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Unbalanced uptake of Omega 6 / Omega 3 (ω-6/ω-3) ratios could increase chronic disease occurrence, such as 

inflammation, atherosclerosis, or tumor proliferation etc., and the methylation methods for measuring the ruminal 

microbiome fatty acids (FA) composition/distribution play a vital role in discovering the contribution of food components 

to ruminant products (e.g., meat and milk) when pursuing a healthy diet. Hansch’s models based on Linear Free Energy 

Relationships (LFER) using physicochemical parameters, such as partition coefficients, molar refractivity, polarizability, etc., 

as input variables (Vk), are advocated. In this work, a new combined experimental-theoretical strategy was proposed to 

study the effect of ω-6/ω-3 ratios, FA chemical structure, and other factors over FA distribution networks in the ruminal 

microbiome. In step 1, experiments were carried out to measure long chain fatty acids (LCFA) profiles in rumen 

microbiome (bacteria and protozoan), and volatile fatty acids (VFA) in fermentation media. In step 2, the proportions and 

physicochemical parameter values of LCFA and VFA were calculated in different boundary conditions (cj) like c1 = acid 

and/or base methylation treatments, c2 = with/without fermentation, c3 = FA distribution phase (media, bacterial, or 

protozoan microbiome), etc. In step 3, Perturbation Theory (PT) and LFER ideas were combined to develop a PT-LFER 

model of a FA distribution network using physicochemical parameters (Vk), the corresponding Box-Jenkins (ΔVkj) and PT 

Operators (ΔΔVkj) in statistical analysis. The best PT-LFER model found predicted the effects of perturbations over the FA 

distribution network with Sensitivity, Specificity, and Accuracy > 80% for 407,655 cases in training + external validation 

series. In step 4, alternative PT-LFER and PT-NLFER models were tested for training Linear and Non-Linear Artificial Neural 

Networks (ANN). PT-NLFER models based on ANNs presented better performance but are more complicated than the PT-

LFER model. Last, in step 5, the PT-LFER model based on LDA was used to reconstruct the complex networks of 

perturbations in the FA distribution and compared the giant components of the observed and predicted networks with 

random Erdős–Rényi network models. In short, our new PT-LFER model is a useful tool for predicting a distribution 

network in terms of specific fatty acids distribution. 

1. Introduction 

The ω-6/ω-3 ratio plays an important role not only in the 

pathogenesis of cardiovascular diseases, but also in cancer, 

inflammatory and autoimmune diseases
1-3

. A high ω-6/ω-3 ratio is 

considered detrimental for human health, a value close to 1 is 

considered protective against the degenerative pathologies 
4
. The 

inconsistent results 
5-8

 combined with meta-analysis methods 

reported the contributions of ω-3 fatty acids in cardio- and 

cerebrovascular diseases, inflammation, or tumor proliferation. 

Some researchers tend to explain metabolism mechanism not in 

terms of the absolute amounts of ω-6 and ω-3, but the balance of 

them. 

Enrichment of ruminant meat or milk with ω-3 PUFAs, further 

to decrease ω-6/ ω-3 ratios uptake, is an efficient way to introduce 

these beneficial PUFAs into diet, but ruminal complex 

biohydrogenation process limits their bioavailability 
9
. Petit et al. 

reported adding whole linseed riches in ALA to the rations of dairy 

cows, which resulted in the lowest ω-6/ω-3 ratio in milk compared 

to micronized soybeans or sunflower seeds 
10

. Hess et al.
11

 proved 

that the incorporation of ω-3 PUFAs into animal blood and muscle 

depends directly on the dietary supply of specific fatty acid. In 

addition, the long chain fatty acids (LCFA) have to be methylated by 

acid- and/or base- methylation before determining it with gas 
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chromatograph (GC). There are different methylation methods for 

measuring LCFA of milk, muscle or ruminal microbe membrane
12-14

, 

accompany with generating different results. The structure 

properties of LCFA (especially the number, location or topology 

structure of double bonds) are highly related to the chronic disease. 

