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Abstract 

Pseudomonas stutzeri A1501 is an endophytic bacterium capable of nitrogen fixation. This 

strain has been isolated from rice rhizosphere and provides the plant with fixed nitrogen and 

phytohormones. These interesting features encouraged us to study the metabolism of this 

microorganism at the systems-level. In this work, we present the first genome-scale metabolic 

model (iPB890) for P. stutzeri, involving 890 genes, 1135 reactions, and 813 metabolites. A 

combination of automatic and manual approaches was used in the reconstruction process. 

Briefly, using the metabolic networks of Pseudomonas aeruginosa and Pseudomonas putida 

as templates, a draft metabolic network of P. stutzeri was reconstructed. Then, the draft 

network was driven through an iterative and curative process of gap filling. In the next step, 

the model was evaluated using different experimental data such as specific growth rate, Biolog 

substrate utilization data and other experimental observations. In most of the evaluation cases, 

the model was successful in correctly predicting the cellular phenotypes. Thus, we posit that 

the iPB890 model serves as a suitable platform to explore the metabolism of P. stutzeri. 
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1. Introduction 

1.1. Genome-scale metabolic networks 

Recent advances in sequencing techniques and computational 

tools for genome annotation have led to better understanding of the 

functions encoded by genomic sequences 1, 2. It is now possible to 

automatically extract the information required for metabolic network 

reconstruction from genomic sequences 3, 4. During the last decades, 

a wealth of data from well-controlled biochemical experiments has 

been provided in scientific literature and collected in databases like 

KEGG 5, MetaCyc 6 and metaTIGER 7. Combining the genomic data 

with the biochemical knowledge leads to the emergence of genome-

scale metabolic network models for a wide range of organisms, from 

bacteria 8-16 to archaea 17-19 to eukaryotic cells 20-26. Such metabolic 

network models provide us with the opportunity to explore the 

physiological properties of different organisms in the context of their 

environmental and genetic constraints. More specifically, these 

models proved to be particularly useful for biotechnological 

applications 27-29. 

1.2. Pseudomonas stutzeri and its metabolism 

Pseudomonas stutzeri is a gram-negative bacterium capable 

of living in a wide spectrum of natural environments and occupying 

diverse ecological niches 30 and may even act as an opportunistic 

pathogen 31, 32. Many metabolic capabilities such as degradation of 

aromatic compounds 33-37, denitrification , and nitrogen fixation 38 

have been identified in different strains of this species. Various 

strains of P. stutzeri have been used in biotechnological processes 

such as biocatalysis production of pyruvate39 and 2-oxobutyrate40, 41, 

water quality control42 and degradation of soil cyanide43. The entire 

genome sequence of Pseudomonas stutzeri A1501 has been 

published in 2008 44. This strain is best known for its role in 

nitrogen-fixation during symbiosis with plants. The strain was 

originally isolated in China from the rice paddy rhizosphere and can 

be used as an inoculant for this plant 45, 46. The flexible metabolism 

of this microorganism 30 renders the systemic study of Pseudomonas 

stutzeri crucial to the understanding of the versatile nature and 

potential biotechnological use of this resourceful bacterium.  

One typical systems biology framework for analyzing cell 

metabolism is the constraint-based modeling. This framework 

involves the application of stoichiometric and reversibility 

constraints on reactions 47. Until now, very few studies have focused 

on constraint-based reconstruction and analysis of metabolism in 

agriculturally important bacteria (as plant symbionts 48, 49 or 

pathogens 50). In this paper, we present a genome-scale metabolic 

network model, called iPB890, for Pseudomonas stutzeri A1501. 

Then, by using experimental data, we show that the model can 

correctly predict the metabolic capabilities of this strain. Thus, we 

posit that the iPB890 model serves as a suitable platform to explore 

the metabolism of P. stutzeri. 
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2. Experimental 

2.1. Metabolic network reconstruction 

The process of metabolic network reconstruction consists of 

four main stages. In the first stage, a draft network is created, using 

genome annotation and available metabolic information from 

biochemical databases and scientific literature. This stage can be 

done manually following the well-established protocols 51, or by 

using different available semi-automated methods. In this study, we 

used the RAVEN toolbox 52 in order to generate the draft model. 

This toolbox is able to use previously published models as templates. 

Briefly, in the first stage, a bi-directional BLAST 53 is run using 

protein FASTA sequences of the template organism(s) and the target 

organism. The “getBlast” function of this toolbox was used for this 

purpose. Then, based on protein homology, a draft metabolic 

network is reconstructed. The function “GetModelFromHomology” 

generates the draft network based on the results of the “getBlast” 

function.  

In this work, the draft metabolic network was reconstructed 

using two Pseudomonas metabolic network models as templates, 

namely iMO1086 11, 54 for Pseudomonas aeruginosa PAO1, and 

iJP962 12, 54 for Pseudomonas putida KT2440. The process is 

schematically represented in Figure 1. These organism-specific 

models are reliable sources of information, since they have 

previously undergone manual refinements during the process of 

reconstruction and validation against different databases, literature 

and experimental data 54. Moreover, we have previously shown that 

these two networks are successful at predicting the experimentally-

observed biochemical capabilities of these two species 55. Template-

based model reconstruction is particularly useful when the template 

organism(s) and the organism of interest are phylogenetically close 

because many metabolic reactions are shared between them.  

 

Figure 1. Schematic representation of the reconstruction process 

used for the metabolic network model of Pseudomonas stutzeri 

A1501. 

 

 In the second stage of reconstruction, refinement of the draft 

model was done in an iterative process. More precisely, we added 

the reactions in two steps: 

Firstly, we tried to add reactions from the template models to 

the draft network. These reactions were either essential non-gene-

associated reactions or associated to gene(s) which are not found in 

the bidirectional BLASTp search. At the end of this step, the model 

was functional, i.e., it was able to carry nonzero flux through its 

biomass producing reaction. The biomass producing reaction is an 

unreal “auxiliary” reaction added to the network to enable the 

simulation of cell growth 56. The reactants of this reaction are the 

building blocks of biomass (e.g. nucleotides, amino acids, lipids, and 

cofactors).  
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In the next step in the second stage, from KEGG database, 

we downloaded the metabolic reactions of P. stutzeri A1501. In 

order to improve the network and fill in the gaps, in an iterative 

manual way, we added a set of reactions to the model such that they 

remain connected to the network (see below).  

In this study, we used COBRA toolbox 47, 57 in order to detect 

gaps in the draft network and then we used biochemical reactions in 

order to fill the gaps. We used both “detectDeadEnds” and 

“GapFind” functions of the COBRA toolbox to find the existing 

gaps in the draft network. Then, we tried to add reactions in order to 

fill the gaps. The reactions which are used for gap filling were either 

taken from the template models according to the manual BLAST or 

from databases like KEGG and ExPASy 58.  

 In the third stage of reconstruction, we used the 

“SBMLFromExcel” function from the RAVEN toolbox, which 

converts excel files into the SBML format. In this stage, the 

“stoichiometric matrix” is formulated by converting the list of 

reactions into a machine-readable format. This stage can be done 

automatically.  

The fourth stage of reconstruction is the evaluation of the 

model. In this stage, the accuracy of the model is measured by 

comparing the results of simulations (e.g., the growth phenotype) to 

experimental data. In this stage, the inconsistencies of the model 

with the biological data are identified. Then, the inconsistencies 

should be minimized through a series of manual refinements (Stage 

2). In the present work, we used different experimental data such as 

aerobic and anaerobic growth rates and carbon consumption profile 

to evaluate and validate our model. 

