

regression model. The mentioned Myriad function also has a good robustness and 

prediction accuracy. However, it is worthy mentioning that the selection of function 

parameter is too complex and its iteration times are larger than the others.  

Cui et al. also proposed a method of adaptive weighted least square support vector 

machine regression integrated with outlier detection and achieved successful 

application in quantitative structure–activity relationship (QSAR) [35]. However, 

outlier detection is an important preprocess of Cui’s method. In the proposed method, 

it is not necessary to remove outliers before building the regression model, because 

the segmented weighting function and iterative weighting scheme can handle with the 

outliers automatically. Therefore, the proposed method is more appropriate and 

practical for LIBS quantitative analysis in industrial environment, especially in the 

situation of real-time analysis. 

The RLS-SVM method is improved based on WLS-SVM. In order to assess the 
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performance of the algorithm against data variability, datasets generated from the sinc 

function with Gaussian noise are used for evaluation. First, three datasets which 

contain 15%, 30% and 45% outliers respectively are tested. In the three datasets, the 

number of samples is all 143. The Fig.11 (a), Fig.11 (b), Fig.11(c) and Table5 

demonstrated the influence of different proportions of outliers on the regression 

results. Second, another three datasets in which the numbers of sample are 72, 143 

and 286 respectively are used in the experiment. In the three datasets, the proportion 

of outliers is all 25%. The Fig.11 (d), Fig.11 (e), Fig.11 (f) and Table6 illustrated the 

effect of the number of samples against the regression results. It is worthy mentioned 

that the value SKE in Table5 and Table 6 stands for the symmetry of the distribution 

of the sample which can be used for evaluating how skewed the data will be. The 

experimental results showed that the effectiveness of RLS-SVM model will be 

reduced with the increase of the proportion of outliers and have small fluctuation 

when the number of samples vary. Also, it can be found from Table 5 and Table6 that 

a larger SKE of data indicates a larger predictive error.  

 

 

(a) 15% outliers(143 samples) (b) 30% outliers(143 

samples) 

(c) 45% outliers(143 

samples) 

 

(d) 72 samples(25% outliers) (e) 143 samples(25% 

outliers) 

(f) 286 samples(25% outliers) 

Fig. 11 RLS-SVM regression results of different datasets generated from sinc function 

with Gaussian noise 
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Table 5 The influence of different proportions of outliers on the regression results 

Outliers proportion RMSE MRE SKE 

15% 0.7887 1.4685 0.3828 

30% 1.0088 1.6171 0.5591 

45% 1.3721 3.8815 1.6033 

 

Table 6 The effect of the number of samples against the regression results 

Number of samples RMSE MRE SKE 

72 0.8261 1.6737 0.5122 

143 0.8502 1.5365 0.3295 

286 1.1459 1.6287 0.4097 

 

6 Conclusions 

This paper proposed a robust quantitative analysis method based on RLS-SVM 

regression model in order to reduce the negative influence of the spectral data 

fluctuation and enhance the prediction accuracy of LIBS quantitative analysis method 

with calibration curves of standard samples. The significance of this article reflects on 

two aspects. On the one hand, the concept of improving the model robustness is 

proposed to handle with the abnormal data and outliers in LIBS quantitative analysis. 

On the other hand, an improved segmented weighting function according to the actual 

statistical distribution of spectral data in multiple measurements is introduced, which 

can keep the spectral information of the credible measurements to the maximum and 

suppress or eliminate the spectral information of the suspicious or abnormal 

measurements.  

The effectiveness of the proposed method was verified by the quantitative analysis 

experiments of 16 certified standard brass samples. The experimental results 

demonstrated that taking the analytical line intensities of multiple measurements as 

the model input variables can effectively improve the robustness and prediction 

accuracy of the regression model. In the experiments, with the proposed RLS-SVM 

method, the root mean square error of predicted Cu concentration was 1.537% and the 

average relative error of the prediction was 1.73% which was better than the results 

obtained by the quantitative analysis methods based on PLS, SVM, LS-SVM and 
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WLS-SVM. The RSD value of the predictions of the proposed RLS-SVM was smaller 

than the WLS-SVM model, which indicated that the proposed method had better 

robustness to spectral data fluctuations. Also, the results of the comparative study 

demonstrated that the proposed weighting scheme had better performance with a 

compromise among speed of algorithm convergence, model robustness and prediction 

accuracy. 

Acknowledgements 

This work was supported by the National Natural Science Foundation of China 

(No. 50905013 and 51211130114), the Royal Society International Exchange Grant of 

United Kingdom (No. IE111065), the Fundamental Research Funds for the Central 

Universities of China (No. FRF-TP-09-014A), and Beijing Higher Education Young 

Elite Teacher Project of China (No. YETP0364). 

References 

[1]A. W. Miziolek,V. Palleschi, I. Schechter, Laser-Induced Breakdown Spectroscopy 

(LIBS): Fundamentals and Applications. Cambridge University Press, Cambridge, 

UK, 2006. 

[2] A. M. Popov, T .A. Labutin, S .M. Zaytsev, I.V. Seliverstova, N.B. Zorov , I. A. 

Kal’ko, Y.N. Sidorina, I.A. Bugaev, Y. N. Nikolaev, J. Anal. At. Spectrom., 2014,29, 

1925-1933. 

[3] I.Y. Elnasharty, F.R. Doucet, J.Y. Gravel, P.Bouchard , M.Sabsabi , J. Anal. At. 

Spectrom., 2014,29, 1660-1666. 

[4] D. Syvilay , A. Texier , A. Arles , B. Gratuze, N. Wilkie-Chancellier, L. Martinez, 

S. Serfaty, V.Detalle, Spectrochim.Acta,Part B, 2015,103,34-42. 

[5] M. Kraushaar, R. Noll, H.-U. Schmitz, Appl. Spectrosc., 2003, 57, 1282-1287. 