To address this problem, it was postulated that the LCFAs in ruminal 

microbial membranes change with the supply of ω-6/ω-3 ratios. 

This work is aimed to look for a new classification model by means 

of Chemoinformatics, combined with an original experimental fatty 

acid distribution in ruminal microbial membrane. 

On the other hand, Chemoinformatics is related to Machine 

Learning, Chemometrics and Bioinformatics
15

, and it combines the 

scientific working fields of Chemistry, Information Science, and the 

areas of topology, chemical graph theory, and data mining in the 

chemical space. Corwin Hansch was one of the founders of modern 

Chemoinformatics, which is based on lipophilicity-activity 

relationship. A type of Hansch model is the following:
16

 

( ) ( )1logP·a·MRa·pKa·logPaa)f(ε
2

i43a2i10i −+++=  

It is well known that steric, electrostatic, and hydrophobicity 

factors may be biologically relevant
17, 18

. In this equation, the 

different parameters can be used as inputs to account for the 

factors: such as water/n-octanol partition coefficients (Pi), 

molecular refractivity (MR), acidity constants logarithmic (pKa), and 

other physicochemical parameters to quantify different global 

molecular properties.
19

 The outputs of the model are the values of a 

molecular property (εi) or a function of this property f(εi) for a given 

chemical compound or molecular entity (mi). The innovations of 

these models are described as follows. 1) The use of the linear 

regression to seek multivariate linear equations is able to predict 

the values of f(εi), employing several input variables. 2) Hansch also 

generalized the use of lipophilicity parameters by the formulation 

of parabolic models for non-linear relationships. 3) The logarithmic 

terms (logPi) of Pi are commonly used as the measures of molecular 

lipophilicity and play an important role in the model. In turn, logPi 

values can be predicted either by atomic methods (like XLogP or 

ALogP) or by chemical fragment methods (like CLogPi or similar 

methods).
20, 21

 From a physical-chemistry point of view, Hansch’s 

model is an extra-thermodynamic approach closely related to 

Linear Free Energy Relationships (LFER).
22, 23

 The designation of 

Hansch’s models as LFER equations come from the use of 

parameters depending on Gibbs free energy (Gi) of the i
th

 process.
24

 

The changes on the values of this potential during a process obey a 

logarithmic statistical thermodynamic relationship with equilibrium 

constant Ki 
25

. 

( ) ( )2KRTlog∆G ii −=  

However, in these types of equations, other physicochemical 

parameters or molecular descriptors can also be used to quantify 

the effect of changes on the chemical structure over a characteristic 

of interest. It means that molecular descriptors for a given molecule 

can be used, which are not only thermodynamic constants, but also 

other theoretical measures of molecular lipophilicity, 

electronegativity, polarizability, or molecular topology properties
19

, 

etc. The values of these input variables (
i
Vk) may be calculated as 

physicochemical parameters or molecular descriptors of different 

types (k) for a given molecule (mi). In fact, the notation can be 

extended including extra- thermodynamic functions or parameters 

as follows. 
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Overall, the basic assumption for Hansch’s analysis is that 

similar molecules have similar activities.
26-28

 This principle is also 

called Structure–Activity Relationship (SAR). The SAR paradox refers 

to the fact that not all cases that similar molecules along with 

similar activities. The underlying problem is therefore how to define 

a small difference on a molecular level. The problem is relevant 

since each kind of property, e.g., solubility, reactivity, or 

metabolism, is expected to depend on another difference. It means 

that “small” variations or perturbations need to be quantified at the 

molecular structural level, which in turn imply a “small” linear 

change in the free energy of interaction of the drug with the 

receptor. 