2.2. Flux balance analysis 

Flux balance analysis (FBA) is a computational method 

based on linear programming for calculating the flux distribution of 

a metabolic network under specified conditions 59. FBA optimizes an 

objective function (typically, biomass production rate, vbiomass, or 

sometimes ATP synthetase flux, vATP-synthetase) based on the steady-

state assumption. In steady-state conditions, it is assumed that the 

concentrations of the cellular metabolites do not vary during the 

analysis. For a flux distribution vector v, this assumption is applied 

by the constraint S.v=0, whereas S is the stoichiometric matrix and 0 

is the zero vector, representing the vector of concentration changes. 

Furthermore, each flux distribution v is constrained by the 

“capacity” of reactions in the form a≤v≤b. For example, an 

irreversible reactions i can only carry non-negative flux values, i.e., 

0≤vi.  

As mentioned, in FBA, flux through a biomass-producing 

reaction is maximized, based on the evolutionary assumption of the 

cellular tendency to maximize its growth. The biomass reaction 

combines the substrates required for cell growth with appropriate 

stoichiometric coefficients. These coefficients are determined based 

on the ratios of the components forming the cellular dry weight. In 

the present work, the “optimizeCbModel” function of the COBRA 

toolbox was used to solve FBA problems using glpk solver version 

4.47. 

2.3. Flux variability analysis  

The result of FBA is a flux distribution vector, v, for which 

the objective function is maximized. However, for real-world 

metabolic networks, there are often multiple optimal solutions. In 

other words, different flux distribution vectors may maximize the 

objective function, due to existence of alternative pathways.  Flux 

variability analysis (FVA) is a method for determining the 

theoretical maximum and minimum values of all reaction fluxes 

when the objective function has its optimal value and the fluxes 

satisfy the same constraints as in FBA 60. It is also possible to 

consider the idea of analyzing flux variability at suboptimal growth 
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rates, which is sometimes referred to as expanded flux variability 

analysis 61. FVA can be used to determine blocked reactions, i.e., 

those reactions which cannot carry any nonzero flux under steady-

state conditions. We used the “fluxVariability” function of the 

COBRA toolbox in order to perform this analysis. 

2.4. Biomass formulation 

In FBA, flux through the biomass producing reaction is 

typically considered as the objective function of the model. The 

reactants of this reaction are the major components of cellular dry 

matter. Accurate experimental measurement of the biomass 

components is a time-consuming and laborious task. Therefore, in 

the absence of species-specific biomass composition data, the 

biomass composition of E. coli (or, a closely related species) is 

commonly used for modeling. Since growth yield is not highly 

dependent on the biomass composition, such an assumption is 

reasonable 12, 62, 63.  

In this work, we used the biomass composition of P. 

aeruginosa with some adjustments. Firstly, the amount of putrescine 

and spermidine in 1 gram of cellular dry weight was reported for P. 

stutzeri 30. Secondly, we used high-performance liquid 

chromatography (HPLC) to measure the amino acid content of the 

total protein in P. stutzeri, and the results of this experiment were 

integrated in the biomass producing reaction. Here, we briefly 

mention the methodology used to determine the amino acid 

composition. 

2.5. Determination of amino acid content using HPLC 

P. stutzeri cells were cultivated in LB medium for 24 hours 

at 37 °C and 150 rpm. Then, the medium was centrifuged at 10000 

rpm for 15 minutes. The cellular pellet was washed with NaCl 

solution (8%) twice. The total bacterial protein was extracted using 

TRIzol reagent 64 by following the manufacturer’s protocol. The 

extracted protein was hydrolyzed using acidic and alkaline 

hydrolysis protocols explained elsewhere 65, 66. Standard solutions 

were obtained by dissolving amino acids in water/methanol. The 

standard solutions and the sample were dried in warm air and 

derivatized  according  to  the method of Bidlingmeyer 67. 100 µl of 

derivatization reagent (methanol: water: TEA: PITC 7:1:1:1) was 

added to the tube sample and the mixture was kept for 30 minutes at 

room temperature before drying. The derivatized sample was 

dissolved in acetate buffer (pH 7.1) and 10 µl of the sample was 

injected to an HPLC C8 column (Eruspher, 250×4.6 mm, 5 µm, 100 

Å). For analytical separation of PITC-amino acids, a binary mobile 

phase was used. The flow rate was set to 0.7 ml/min. Detection was 

carried out by a UV detector using the wavelengths 254 nm and 210 

nm. The EZChrom software was used for chromatography data 

analysis.    

2.6. Growth media and chemicals 

For growth measurement experiments, the M9 medium was 

used. This growth medium is chemically defined, and therefore, 

bacterial growth in this medium can be simulated in silico. The M9 

medium includes “basic” and “trace” elements. Na2HPO4, KH2PO4, 

NH4Cl, and NaCl are added to the M9 medium as the basic 

components. Trace elements of the M9 medium consists of MnCl2, 

ZnCl2, CuCl2, CoCl2, and Na2MoO4. Other components include 

CaCl2, MgSO4, and FeCl3. Glucose was added to the medium as the 

carbon source. 

In order to measure the growth rate of P. stutzeri, 20 mL of 

M9 medium was inoculated with bacteria to obtain a pre-culture. 

The pre-culture was incubated overnight in a shaker-incubator at 37 

°C and 150 rpm. 1.25 mL of the pre-culture was transferred to 50 

mL of the fresh medium in a 250-mL Erlenmeyer flask and 

incubated. Turbidity of this inoculated medium was measured every 

30 minutes using spectrophotometer at 600 nm. Each read was 
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repeated three times and the average of the three measurements was 

used to calculate the growth rate.  

2.7. Phenotyping data 

P. stutzeri A1501 was tested for its ability to grow on 

different carbon sources using Biolog GN2 MicroPlate™. These 

MicroPlates have 96 wells and each well consists of tetrazolium dye 

and a minimal growth medium with a particular carbon source. If the 

strain is able to grow on the defined carbon source, tetrazolium dye 

will be reduced to produce formazan, which has a purple color. 

Therefore, the production of formazan when the bacterial cells are 

inoculated to a minimal medium with only one source of carbon 

indicates the capability of the microorganism to respire actively 

while using that specific carbon source. 

For carbon source utilization studies, all procedures were 

performed as indicated by the manufacturer. A pure culture of a 

bacterium was grown overnight at 37 °C on a Biolog Universal 

Growth with 5% Sheep Blood agar plate. The bacteria were swabbed 

from the surface of the agar plate, and suspended in GN/GP 

Inoculating Fluid to a specified density. 150 µl of bacterial 

suspension was pipetted into each well and the plate was incubated 

overnight at 37 °C. Subsequently, the MicroPlate was read with a 

MicroPlate reader and the results were analyzed according to the cut-

offs provided in the Biolog protocols. 

2.8. Further evaluation of the model using experimental data 

from literature 

In order to further evaluate the predictive power of the model, we 

performed a comprehensive literature search, looking for articles 

containing experimental observations on the P. stutzeri metabolic 

capabilities. More specifically, we chose those articles concerning (i) 

growth rate measurements under different environmental conditions, 

(ii) genetic engineering and gene knockouts, and (iii) cellular 

response to environmental perturbations.  