[6] E.M. Rodriguez-Celis, I.B. Gornushkin, U.M. Heitmann, J. R. Almirall, B. W. 

Smith, J. D. Winefordner, N. Omenetto, Anal. Bioanal. Chem., 2008,391, 1961-1968. 

[7] Anna P.M. Michel, Spectrochimica.Acta,Part B,2010,65, 185-191. 

[8] J.E. Carranza, D.W. Hahn, Spectrochimica.Acta,Part B, 2002,57,779-790. 

[9]S. Yao, J. Lu, J. Li, K. Chen, J. Li, M. Dong, J.Anal.At.Spectrom.,2010, 

25,1733-1738. 

[10]B. C. Windom, D. W. Hahn, J.Anal.At.Spectrom., 2009,24,1665-1675. 

[11] L. Li, Z. Wang, T. Yuan, J. Anal. At. Spectrom., 2011, 26, 2274-2280. 

[12] Z. Wang, L. Li, L. West, Z. Li, W. Ni, Spectrochim.Acta, Part B, 2012,68, 58-64. 

[13]N. B. Zorov, A. A. Gorbatenko, T. A.Labutin, A.M.Popov, Spectrochim.Acta,Part 

B, 2010, 65,642-657. 

Page 41 of 43 Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Jo
ur

na
lo

fA
na

ly
tic

al
A

to
m

ic
S

pe
ct

ro
m

et
ry

A
cc

ep
te

d
M

an
us

cr
ip

t



[14] J. Feng, Z. Wang, Z. Li, W. Ni, Spectrochim.Acta ,Part B, 2010,65 549-556. 

[15] P.J. Huber, Robust Statistics, Wiley, New York, 1981. 

[16] D.F. Andrews, P.J. Bichel, F.R. Hampel, Robust Estimates of Location: Survey 

and Advances, Princeton University Press, Princeton, NJ, 1972. 

[17] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, W. A. Stahel, Robust Statistics: 

The Approach Based on Influence Functions(Vol. 114), John Wiley & Sons, 2011. 

[18] S. M. Zaytsev, A. M. Popov, E. V. Chernykh, R. D. Voronina, N. B. Zorov, T. A. 

Labutin, J.Anal.At.Spectrom.,2014,29, 1417-1424. 

[19] C. D. Quarles, J. J. Gonzalez, L. J. East, J. H. Yoo, M. Morey, R. E. Russo, 

J.Anal.At.Spectrom., 2014, 29: 1238-1242. 

[20] T. Zhang, L. Liang, K. Wang, H. Tang, X. Yang, Y. Duan, H. Li , J. Anal. At. 

Spectrom., 2014,29, 2323-2329. 

[21] P. Inakollu, T. Philip, A.K. Rai , F. Y. Yueh, J.P. Singh, Spectrochim.Acta, Part 

B, 2009,64, 99-104. 

[22] J. B. Sirven, B. Bousquet, L. Canioni , Anal.Bioanal.Chem.,2006,385, 256-262. 

[23] C. Cortes, V. Vapnik , Machine Learning, 1995, 20, 273-297.  

[24] J. A. K. Suykens, J. Vandewalle, Neural Processing Letters,1999, 9,293-300. 

[25]J.A.K. Suykens, J. D. Brabanter, L. Lukas, J. Vandewalle, Neuralcomputing, 

2002, 48,85-105. 

[26] F. Anabitarte, J. Mirapeix, O.M. C.Portilla, J. M. Lopez-Higuera, A. Cobo ,IEEE 

Sens. J. ,2012,12, 64-70. 

[27]D. Pokrajac, A. Lazarevic, V. Kecman, A. Marcano, Y. Markushin, T. Vance, N. 

Melikechi, Appl. Spectrosc., 2014, 68, 1067-1075. 

[28] X. Zhu, T. Xu, Q. Lin, L. Liang, G. Niu, H. Lai, M. Xu, X. Wang, H. Li, Y. 

Duan ,Spectrochim. Acta Part B , 2014, 93, 8-13. 

[29]J. Cisewski, E. Snyder, J. Hannig ,L. Oudejans, J. Chemometrics, 2012,26, 

143-149. 

[30]Y. Yu , L. Guo , Z. Hao , X. Li, M. Shen, Q. Zeng, K. Li, X. Zeng, Y. Lu, Z. 

Ren,Opt.Express, 2014, 22, 3895-3901. 

[31] C. C. Chuang, S. F. Su, J. T. Jeng, C. C. Hsiao, IEEE Transactions on Neural 

Networks, 2002,13, 1322-1330. 

[32] K. D. Brabanter, K. Pelckmans, J. D. Brabanter, M. Debruyne, J. A. K. Suykens, 

M. Hubert, B. D. Moor, Artificial Neural Networks–ICANN 2009. Springer Berlin 

Page 42 of 43Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Jo
ur

na
lo

fA
na

ly
tic

al
A

to
m

ic
S

pe
ct

ro
m

et
ry

A
cc

ep
te

d
M

an
us

cr
ip

t



Heidelberg, 2009,100-110. 

[33] Y. Yang, H. He, G. Xu, Journal of geodesy, 2001, 75, 109-116. 

[34] NIST (National Institute of Standards and Technology), http://physics.nist.gov/ 

PhysRefData/ASD/levels_form.html. 

[35] W. Cui, X. Yan, Chemometrics and Intelligent Laboratory Systems, 2009, 98, 

130-135 

Page 43 of 43 Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Jo
ur

na
lo

fA
na

ly
tic

al
A

to
m

ic
S

pe
ct

ro
m

et
ry

A
cc

ep
te

d
M

an
us

cr
ip

t