In our opinion, the ideas of the Perturbation Theory (PT)
29

 can 

be used to account for this problem in the context of 

Chemoinformatics. That is why; in this work PT and LFER ideas were 

used to formulate a new PT-LFER approach. This PT-LFER approach 

is a generalization of the classic Hansch Extra-Thermodynamics 

method for Chemoinformatics. The proof-of-concept was also 

demonstrated with an experimental-theoretical study about 

complex networks of FA distribution in Lipidomics. To this end, first 

the experiments were carried out to determine LCFA composition in 

the rumen microbiome. Next, the Chemoinformatics study was 

included, starting with the definition, training, and validation of 

new PT-LFER classification models. Machine Learning methods such 

as Artificial Neural Networks (ANNs) were used to test PT-NLFER 

models (Non-Linear analogues of PT-LFER). Next, the best PT-LFER 

model found was used to predict the effect of perturbations on 

initial boundary conditions over a large complex network of FA 

distribution/uptake in the ruminal microbiome. The observed 

complex network for the data reported was constructed and 

compared for the first time with the predicted network and model 

random networks of similar large. Last, the theoretical section was 

completed with a comparative study of the PT-LFER classification 

model found with other non-linear models. This study was of major 

relevance due to previous results that point to a strong relationship 

between ω-6/ω-3 ratios of FA intake and human health.
30, 31

 

Accordingly, this work paves the way to evaluate the effect of 

perturbations on complex molecular systems involved in chemical 

structures and boundary experimental conditions. 

2. Materials and methods 

2.1. Experimental section 

In the workflow of this experimental part (Fig. 1). The general 

details of the experimental procedures used in experiment 1 and 

experiment 2 were explained as follows. 
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Fig. 1 Workflow of the experimental section (dataset): IPA values of each FA 

based on bacterial membrane FAs catalyzed with methylation methods 

(experiment 1) and IPA values obtained from bacteria, protozoan, and 

media fractions with the fermentation of various exogenous ω-6/ω-3 ratios 

supplementation with base methylation (experiment 2) 

2.1.1. Animal welfare. Three adult male Pelibuey sheep with 

permanent rumen-fistula (body weight, 45.0 ± 5.0 kg) were used as 

inoculum donor according to the Mexican Official Standard (NOM-

220-SSA1-2002). Nutritional composition of fodder for animal 

donors was according to National Research Council (NRC).
32

 All the 

animal procedures and protocols were approved by the Animal 

Care Committee, National Center for Disciplinary Research in 

Animal Breeding and Physiology (CENID FyMA), National Institute of 

Forestry, Agriculture and Livestock (INIFAP), Queretaro, Mexico. 

2.1.2. Details of in vitro fermentation. The in vitro details are 

according to the description of Tang, el at.,
33

 with the particle-free 

rumen fluid mixed with the artificial saliva buffer solution
34

 in a 

proportion of 1:2 (v/v) at 39 ℃ under continuous flushing of CO2. 

Microbial fatty acids were prepared according to the method 

developed by Or-Rashid.
14

 More specifically, the microbial and 

protozoan samples were separated by differential centrifugation 

according to the method described by Legay-Carmier and 

Bauchart.
35

 

2.1.3. Specific procedures of the experiment 1. Ruminal mixed 

microbes without fermentation were catalyzed with acid 

methylation (8% HCl (w/v) dissolved in methanol/water (85/15)),
12

 

base methylation (Trimethylsilyldiazomethane, TMSD)
14

, combined 

acid- and base-methylations (first catalyzed with 8% HCl, and 

subsequently catalyzed with TMSD), respectively. The values of 

Peak Area, PA(i), for each LCFA under different sets of experimental 

conditions cj (different samples) were determined with GC 
14, 36

 

(Model 6890N, Agilent Technologies Inc., USA) with HP-88 Column 

at laboratory of CENID FyMA, INIFAP, and VFAs were determined 

with DB-FFAP column. The values of peak area obtained were used 

to calculate the Internal Peak Area, IPA (%), as follows. 

( )4

PA

PA
100IPA(%)

cjm

(i)

(i)

ij

i
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2.1.4. Specific procedures of the experiment 2. This study was 

conducted to evaluate the effect of various exogenous ω-6/ω-3 

ratios on the biohydrogenation metabolism of the microbial 

microbiome. The ω-6 and ω-3 PUFAs, linoleic acid (LA, L1376-5g, 

Sigma-Aldrich) and α-linolenic acid (ALA, L2376-500mg, Sigma-

Aldrich) with a total amount of 100 mg/g in substrates, were set as 

the ratios of 100:0, 90:10, 80:20, 66:33, 50:50 and 20:80, 

respectively. 