In general changes in the environmental conditions were 

simulated by manipulating the upper/lower bounds of the exchange 

reactions in a way that they would reflect the aforementioned 

conditions. In case of gene deletion, the upper and the lower bounds 

of the associated reaction were set to zero. Then, by running FBA or 

FVA, we were able to compare the computational results with the 

experimental observations.  

3. Results 

3.1. Biomass equation 

In this work, the biomass composition of P. stutzeri was 

assumed to be similar to the biomass composition of P. aeruginosa 

with some modifications. More specifically, the putrescine and 

spermidine content of the biomass30 was updated, and additionally, 

the protein synthesis reaction of the model was updated according to 

the experimentally determined amino acid composition of P. stutzeri. 

For this purpose, the amino acid composition of P. stutzeri was 

analyzed by HPLC. Then, the stoichiometric coefficients of different 

amino acids were adjusted accordingly. 

3.2. Genome-scale metabolic network of Pseudomonas stutzeri 

A1501 

 The goal of the present work was to generate a constraint-based 

genome-scale metabolic network model of Pseudomonas stutzeri 

A1501. The final reconstructed network accounts for 890 genes, 813 

metabolites, and 1135 reactions. This network includes the necessary 

anabolic reactions required for producing biomass components. 

Reconstruction of the draft metabolic network model was 

carried out using the RAVEN toolbox 52. Two previously published 

models (i.e., metabolic networks of P. aeruginosa and P. putida) 
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were used as templates for draft reconstruction. Therefore, our 

model shares a part of its reactions with these two models. Briefly, in 

the first step, 761 reactions were added by the RAVEN toolbox 

based on the bi-directional BLASTp search for enzyme homologs. In 

the next step, we manually added 173 reactions from the template 

models so that the draft model would be functional. Then, in an 

iterative manual procedure, 188 reactions from KEGG database were 

added to expand the model. More specifically, from KEGG, we 

downloaded the metabolic information of P. stutzeri A1501 and tried 

to add reactions as long as they were connected to the network, i.e., 

their reactants/products were already present in the model or they 

could be connected using other reactions in the downloaded data. 

Finally, 12 more reactions were added manually to the model for 

simulating the experimental data. 

The number of shared reactions, as well as the number of 

unique reactions, is depicted in Figure 2. Obviously, our model 

includes a large number of reactions (i.e., 200 reactions) which are 

unique to P. stutzeri and are not reported in the previously published 

models of P. aeruginosa and P. putida. Among these 200 reactions, 

one can observe that reactions of lipid metabolism, energy 

metabolism and xenobiotics’ metabolism are over-represented (see 

Supplementary file S1), which represent the unique features of the 

metabolism of P. stutzeri.  

 

Figure 2. The number of shared and unique reactions in metabolic 

network models of P. aeruginosa, P. putida and P. stutzeri 

(iMO1086, iJP962 and iPB890, respectively).  

 In the next step, this draft network was manually curated by 

filling the network gaps as much as possible. The resulting model 

was able to simulate cell growth. In other words, it was able to carry 

flux through its biomass producing reaction. From this point on, we 

tried to further expand the model so that it covers a wider range of 

the metabolic reactions and pathways. In the next step, the model 

was converted to the standard SBML format (See Supplementary file 

S2). Finally, the in silico predictions of the model were compared 

with experimental data.  

3.2.1. Blocked and unblocked reactions in iPB890 

When simulating growth in the M9 minimal medium, 516 

reactions were found to be blocked (Figure 3). This number 

remained the same even when suboptimal growth conditions were 

considered (as small as 80% of the original biomass production rate). 

One reason for the high number of blocked reactions is that the 

medium was considered to be minimal and only a limited set of 

exchange reactions were allowed to carry flux. As depicted in Figure 

3, by simulating growth on the LB (rich) medium, the number of 

blocked reactions decreased to 482.  Finally we set the lower bound 

of all the exchange reactions to -1000 mmol.gDW
-1.h-1 and performed 

FVA. In this situation, 400 reactions were found to be blocked. 

Therefore, the simulated medium can change the flux distribution in 

a metabolic network, and by choosing richer media a higher number 

of reactions will be able to carry metabolic flux. We also performed 

the same analysis on two template models. Figure 3 summarizes the 

results.  
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Figure 3. Number of blocked reactions during growth simulation on 

M9 (minimal) medium and rich (LB) medium. No constraints 

represents the situation in which the lower bound of all of the 

exchange reactions were set to -1000 mmol.gDW
-1.h-1. 

3.3. Prediction of growth phenotypes 

The growth rate of Pseudomonas stutzeri A1501 in the M9 

medium (with glucose as the carbon source) was measured as 

described in the Materials and Methods section. Under those growth 

conditions, the growth rate was determined as 0.569 h-1 (Figure 4). 

On the other hand, the in silico growth rate of P. stutzeri on the M9 

medium was determined using FBA. In order to simulate the M9 

medium, the lower/upper bounds of the exchange reactions were set 

in a way that only the components of the medium (as described in 

the Materials and Methods section) were allowed to enter the 

system. The objective function of the FBA was considered to be the 

biomass production rate, vbiomass. The calculated in silico growth rate 

by FBA was 0.546 h-1. (For more details on the in silico simulations, 

see Table S1 of the Supplementary file S3). 

 

Figure 4. Experimental growth curve of Pseudomonas stutzeri 

A1501. Every read was repeated three times and the average of these 

three values were used for growth rate measurement. Vertical axis is 

log2 of absorbance at 600 nm and horizontal axis is time represented 

in hour. The experimentally measured growth rate of P. stutzeri was 

determined 0.569 h-1.   

 

3.4. Prediction of carbon source utilization phenotypes  

P. stutzeri A1501 was tested for its ability to utilize various 

carbon sources using a high-throughput Biolog phenotypic assay. In 

this assay, a certain concentration of bacterial cells is inoculated in a 

96-well Biolog MicroPlate™. Each well of the MicroPlate consists 

of tetrazolium dye and a minimal medium with a particular carbon 

source (except one well which only contains water as a negative 

control). If during incubation, the bacteria respire actively, the dye 

will turn into its reduced form and produce a visible purple color. 

The carbon consumption profile was determined based on the 

absorbance measurement of the produced color in each well. On the 

other hand, by computational growth simulation on each carbon 

source using FBA, we evaluated the capability of the network model 

for the utilization of carbon sources. Both vbiomass and, vATP-synthetase 

were tested as the objective function of FBA, but the results were 

found to be essentially the same. 
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Among the 95 different carbon sources available on the 

Biolog MicroPlate™, 25 had a corresponding transport reaction in 

our model. Therefore, these carbon sources were appropriate for the 

evaluation of the in silico predictions. The complete list of these 

compounds, together with their experimental and computational 

growth phenotypes, is presented in Table 1. The in silico growth 

simulations were performed by using FBA, as described in Materials 

and Methods. As shown in this table, in the majority of the cases 

(i.e., 20 out of 25), modeling results were consistent with 

experimental data, confirming the accuracy of our model. 

 

 

 

Table 1. Experimental growth phenotype and computational growth 

simulation results for carbon sources whose transport reactions are 

accounted for in the model. Positive means “growth” and negative 

means “no growth” in both columns. In 22 cases of a total of 26, the 

model was able to successfully predict the growth phenotype. 

Carbon source Experimental 

results 

In silico 

results 

Consistent? 