Food components used to feed the animals were the same as 

those used in experiment 1. All fermentation lipid samples 

extracted with a chloroform–methanol mixture (2:1, v/v) 
37

 from 

bacterial and protozoan fractions were catalyzed with base 

methylation (TMSD, herein) 
14

. LCFA profiles extracted from 

bacterial and protozoan fractions and the VFA profiles were 

determined to calculate IPA (%), and the concentration (mM) of 

VFA profiles were also calculated. 

2.2. Theoretical section 

2.2.1. Workflow used for PT-LFER Chemoinformatics study. In the 

second section, a Chemoinformatics study of the results obtained in 

the experimental section was carried out. Fig. 2 shows the workflow 

diagram that states the integration of both (experimental and 

theoretical) sections. For the analysis, the chromatographic data 

about IPA (%) values of fatty acids were collected under different ω-

6/ω-3 ratios and experimental conditions cj. Next, we defined the 

PT-LFER model. After that, we calculated the values of input 

variables, including molecular descriptors (
i
Vk) of class k

th
 for every 

i
th

 fatty acid molecule, and perturbation operators ΔΔVk(cj). After 

that we performed the statistical analysis and obtained the PT-LFER 

model. As follows, more details were explained in some steps. 

 

Fig. 2 Workflow used herein to seek PT-LFER models 

2.2.2. Theoretical details of the PT-LFER models. In a recent study, 

Gonzalez-Díaz et al. 
29

 has formulated a general-purpose PT model 

for multiple-boundary Chemoinformatics problems. In this work, 

this theory is extended to the study of PT-LFER models of 

perturbations in complex networks. Let be a general function f(Lnr) 

useful to quantify the occurrence (Lnr = 1) or not (Lnr = 0) of a 

process involving a set of molecules (mi) in a complex system. It is 

considered that all the possible states form a network of states. The 

network nodes are the initial or reference states (r) linked to their 

respective final or new states (n) reached by the system after a 

perturbation of the initial conditions. It separates into a set of 

multiple initial experimental boundary conditions 
ref

cj ≡ (c0, c1, c2, 

c3… cn) (conditions of reference) and a different or new set of 

boundary conditions 
new

cj ≡ (c0, c1, c2, c3… cn) (conditions of new) 

after one or multiple perturbations (changes in these conditions). 

The PT-LFER model proposed herein is a linear equation with the 

following form: 

( ) ( ) ( ) ( ) ( )5c·∆∆afafaaLf'
kmaxk jmax,j

1k1,j

jkkjrefij2refij10newnr ∑
==

==

+⋅+⋅+= Vεε  
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The output function 'f(Lnr)new is a score used in Linear 

Discriminant Analysis (LDA) to calculate the outputs or posteriori 

probability of binary classification of inputs Lnr = 1 or Lnr = 0 
38

. The 

vectors vi = [f(εij)ref, <f(ɛij)>ref, ω-3, ω-6, 
i
V1, …

i
Vkmax, ΔV1(c1), 

…ΔVk(cj),… ΔVkmax(cjmax), ΔΔV1(c1), …ΔΔVk(cj),… ΔΔVkmax(cjmax)] are the 

inputs of this model. Each vector vi, represents a statistical case (i
th

 

case) out of a total of n = 407,655 cases (perturbations). These 

statistical cases encoded by vi vectors are perturbations of one 

entry or state of reference (changes in input parameters) that yield 

an output or new state. The input vectors vi include the value of 

f(εij)ref for the state of reference (known value). The vectors vi also 

take into account the amounts of ω-6 and ω-3 for the new state 

(after perturbation). The values of molecular descriptors (
i
Vk) used 

in a classic Hansch’s analysis were also included. Last, the inputs 

also consider the values of the PT-LFER operators ΔΔVk(cj). 

2.2.3. Calculation of molecular descriptors. In the first work of this 

series, we used the mean values of atomic electronegativity of the 

chemical structure descriptors (
i
Vk) of a drug 

39
. In another recent 

work, the method for the prediction of peptide epitopes was 

adapted using the perturbation theory 
40

. In the present work, the 

previous PT models are extended to other direction. Herein, PT 

models and Hansch’s LFER equations are combined to carry out a 

PT-LFER analysis for the first time. To this end, the following steps 

were taken. First, structural variables (
i
Vk) were used as a new set of 

molecular descriptors. The values of these variables were calculated 

with the DRAGON software
41-43

. The first molecular descriptor 

calculated was V1 = Mw (Molecular weight). The molecular 

descriptors V2 = AEigv, V3 = AEige, and V4 = AEigp were included, 

which are the average eigenvalues of the topological distance 

matrices weighted with atomic van der Waals volumes (v), 

Polarizabilities (p), or Electronegativities (e). Last, V5 = MR 

(Molecular Refractivity), V6 = LogP (logarithm of the n-

Octanol/Water partition coefficient) were also proposed. The 

structures of fatty acids were uploaded to DRAGON in a form of 

Simplified Molecular-Input Line Entry System (SMILES) codes. 

SMILES codes are very useful to manage molecular structures
44-46

 

and for further calculation of molecular descriptors
21, 47

 (Table 1). In 

our work, the SMILES codes of corresponding fatty acids were 

downloaded from the website data of Chemical Entities of 

Biological Interest (ChEBI: http://www.ebi.ac.uk/chebi/). 

Table 1. Molecular descriptors (
i
Vk) of fatty acids obtained from the ChEBI database 

Name of fatty acids in ChEBI
 a cis/trans

 

pattern
 b 

Molecular descriptors of FA- Inputs
 c 

V1 V2 V3 V4 V5 V6 

Lauric Acid l 200.4 137.4 127.6 139.5 58.7 4.5 

Myristic Acid l 228.4 179.1 169.0 181.2 67.9 5.5 

Myristoleic Acid c 226.4 172.1 162.0 174.2 69.0 5.0 

Pentadecanoic Acid l 242.5 202.0 191.8 204.1 72.5 5.9 

cis-10-Pentadecenoic acid c 240.4 194.8 184.5 196.9 73.6 5.5 

Palmitic Acid l 256.5 226.3 216.0 228.4 77.1 6.4 

Palmitoleic Acid c 254.5 217.9 207.6 220.1 78.2 5.9 

Heptadecanoic acid l 270.5 252.0 241.6 254.1 81.7 6.8 

Stearic acid cis-10-Heptadecenoic acid c 268.5 243.2 232.8 245.4 82.8 6.4 

Stearic acid l 284.5 279.1 268.6 281.2 86.3 7.3 

Elaidic acid t 282.5 269.5 259.0 271.7 87.4 6.8 

Oleic acid c 282.5 269.5 259.0 271.7 87.4 6.8 

Linolelaidic acid tt 280.5 260.9 250.4 263.1 88.5 6.4 

Linoleic acid  cc 280.5 260.9 250.4 263.1 88.5 6.4 

Arachidic acid l 312.6 337.4 326.8 339.6 95.5 8.2 

γ-Linolenic acid ccc 278.5 251.5 240.9 253.7 89.6 5.9 

Linolenic acid ccc 278.5 255.1 244.5 257.3 89.6 5.9 

cis-11.14-Eicosadienoic acid ct 308.6 318.0 307.3 320.2 97.7 7.3 

Behenic acid l 340.7 401.3 390.6 403.5 104.7 9.1 

cis-8.11.14-Eicosatrienoic acid ctt 306.5 307.4 296.7 309.7 98.8 6.9 

Erucic acid t 338.6 390.2 379.4 392.4 105.8 8.7 

Acetic acid l 60.1 13.1 6.4 14.4 12.6 -0.2 

Propionic acid l 74.1 19.2 11.8 20.7 17.3 0.4 

Isobutyric acid l 88.1 24.6 16.7 26.2 21.8 0.9 

Butyric acid l 88.1 26.7 18.8 28.3 21.9 0.9 

Isovaleric acid l 102.2 33.2 24.9 34.9 26.4 1.1 

Valeric acid l 102.2 35.6 27.4 37.4 26.5 1.3 
a
 Fatty acids measured for our linear discriminant analysis PT-LFER model. 