No carbon source - - ✓ 

L-Histidine - - ✓ 

D-Fructose + + ✓ 

L-Leucine + + ✓ 

D-Alanine - +  

L-Phenylalanine - - ✓ 

D-Glucose + + ✓ 

L-Alanine + + ✓ 

L-Proline + + ✓ 

Malonic Acid + + ✓ 

L-Aspartic Acid + + ✓ 

Glycerol + + ✓ 

L-Glutamic Acid + + ✓ 

L-Threonine - +  

D-Mannitol - +  

D, L-Carnitine - - ✓ 

γ-Aminobutyric Acid + + ✓ 

L-Ornithine - +  

Putrescine + + ✓ 

Succinic Acid + + ✓ 

Acetate + + ✓ 

Citrate + + ✓ 

D-Mannose - - ✓ 

L-Serine - +  

L-Asparagine + + ✓ 

2,3-Butanediol - - ✓ 

 

The remaining 70 compounds included 19 intracellular 

metabolites for which no transport reaction was included in the 

model and 51 metabolites in the Biolog MicroPlate™ which are not 

included in our metabolic network model (see Supplementary file 

S4).. We observed that for 38 out of these 51 carbon sources (~75%) 

no cellular respiration was detected, while in case of 13 carbon 

sources we observed some respiration activity. These 13 cases 

should be further investigated in the future in order to check their 

potential presence in the metabolism of P. stutzeri. 

The growth phenotype of the intracellular metabolites of the 

model can be used for further improvement of the metabolic network 

model. For these metabolites, we simulated in silico growth by 

temporarily adding a hypothetical transport reaction and analyzing 

the results. If by adding such a reaction, the predictive power of the 

model increased, we kept the transport reaction in the model. This 

was the case when bacteria grew on a specific carbon source and the 

model only lacked the transport reaction. In the case of six carbon 

sources, namely cis-aconitate, D-gluconate, glycogen, ketoglutarate, 

maltose and R-lactate, such an improvement was observed. By 

adding the uptake and transport reaction of these metabolites to the 

model, the accuracy of the model for predicting the carbon source 

utilization phenotype reached 84% (which was 81% without 

considering these metabolites).  

As we mentioned before, there are 51 metabolites in the 

Biolog MicroPlate™ which are not included in our metabolic 

network model (see Supplementary file S4). We observed that for 38 

out of these 51 carbon sources (~75%) no growth is observed, while 

in case of 13 carbon sources we observe some respiration activity. 

These 13 cases should be further investigated in the future in order to 

check their potential presence in the metabolism of P. stutzeri. 
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3.5. Model evaluation based on literature data: insights into 

nitrogen metabolism 

P. stutzeri A1501 is famous for its N2 fixation capability. 

However, this strain has the ability to utilize nitrogen in different 

forms. For example, this strain can reduce nitrate to nitrite by using 

three distinct nitrate reductases through three physiologically 

different processes 68. Firstly, nitrate can be used as the terminal 

electron acceptor in nitrate respiration under anaerobic conditions. 

In this case, nitrate is used in order to generate proton motive force 

to synthesize ATP. Secondly, nitrate can serve as a nitrogen source 

for growth in a process called nitrate assimilation. Thirdly, nitrate 

can be used for redox balancing in a process called nitrate 

dissipation when bacteria are grown on highly reduced carbon 

sources 69.  

In the following sections, we show how the results of the in 

silico simulation of P.  stutzeri matches the experimentally reported 

phenotypes of nitrogen metabolism in this species. It should be noted 

that we were not able to model nitrate dissipation, as we did not find 

any studies about dissimilatory nitrate reductase activity in P. 

stutzeri A1501, and therefore, we do not know the environmental 

conditions under which nitrate dissipation occurs. 

3.5.1. Modeling anaerobic growth and nitrate respiration 

All known Pseudomonas stutzeri strains are facultative 

anaerobes with nitrate as the final electron acceptor 30. In a previous 

work by Rediers et al., anaerobic growth of P. stutzeri cells on a 

minimal medium supplemented with nitrate was investigated 68. 

Using the observed growth curve (i.e., Figure 1 of Ref. 68), we 

estimated the anaerobic growth rate of P. stutzeri to be ~0.453 h-1. 

Then, we simulated anaerobic conditions by removing the oxygen 

uptake reaction (voxygen_uptake=0) and allowing nitrate to enter the 

system. By performing FBA in these conditions, the predicted 

growth rate by the model was found to be 0.398 h-1, which is 

comparable to the experimentally measured growth rate. 

 The respiratory nitrate reductase enables bacteria to grow 

in anaerobic conditions in which reduction of nitrate is coupled with 

the oxidation of the quinol pool 69. The three subunits  of this highly-

conserved enzyme is coded by nar genes 70. In the denitrification 

process, nitrate is reduced to nitrite, and subsequently to the ultimate 

product of this pathway, N2. We investigated the ability of our model 

to simulate nitrate respiration. As mentioned above, we simulated 

the anaerobic conditions. Additionally, we ran FVA to see the 

minimum and maximum possible activity of the denitrification 

pathway. The results suggest that the pathway is active, carrying 

33.0 mmol.gDW
-1.h-1  flux, and essential for the biomass production. 

Altogether, our observations provide an explanation on the 

importance of the denitrification pathway and the reason of its high 

conservation. 

 3.5.2. Modeling nitrate assimilation 

Nitrate assimilation is a competitive advantage for P.  stutzeri 

since it enables the organism to use nitrate as an alternative nitrogen 

source. This process begins with active transport of nitrate into the 

cell by an ABC-type transporter, continues with the reduction of 

nitrate to nitrite by the assimilatory nitrate reductase and subsequent 

reduction of nitrite to ammonia by the assimilatory nitrite reductase 

71, 72. Since this pathway exists in P. stutzeri A1501, the model was 

tested to evaluate the activity of this pathway qualitatively. In order 

to simulate a condition in which the only nitrogen source is nitrate, 

except for nitrate for all other potential nitrogen sources, the lower 

bounds of their exchange reactions were set to zero. Then, by 

running FBA, the aforementioned pathway was found to be active, 

carrying 5.69 mmol.gDW
-1.h-1 flux. We also ran FVA to see its 

possible range of fluxes. FVA results also confirmed that this 

pathway is active, as the minimum and the maximum fluxes of the 
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reaction were equal to 5.69 mmol.gDW
-1.h-1. Therefore, our model 

could successfully reflect the activity of the nitrate assimilation 

pathway in the absence of all other nitrogen sources. 

3.5.3. Mutation in narG gene 

The α subunit of the nitrate reductase is encoded by narG 

gene. In a previous study, a narG mutant of Pseudomonas stutzeri 

A1501 has been constructed and some of its metabolic features have 

been studied 68. Here, we report the results of the in silico simulation 

of these analyses. 

3.5.3.1. Growth characteristics 

The essentiality of the narG gene has been studied, and it has 

been shown that it is crucial for bacterial growth in anaerobic 

conditions in a medium containing nitrate 68. It has also been shown 

that the mutant strain in narG could grow anaerobically in a medium 

supplemented with nitrite with a growth rate similar to the wild type 

strain. However, the wild type strain grew faster in the presence of 

nitrate in comparison to when nitrite was present. We performed 

four sets of in silico experiments in which the biomass production 

rate was calculated using FBA. In the four aforementioned 

computational tests, we simulated the conditions in which the wild 

type strain and the narG mutant grew anaerobically in a nitrate- or 

nitrite-containing medium. We expected to see the highest growth 

rate in the case of growth in the presence of nitrate for the wild type 

strain and after that for the case of growth in the presence of nitrite, 

for both the wild type and the mutant strains. We also expected to 

see no growth prediction for the mutant strain growing in the 

medium supplemented with nitrate. The experimental and 

computational results are shown in Table 2. 