b
 cis/trans pattern, l represents linear, c as cis-, t as trans- PUFAs. The order of c or t represents the order of initial isomerization characteristics with the tails of PUFAs.  

c
 Molecular descriptors (

i
Vk) calculated with DRAGON software: V1 = Mw, V2 = Aeigv, V3 = Aeige, V4 = Aeigp, V5 = AMR, and V6 = LogP.
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2.2.4. Calculation of PT operators. When the previous equation of 

the PT-LFER model was expanded, two types of input terms can be 

observed. The first type of term is the function f(εij)ref. This function 

takes the values, f(εij)ref = <εij>ref = IPA(%)i for each sample. IPA(%)i= 

100·(PAi/PAjmax) is the Internal Peak Area proportion, used to 

quantify the experimental proportion of a fatty acid determined by 

GC. It means that f(εij)ref is the measured value of the proportion of 

a fatty acid under the same conditions cj. The second class refers to 

the perturbation terms ΔΔVk(cj). The parameters ΔΔVk(cj) are useful 

to quantify the effect of perturbations of different boundary 

conditions (cj) over the output ꞌf(Lnr)new, which was defined herein 

as a discrete value function (occurrence or not of links in the 

network) for the classification purposes. The difference ΔΔVk(cj) 

between the final or new state (ΔVk(cj)new) and the initial or 

reference state (ΔVk(cj)ref) is the additive perturbation for a 

component in the ΔVk(cj). When the output of this equation is 

ꞌf(Lnr)new > ꞌf(Lnr)ref => Lnr = 1 => IPA(%)new > IPA(%)ref; and 

consequently (=>) the distribution or proportion of the FA in the 

new state is higher than in the reference state, otherwise Lnr = 0. 

( ) ( ) ( )

( )( )∑
==

==

−+

⋅+⋅+=

kmaxk jmax,j

1k 1,j

jkk

i

ijk

ref
ij1refnr10newnr

cVV·∆a

6εaLf'aaLf'
 

( ) ( ) ( )( ) ( ) ( )( ) ( )7cVVcpcVVcpc∆∆V
refjkk

i

refjnewjkk

i

newjjk −⋅−−⋅=
 

2.2.5. Calculation of Box-Jenkins Operators. A close inspection of 

the perturbation terms shows that they are probability-weighted 

differences (Δ) of Box-Jenkins Operators ΔVk(cj). The values of Box-

Jenkins Operators ΔVk(cj) of the molecular descriptors (
i
Vk) were 

calculated to quantify the effect of deviations of a molecule (mi) 

from the average behavior of all molecules measured under the 

same set of conditions (cj) of the complex system. Deviations due to 

the changes on different boundary conditions (cj) were taken into 

account. The boundary conditions refer to preliminary operational 

conditions, c1 = refers to the use of different experimental 

treatments, c2 = with/without fermentation, c4 = is the gas 

chromatographic protocol used, and c5 = refers to the use of 

replicate experiments. Others are more directly related to the 

posterior distribution and nature of the FA, c3 = the biological phase 

of distribution of LCFAs, and c6 = quantify information about 

cis/trans geometric pattern present in the LCFAs. All data was 

processed in an Excel file. In Excel, the values of ΔVk(cj) were 

calculated considering various experimental boundary conditions 

(cj). The probabilities are p(cj) = nj/ntotal; nj number of experimental 

entries for condition cj and ntotal = 744 total number of experimental 

entries (the total number of IPA(%) measured in this work). The 

average value <ΔVk(cj)> (Table 2) is the difference of the function 

value 
i
Vk with the average molecular descriptors <Vk> for a specific 

boundary condition cj, see the equations:  