Table 2.  Experimental observations and computational results concerning anaerobic growth of the wild type and narG mutant strain of 

Pseudomonas stutzeri A1501 in the presence of nitrate and nitrite. The qualitative consistency is observable in all four cases.

 

 

 

As shown in Table 2, the model could reflect the 

experimental observations successfully. The observed experimental 

difference could not be seen in silico since the reactions of the 

denitrification pathway are fully coupled. Consequently, in case that 

the path starts with nitrate, the result would be the same as the case 

that the path starts with nitrite (FBA results are shown in Table S3). 

On the other hand, in the experimental data, the bacterium had a 

higher growth rate on nitrate compared to nitrite. This could be due 

to bacteria’s lower affinity to nitrite in comparison to nitrate 

(because a prolonged lag phase was observed when the bacteria were 

grown on the nitrite-supplemented medium 68). Since the uptake rate 

was uncharacterized in all cases, we did not set any constraints on 

the uptake reactions of neither nitrate nor nitrite. 

3.5.3.2. Denitrification activity 

The process of nitrate reduction to molecular nitrogen via 

nitrite and the subsequent gaseous compounds (nitric oxide and 

nitrous oxide) is called denitrification. The activity of this pathway 

has been previously studied in the wild type and narG mutant strains 

of P. stutzeri A1501 68. The study included a qualitative assay based 

on production of gaseous compounds whilst growing anaerobically 

 

Nitrate-containing medium Nitrite-containing medium 

Experimental Computational Experimental Computational 

Wild type strain Growth Growth Growth Growth 

NarG mutant strain No growth No growth Growth Growth 
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in a solid medium supplemented either with nitrate or nitrite. Based 

on the results of this experiment the pathway was found to be active 

in the wild type strain in both nitrate- and nitrite-containing media. 

Denitrification was also seen in the mutant defective in the 

respiratory nitrate reductases growing in the nitrite-supplemented 

medium, but it was not observed for the mutant strain when nitrate 

was provided (as the terminal electron acceptor). 

We simulated anaerobic growth conditions and performed 

FVA to see if the model could predict the experimental observations 

correctly. In the case of the wild type strain, the pathway was active 

when either nitrate or nitrite was allowed to enter the system. For the 

simulated mutant strain, the pathway could carry flux only when 

nitrite was provided (Data are shown in Table S4). Therefore, the 

computational results were consistent with the experimental data.  

3.5.3.3. Nitrate reductase activity 

Nitrate reductase activity (NRA) of the wild type and the 

narG mutant strain has been investigated in aerobic, micro-aerobic 

and anaerobic conditions. It was reported that the mutant strain loses 

its ability to reduce nitrate in anaerobic and micro-aerobic 

conditions. The only NRA activity of the narG mutant was seen 

under aerobic conditions, which has been deduced to be related to 

the periplasmic nitrate reductase. This enzyme is not expressed in 

anaerobic conditions. For the wild type strain, the NRA was 

observable in all oxygen concentrations. Anaerobic and micro-

aerobic conditions had almost equal NRAs and this activity was 

lower under aerobic conditions68. 

For evaluating the modeling predictions in this case, we 

simulated the aforementioned conditions for the wild type and the 

narG mutant strain and ran FVA. The results are shown in Table 3. 

The experimental observations are presented qualitatively and the 

computational results are shown in values representing the flux of 

nitrate uptake reaction. In the cases where the minimum and 

maximum nitrate uptake flux rates were not identical, both values 

are shown in the table. In anaerobic conditions, the simulations were 

consistent with the experimental results. Also in the micro-aerobic 

conditions, an acceptable consistency is observable. The model 

predicted a lower NRA for the wild type strain in aerobic conditions 

compared than in anaerobic and micro-aerobic conditions. However, 

the “poorly active” state of nitrate reductase activity was not 

predicted by the model for the narG mutant strain (Quantitative 

values are shown in Table S5). 

 

Table 3. Experimental observations and computational simulations for nitrate reductase activity in the wild type and the narG mutant strain 

in anaerobic, micro-aerobic and aerobic conditions.

 

 

 

 

Anaerobic Micro-aerobic Aerobic 

Experimental Computational Experimental Computational Experimental Computational 

Wild 

type 

strain 

Active Active Active Active Inactive Inactive 

NarG 

mutant 

strain 

Inactive Inactive Inactive Poorly active Inactive Inactive 
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3.5.4. Nitrogen fixation and nitrogenase repression  

Pseudomonas stutzeri A1501 is best known as a nitrogen 

fixing bacterium. In this process, atmospheric nitrogen is converted 

into ammonium. Nitrogen fixation occurs under micro-aerobic 

conditions in both endophytic 73 and free-living state in P. stutzeri 

A1501 38. An enzyme complex called nitrogenase is responsible for 

the reduction of N2 to ammonia. It has been shown that nitrogenase 

activity is repressed in the presence of ammonium 74.  

In order to investigate the modeling predictions in this case, we 

prevented all nitrogen sources from entering the system, except for 

N2, by setting the lower bound of their associated uptake reactions to 

zero. We also simulated a micro-aerobic environment (by setting the 

maximum uptake rate of oxygen to 1.00 mmol.gDW
-1.h-1, deduced 

from experimental observations 75) since the maximum nitrogenase 

activity occurs in this condition 68. We performed flux variability 

analysis to see the range of nitrogen fixing reaction flux. In these 

conditions, both minimum and maximum flux values for this 

reaction were found to be 1.64 mmol.gDW
-1.h-1. In the second round 

of simulation, while keeping the glucose uptake rate at 10 

mmol.gDW
-1.h-1, we allowed ammonium enter the system (by adding 

the constraint -1000 ≤ vammonium ≤ +1000) to see how it would affect 

the nitrogenase activity. By running FVA, the minimum and 

maximum flux rates for the nitrogen fixation reaction changed to 

zero and 1.11×10-5 mmol.gDW
-1.h-1, respectively. Therefore, our 

model correctly predicted ammonium usage instead of nitrogen 

fixation.  

3.5.5. Nitrogenase activity during N2 fixation under different 

oxygen concentrations 

It has been reported that the nitrogenase activity increases 

when environmental conditions change from anaerobic to micro-

aerobic 76. By simulating the nitrogen fixing conditions as mentioned 

in the previous section, we performed 11 rounds of FVA when 

oxygen uptake reaction flux increased gradually form 0 to 1 with 0.1 

steps. In all cases, the flux of nitrogen fixation reaction was fixed, 

i.e., the minimum and maximum flux values were equal. Figure 6 

shows how the oxygen uptake rate influences the nitrogen-fixing 

rate.  As the oxygen uptake rate increases from zero (representing 

anaerobic conditions) to 1.00 mmol.gDW
-1.h-1 (representing micro-

aerobic conditions), the nitrogen fixing reaction carries higher 

fluxes. It should be noted that there are 59 reactions in the model that 

consume or produce ammonia. Consequently, the fixed nitrogen in 

form of ammonia is potentially able to go through different pathways 

and a linear relation between the nitrogen fixation and biomass 

production rate is not necessarily expected. In conclusion, the 

increasing trend of the nitrogen fixation flux as a result of the O2 

flux agrees with the reported experimental results. 

 

Figure 6. Flux of the nitrogen fixing reaction against oxygen uptake. 

When the oxygen uptake rate increases from 0 to 1.00 mmol.gDW
-1.h-

1 changing the environmental conditions from anaerobic to micro-

aerobic, the nitrogen fixation reaction carries higher flux rates.  

 

3.6. Model evaluation based on literature data: Mutation in dapB 

gene 

The dapB gene encodes for the L-2,3-dihydrodipicolinate 

reductase which is essential for meso-diaminopimelate biosynthesis. 
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Diaminopimelate is an essential component of peptidoglycan and 

also serves as a major precursor in lysine biosynthesis. Mutation in 

this gene abolishes microbial growth both on a minimal medium and 

on a minimal medium containing high concentrations of 

diaminopimelate. However, the mutant strain can grow in a medium 

supplemented with high concentrations of lysine and 

diaminopimelate 77. 

We simulated the dapB mutant strain by eliminating its 

associated reaction. By performing FBA, the model predicted no 

growth in this case.  In order to simulate an in silico medium 

containing diaminopimelate, we added a temporary uptake reaction 

for diaminopimelate so that it would be able to enter the system. It 

was indicated that diaminopimelate was not readily taken up by the 

cells 77 therefore, we constrained the uptake rate to have a maximum 

of 0.100 mmol.gDW
-1.h-1 and ran FBA. In this case, the biomass 

producing reaction carried a flux equal to 0.218 h-1. For simulating 

the growth of the mutant strain on a medium containing high 

concentrations of diaminopimelate and lysine, we let both of these 

compounds enter the system and performed FBA. In this case, the 

model predicted a growth rate equal to 0.565 mmol.gDW
-1.h-1. 

Therefore, the simulations could reflect the experimental 

observations qualitatively. Since the experimental uptake rate was 

unknown for lysine, we set the lower bound of the uptake reaction to 

-1000 mmol.gDW
-1.h-1. 

3.7. Model evaluation based on literature data: Indole acetate 

production 

Indole-3-acetate is a phytohormone derived from 

tryptophan. Production of this compound has been observed in 

diverse groups of bacteria including Pseudomonas stutzeri A15. The 

pathway begins with the conversion of tryptophan to indolepyruvate, 

continues to the decarboxylation of indolepyruvate to indole-3-

acetyldehyde, and ends with the oxidation of indole-3-acetyldehyde 

to indole-3-acetate. In an experimental analysis, it was shown that 

when the cell-free crude extracts of the bacteria is supplemented 

with tryptophan, indole-3-acetate production increases 78.  

We simulated the M9 medium and allowed tryptophan to 

enter the system by setting the lower bound of its exchange reaction 

to -10 mmol.gDW
-1.h-1. We ran FVA to investigate the activity of this 

pathway. The minimum and maximum of indole-3-acetate 

production reaction were both 9.67 mmol.gDW
-1.h-1. Therefore, our 

model could simulate the activity of this pathway and production of 

indole-3-acetate when tryptophan was provided. 

4. Discussion 

The main advantage of genome-scale metabolic networks is 

that they can provide us with a holistic view of metabolism. Such 

networks enable us to better understand the quantitative 

dependencies between metabolic elements which may not be 

recognizable if a metabolic subnetwork is studied in isolation 79-81. 

Consequently, these models can serve as tools for intelligent 

experimental designs like metabolic engineering and drug targeting 

82, 83. Furthermore, since these networks represent metabolism in a 

genome scale, they can be used to predict cellular responses to 

environmental or genetic perturbations such as nutrient deficiency or 

mutation in one gene or a set of genes. 

Here, the first genome-scale metabolic network model for 

Pseudomonas stutzeri A1501 is presented. The model accounts for 

890 genes (which cover 21.5% of the genome). These genes are 

responsible for 995 metabolic reactions. The gene-associated 

reactions account for 88% of all the reactions in the network. Most 

of the remaining non-gene-associated reactions are exchange 

reactions, which are added to the model in order to simulate 

environmental conditions such as the available carbon source, 
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environmental oxygen concentration and growth medium 

formulation. There are 1033 non-exchange reactions in our model 

and 995 of them are gene-associated. Therefore, 96% of the non-

exchange reactions are gene-associated. The percentage of gene-

associated reactions in P. aeruginosa and P. putida models are 95% 

and 93%, respectively.  

Obviously, the number of the genes and the metabolic 

reactions in our model can increase as more biochemical data 

become available. For instance, in a recent study a novel form of ʟ-

lactate dehydrogenase has been identified in P. stutzeri A1501, 

which uses iron-sulfur clusters as cofactor 84. The catalyzed reaction 

by this enzyme can be incorporated into the model if the exact 

stoichiometry of the reaction is determined in the future. 

For network reconstruction, a combination of automated and 

manual approaches was used in this work. The draft network was 

constructed using two Pseudomonas models using the RAVEN 

toolbox based on bidirectional BLAST results. Then in an iterative 

process of gap filling the metabolic reactions specific to 

Pseudomonas stutzeri were added to the draft network from KEGG 

until the model was able to simulate in silico growth and correctly 

predict other cellular phenotypes.  

In this study, a set of experimental data was used to validate 

the model, including specific growth rate, high-throughput substrate 

utilization test, and experimental data in the literature. We measured 

the aerobic growth rate in the minimal M9 medium and found it to 

be very close to the growth rate predicted by the model in the same 

environmental condition. The value for the in silico growth rate fell 

within 6% of the maximum growth rate determined experimentally 

for P. stutzeri A1501. For anaerobic conditions, we estimated the 

specific growth rate using a growth curve of P. stutzeri represented 

in a previous study and compared it to the predicted anaerobic 

growth rate. Only a slight difference (12%) between the 

experimental and computational growth rates was observed. The 

carbon source consumption profile of P. stutzeri A1501 was 

determined using a Biolog phenotyping assay. There was an 87% 

consistency in experimental and computational results regarding the 

growth phenotype on different carbon sources. However, for many 

of the carbon sources in Biolog MicroPlate, we could not simulate 

the computational growth since the catabolic pathways of these 

compounds are not entirely known and need to be studied more 

thoroughly. We also performed a comprehensive literature search 

looking for more experimental data to evaluate our model with an 

emphasis on nitrogen metabolism because the modeled strain is best 

known for its ability to fix atmospheric nitrogen. In most cases, the 

model could correctly predict the experimental data qualitatively.  

Pseudomonas stutzeri A1501 has been originally isolated from 

rice rhizosphere, and it has been shown that it forms an associative 

lifestyle with this plant. In this associative relationship, this 

bacterium can provide the plant with fixed nitrogen 85 and 

phytohormones, promoting the plant growth78. The represented 

genome-scale metabolic network model for P. stutzeri A1501 can 

provide us with proper strategies to enhance these capabilities so that 

this bacterium could be used as a natural growth promoter for rice. 

Since a metabolic network model for rice has been recently 

reconstructed 86, the interactions between these two organisms can 

also be modeled and analyzed and to help us better understand the 

aforementioned association and find potential strategies to optimize 

the growth of this plant.    

Acknowledgements 

 The financial support for this work by the Iran National 

Science Foundation (INSF) is gratefully acknowledged. We 

Page 15 of 17 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Molecular BioSystems ARTICLE 

This journal is © The Royal Society of Chemistry 2015 Mol.Biosyst.  | 16  

thank Ali Muhammadzadeh for editorial comments in 

connection with writing this paper. 