( ) ( )( ) ( )8cVVc∆V jkk

i

jk −=
 

( ) ( )9V
n

1
cV

j

ji

n

cm

k

i

j

jk 









= ∑

⊂
 

 

 

Table 2. Average values of input variables (<Vk>) for experimental boundary conditions (cj) 

Experimental boundary condition 
 

Average eigenvalues of input variables <Vk(cj)> 
aa 

p(cj) 
ab 

Conditions (cj) level V1 V2 V3 V4 V5 V6 
 

c1 => Treatments 
a
 

BM 274.4 258.3 247.9 260.5 84.8 6.6 0.113 

AM 274.4 258.3 247.9 260.5 84.8 6.6 0.113 

CM 274.4 258.3 247.9 260.5 84.8 6.6 0.113 

BA 261.9 234.6 224.3 236.8 80.3 6.2 0.258 

PA 261.9 234.6 224.3 236.8 80.3 6.2 0.258 

MA 85.8 25.4 17.7 27.0 21.1 0.7 0.145 

c2 => fermentation 
b
 

0 274.4 258.3 247.9 260.5 84.8 6.6 0.339 

1 223.2 188.7 178.9 190.7 67.3 5.0 0.661 

c3 => Phase 
c
 

Bacteria fraction 269.0 248.1 237.7 250.3 82.9 6.4 0.597 

Protozoa fraction 261.9 234.6 224.3 236.8 80.3 6.2 0.258 

Media fraction 85.8 25.4 17.7 27.0 21.1 0.7 0.145 

c4 => Column of GC 
d
 

HP-88 (112-88A7) 266.8 244.0 233.6 246.2 82.1 6.4 0.855 

DB-FFAP 85.8 25.4 17.7 27.0 21.1 0.7 0.145 
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c5 => Replicate (r-error) 
e
 

0 242.8 213.9 203.8 216.0 73.9 5.6 0.391 

0.1 242.8 213.9 203.8 216.0 73.9 5.6 0.391 

0.2 205.8 173.6 164.2 175.6 61.6 4.4 0.133 

0.3 274.4 258.3 247.9 260.5 84.8 6.6 0.085 

c6 => cis/trans pattern 
f
 

linear 203.2 180.8 171.5 182.8 59.6 4.6 0.238 

cis 278.5 269.1 258.6 271.3 86.1 6.7 0.111 

trans 310.6 329.8 319.2 332.1 96.6 7.7 0.032 

trans, trans 280.5 260.9 250.4 263.1 88.5 6.4 0.016 

cis, cis 308.6 320.8 310.1 323.0 97.7 7.3 0.032 

cis, trans 289.9 279.6 269.0 281.8 91.6 6.7 0.048 

trans, cis 280.5 261.1 250.5 263.3 88.5 6.4 0.016 

cis, cis, cis 286.5 269.9 259.3 272.1 92.3 6.2 0.111 

cis, trans, trans 292.5 280.0 269.3 282.2 94.2 6.4 0.032 

trans, cis, trans 278.5 254.6 244.0 256.8 89.6 5.9 0.016 

trans, trans, trans 278.5 252.0 241.4 254.2 89.6 5.9 0.032 

cis, cis, trans 278.5 252.5 241.9 254.8 89.6 5.9 0.016 

cis, trans, cis 278.5 252.0 241.4 254.2 89.6 5.9 0.032 
a
 “BM” means base methylation without fermentation; “AM” means acid methylation without fermentation; “CM” means acid- and base-combined methylation; “BA” means fatty 

acids from bacterial fraction after 48h fermentation; “PA” means fatty acids from protozoan fraction after 48h fermentation; “MA” means volatile fatty acids from media fraction 

after 48h fermentation. 
b
 “0” means the dataset from experiment 1 without fermentation; “1” means the dataset from experiment 2 with fermentation of omega 6 and omega 3. 