 

Notes and references 
a Department of Biotechnology, College of Science, University of Tehran, 

Tehran, Iran 

b Corresponding authors. E-mail addresses: marashi@ut.ac.ir (S.-A. 

Marashi); asad@ut.ac.ir (S. Asad). 

† Electronic Supplementary Information (ESI) available:  

Supplementary file S1: Metabolic subsystems of unique reactions of P. 

stutzeri format. 

Supplementary file S2: The metabolic network of Pseudomonas stutzeri 

A1501 in the standard SBML. 

Supplementary file S3: Details of the in silico simulations. 

Supplementary file S4: Results of Biolog assay for those carbon sources 

which are not present in iPB890. 

 

 

See DOI: 10.1039/b000000x/ 

 

References: 

 
1. N. Beckloff, S. Starkenburg, T. Freitas and P. Chain, in Microbial 

Systems Biology, Springer2012, pp. 471-503. 

2. X. Mao, T. Cai, J. G. Olyarchuk and L. Wei, Bioinformatics, 
2005, 21, 3787-3793. 

3. J. J. Hamilton and J. L. Reed, Environmental microbiology, 2014, 

16, 49-59. 
4. C. S. Henry, M. DeJongh, A. A. Best, P. M. Frybarger, B. Linsay 

and R. L. Stevens, Nature biotechnology, 2010, 28, 977-982. 

5. M. Kanehisa and S. Goto, Nucleic acids research, 2000, 28, 27-
30. 

6. R. Caspi, H. Foerster, C. A. Fulcher, P. Kaipa, M. 

Krummenacker, M. Latendresse, S. Paley, S. Y. Rhee, A. G. 
Shearer and C. Tissier, Nucleic acids research, 2008, 36, D623-

D631. 

7. J. W. Whitaker, I. Letunic, G. A. McConkey and D. R. Westhead, 
Nucleic acids research, 2009, 37, D531-D538. 

8. J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A. M. 

Feist and B. Ø. Palsson, Molecular Systems Biology, 2011, 7:535, 
535. 

9. M. Heinemann, A. Kümmel, R. Ruinatscha and S. Panke, 

Biotechnology and bioengineering, 2005, 92, 850-864. 
10. Y.-K. Oh, B. O. Palsson, S. M. Park, C. H. Schilling and R. 

Mahadevan, Journal of Biological Chemistry, 2007, 282, 28791-

28799. 
11. M. A. Oberhardt, J. Puchałka, K. E. Fryer, V. A. M. Dos Santos 

and J. A. Papin, Journal of bacteriology, 2008, 190, 2790-2803. 

12. J. Puchałka, M. A. Oberhardt, M. Godinho, A. Bielecka, D. 
Regenhardt, K. N. Timmis, J. A. Papin and V. A. M. dos Santos, 

PLoS computational biology, 2008, 4, e1000210. 
13. H. Knoop, M. Gründel, Y. Zilliges, R. Lehmann, S. Hoffmann, 

W. Lockau and R. Steuer, PLoS computational biology, 2013, 9, 

e1003081. 
14. J. Nogales, B. Ø. Palsson and I. Thiele, BMC systems biology, 

2008, 2, 79. 

15. A. Navid and E. Almaas, Molecular BioSystems, 2009, 5, 368-
375. 

16. S. Aggarwal, I. A. Karimi and D. Y. Lee, Molecular BioSystems, 

2011, 7, 3122-3131. 

17. O. Gonzalez, S. Gronau, M. Falb, F. Pfeiffer, E. Mendoza, R. 

Zimmer and D. Oesterhelt, Molecular BioSystems, 2008, 4, 148-

159. 

18. A. M. Feist, J. Scholten, B. Ø. Palsson, F. J. Brockman and T. 

Ideker, Molecular systems biology, 2006, 2:0004. 

19. N. Goyal, H. Widiastuti, I. A. Karimi and Z. Zhou, Molecular 
BioSystems, 2014, 10, 1043-1054. 

20. S. Mintz-Oron, S. Meir, S. Malitsky, E. Ruppin, A. Aharoni and 

T. Shlomi, Proceedings of the National Academy of Sciences, 
2012, 109, 339-344. 

21. J. Förster, I. Famili, P. Fu, B. Ø. Palsson and J. Nielsen, Genome 

research, 2003, 13, 244-253. 
22. J. M. Dreyfuss, J. D. Zucker, H. M. Hood, L. R. Ocasio, M. S. 

Sachs and J. E. Galagan, PLoS computational biology, 2013, 9, 

e1003126. 
23. R. L. Chang, L. Ghamsari, A. Manichaikul, E. F. Hom, S. Balaji, 

W. Fu, Y. Shen, T. Hao, B. Ø. Palsson and K. Salehi‐Ashtiani, 

Molecular systems biology, 2011, 7. 

24. I. Thiele, N. Swainston, R. M. Fleming, A. Hoppe, S. Sahoo, M. 
K. Aurich, H. Haraldsdottir, M. L. Mo, O. Rolfsson and M. D. 

Stobbe, Nature biotechnology, 2013, 31, 419-425. 

25. S. Selvarasu, I. A. Karimi, G.-H. Ghim and D.-Y. Lee, Molecular 
BioSystems, 2009, 6, 152-161. 

26. M. Hadi and S.-A. Marashi, Molecular BioSystems, 2014, 10, 

3014-3021. 
27. A. R. Zomorrodi, P. F. Suthers, S. Ranganathan and C. D. 

Maranas, Metabolic engineering, 2012, 14, 672-686. 

28. S. Y. Lee, D.-Y. Lee and T. Y. Kim, Trends in biotechnology, 
2005, 23, 349-358. 

29. N. E. Lewis, H. Nagarajan and B. O. Palsson, Nature Reviews 

Microbiology, 2012, 10, 291-305. 
30. J. Lalucat, A. Bennasar, R. Bosch, E. García-Valdés and N. J. 

Palleroni, Microbiology and Molecular Biology Reviews, 2006, 
70, 510-547. 

31. S. W. Park, J. H. Back, S. W. Lee, J. H. Song, C. H. Shin, G. E. 

Kim and M.-J. Kim, Kidney Research and Clinical Practice, 
2013, 32, 81-83. 

32. G. L. Gilardi and H. J. Mankin, N. Y. State J. Med., 1973, 73, 

2789-2791. 
33. P. Ahamad and A. Kunhi, Letters in applied microbiology, 1996, 

22, 26-29. 

34. E. Garcia-Valdes, E. Cozar, R. Rotger, J. Lalucat and J. Ursing, 
Applied and environmental microbiology, 1988, 54, 2478-2485. 

35. E. García-Valdés, M. M. Castillo, A. Bennasar, C. Guasp, A. M. 

Cladera, R. Bosch, K. H. Engesser and J. Lalucat, Systematic and 
applied microbiology, 2003, 26, 390-403. 

36. W. T. Stringfellow and M. D. Aitken, Applied and Environmental 

Microbiology, 1995, 61, 357-362. 
37. R. Rosselló-Mora, J. Lalucat and E. García-Valdés, Applied and 

environmental microbiology, 1994, 60, 966-972. 

38. N. Desnoues, M. Lin, X. Guo, L. Ma, R. Carreño-Lopez and C. 
Elmerich, Microbiology, 2003, 149, 2251-2262. 

39. C. Gao, J. Qiu, C. Ma and P. Xu, PloS one, 2012, 7, e40755. 

40. W. Zhang, C. Gao, B. Che, C. Ma, Z. Zheng, T. Qin and P. Xu, 
Bioresource technology, 2012, 110, 719-722. 

41. C. Gao, W. Zhang, C. Lv, L. Li, C. Ma, C. Hu and P. Xu, Applied 

and environmental microbiology, 2010, 76, 1679-1682. 
42. B. Deng, L. Fu, X. Zhang, J. Zheng, L. Peng, J. Sun, H. Zhu, Y. 

Wang, W. Li and X. Wu, PloS one, 2014, 9, e114886. 

43. O. Nwokoro and M. E. U. Dibua, Archives of Industrial Hygiene 
and Toxicology, 2014, 65, 113-119. 

44. Y. Yan, J. Yang, Y. Dou, M. Chen, S. Ping, J. Peng, W. Lu, W. 

Zhang, Z. Yao and H. Li, Proceedings of the National Academy of 
Sciences, 2008, 105, 7564-7569. 

45. H. Vermeiren, A. Willems, G. Schoofs, R. De Mot, V. Keijers, W. 

Hai and J. Vanderleyden, Systematic and applied microbiology, 
1999, 22, 215-224. 

46. J. Hallmann, A. Quadt-Hallmann, W. Mahaffee and J. Kloepper, 

Canadian Journal of Microbiology, 1997, 43, 895-914. 
47. S. A. Becker, A. M. Feist, M. L. Mo, G. Hannum, B. Ø. Palsson 

and M. J. Herrgard, Nature protocols, 2007, 2, 727-738. 

Page 16 of 17Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t

mailto:marashi@ut.ac.ir
mailto:asad@ut.ac.ir


Molecular BioSystems ARTICLE 

This journal is © The Royal Society of Chemistry 2015 Mol.Biosyst.  | 17  

48. O. Resendis-Antonio, J. L. Reed, S. Encarnación, J. Collado-

Vides and B. Ø. Palsson, PLoS Comput Biol, 2007, 3, e192. 

49. H. Zhao, M. Li, K. Fang, W. Chen and J. Wang, PLoS ONE, 

2012, 7, e31287. 

50. C. Wang, Z.-L. Deng, Z.-M. Xie, X.-Y. Chu, J.-W. Chang, D.-X. 

Kong, B.-J. Li, H.-Y. Zhang and L.-L. Chen, FEBS Letters, 589, 
285-294. 

51. I. Thiele and B. Ø. Palsson, Nature protocols, 2010, 5, 93-121. 

52. R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew and J. 
Nielsen, PLoS computational biology, 2013, 9, e1002980. 

53. S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. 

Lipman, Journal of molecular biology, 1990, 215, 403-410. 
54. M. A. Oberhardt, J. Puchałka, V. A. M. dos Santos and J. A. 

Papin, PLoS Computational Biology, 2011, 7, e1001116. 

55. P. Babaei, T. Ghasemi-Kahrizsangi and S.-A. Marashi, The 
Scientific World Journal, 2014, 2014, 11. 

56. A. M. Feist and B. O. Palsson, Current Opinion in Microbiology, 

2010, 13, 344-349. 
57. J. Schellenberger, R. Que, R. M. Fleming, I. Thiele, J. D. Orth, A. 

M. Feist, D. C. Zielinski, A. Bordbar, N. E. Lewis and S. 

Rahmanian, Nature protocols, 2011, 6, 1290-1307. 
58. E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel and 

A. Bairoch, Nucleic acids research, 2003, 31, 3784-3788. 

59. J. D. Orth, I. Thiele and B. Ø. Palsson, Nature biotechnology, 
2010, 28, 245-248. 

60. R. Mahadevan and C. H. Schilling, Metabolic engineering, 2003, 

5, 264-276. 
61. T. Chen, Z. W. Xie and Q. Ouyang, Chinese Science Bulletin, 

2009, 54, 2610-2619. 

62. J. Pramanik and J. D. Keasling, Biotechnology and 
Bioengineering, 1998, 60, 230-238. 

63. J. B. van Duuren, J. Puchałka, A. E. Mars, R. Bücker, G. Eggink, 

C. Wittmann and V. A. M. dos Santos, BMC biotechnology, 2013, 
13, 93. 

64. P. Chomczynski and N. Sacchi, Analytical Biochemistry, 1987, 

162, 156-159. 
65. Y.-C. Chen and J. Jaczynski, Journal of agricultural and food 

chemistry, 2007, 55, 1814-1822. 

66. Y.-C. Chen and J. Jaczynski, Journal of agricultural and food 
chemistry, 2007, 55, 9079-9088. 

67. B. A. Bidlingmeyer, Preparative liquid chromatography, 
Elsevier1987. 

68. H. Rediers, J. Vanderleyden and R. De Mot, Microbiological 

research, 2009, 164, 461-468. 
69. D. J. Richardson, Microbiology, 2000, 146, 551-571. 

70. L. Philippot, Biochimica et biophysica acta (BBA)-Gene structure 

and expression, 2002, 1577, 355-376. 
71. J. T. Lin and V. Stewart, Advances in microbial physiology, 1997, 

39, 1-30. 

72. L. Reitzer, Annual Reviews in Microbiology, 2003, 57, 155-176. 
73. E. James, Field Crops Research, 2000, 65, 197-209. 

74. T. Zhang, Y. Yan, S. He, S. Ping, K. M. Alam, Y. Han, X. Liu, 

W. Lu, W. Zhang and M. Chen, Research in microbiology, 2012, 
163, 332-339. 

75. F. Bergersen, Soil Biology and Biochemistry, 1997, 29, 875-880. 

76. Y. Yan, S. Ping, J. Peng, Y. Han, L. Li, J. Yang, Y. Dou, Y. Li, H. 
Fan and Y. Fan, BMC genomics, 2010, 11, 11. 

77. H. Rediers, V. Bonnecarrere, P. B. Rainey, K. Hamonts, J. 

Vanderleyden and R. De Mot, Applied and environmental 
microbiology, 2003, 69, 6864-6874. 

78. R. O. Pedraza, A. Ramı́rez‐Mata, M. Xiqui and B. E. Baca, FEMS 

microbiology letters, 2004, 233, 15-21. 

79. S.-A. Marashi, L. David and A. Bockmayr, Algorithms for 
Molecular Biology, 2012, 7, 17. 

80. A. Rezvan, S.-A. Marashi and C. Eslahchi, Journal of 

Bioinformatics and Computational Biology, 2014, 12, 1450028. 
81. B. P. Ingalls and E. Bembenek, In Silico Biology., 2015, In press. 

DOI: 10.3233/ISB-140464. 

82. Z. A. King, C. J. Lloyd, A. M. Feist and B. O. Palsson, Current 
Opinion in Biotechnology, 2015, 35, 23-29. 

83. H. U. Kim, S. B. Sohn and S. Y. Lee, Biotechnology Journal, 

2012, 7, 330-342. 

84. C. Gao, Y. Wang, Y. Zhang, M. Lv, P. Dou, P. Xu and C. Ma, 

Journal of Bacteriology, 2015, 197, 2239-2247. 

85. C. You and F. Zhou, Canadian journal of microbiology, 1989, 35, 

403-408. 

86. P. Dharmawardhana, L. Ren, V. Amarasinghe, M. Monaco, J. 

Thomason, D. Ravenscroft, S. McCouch, D. Ware and P. Jaiswal, 
Rice, 2013, 6, 1-15. 

 

Page 17 of 17 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