c
 “phase”, means the dataset: long chain fatty acids including from the bacterial membrane (bacterial fraction), protozoan membrane (protozoan fraction), volatile fatty acids from 

fermentation media (media fraction). 
d
 Column of GC, “HP-88 (112-88A7)” means the column of GC for determining long chain fatty acids; “DB-FFAP” means the column for determining volatile fatty acids. 

e
 “0” means the original data, “0.1, 0.2, or 0.3” means the 1, 2, or 3 replicates, respectively. 

f
 cis/trans pattern: “linear” means LCFA without double bonds; “cis” means LCFA with cis isomerization; “trans” means LCFA with trans isomerization; and the number of cis or 

trans means LCFA with the same number of cis or trans double bonds. 
aa

 <Vk(cj)> means the average of Molecular descriptors (Vk) for different conditions (cj); the descriptors are V1 = Mw, V2 = Aeigv, V3 = Aeige, V4 = Aeigp, V5 = AMR, and V6 = LogP. 
ab

 p(cj) = nj/ ntotal; nj number of experimental entries for condition cj and ntotal = 744 total number of experimental entries. 

2.2.6. Dataset. Predicting the effect of perturbations in input 

conditions over the output property is the aim of this model. For it, 

we need to infer the value of the property in a new set of 

conditions using a known experimental value as reference. It means 

that we need to predict the variation of the experimental properties 

for pairs of data cases (reference and new). Consequently, if we 

have an original dataset with n cases we need to explore a total of 

n
2
 cases for an exhaustive investigation of the data space (all pairs 

of data). If n is big, the number of pairs increases notably. 

Consequently, we carry out a random sampling procedure. We 

generated as many as possible pairs of data that we can process 

with one MS Excel sheet selecting at random both the reference 

and the new state. The MS Excel function random, if has been used 

to generate pairs of random numbers between one and n. The very 

high number of 407,655 perturbations was the higher number of 

pairs of cases we was able to handle in Excel with our processing 

power. 

2.2.7. Classification models. The Linear Discriminant Analysis 

(LDA)
38

 algorithm implemented in the STATISTICA software was 

used to find the best PT-LFER model. Sometimes the relationship 

between the input variables and the output is more complex and 

the linearity cannot solve the problem. Therefore, the non-linear 

models could provide a better solution, but with the drawback of 

not being able to interpret the model and the relations between the 

variables. Thus, the Artificial Neural Networks (ANNs) 
48

 were 

tested: Linear Neural Networks (LNNs), which are similar to the LDA 

models, and non-linear Multi-Layer Perceptron (MLPs) 
38

. The full 

datasets were randomly split into training series (“t”, 75%) used for 

model construction, and validation series (“v”, 25%) used for model 

validation. In addition, a cross-validation variable was added to the 

dataset with the test values of “t” and “v”. All independent 

variables were unified and standardized with the STATISTICA 

software, prior to model construction. 

2.2.8. Complex Networks study. Both the observed and predicted 

networks were constructed in Excel and saved in the .net (lists of 

pairs of nodes) file format. The links of the observed network 

coincide with the classes to be predicted by the previous LDA 

model. The existence of a link corresponding to the condition Lnr = 

1, if IPA(%)obs > IPA(%)ref for each fatty acid at both the initial and 

final states, Lnr = 0 otherwise. A number of pairs of states as high as 

possible was generated, calculating the existence of observed links 

with the previous rule, and they were also predicted with the 

model. These files were processed with the CentiBiN software 

described by Junker et al.
49

, to calculate the average indices of the 

topology of the network. The indices calculated were the average 

values of the vertex-vertex topological distance 
50

, node degree, 

and closeness of the giant component of the observed, predicted 

and the two similar random ones. Two models of random networks 

(random network 1 and 2) were also built. The model of the 
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random network selected was the Erdös–Rényi graph (ER), which 

often used as a random network model. 

3. Results and discussion 

3.1. Catalyzed methylation in ruminal microbes 

Saponification followed by methylation is a classic method for the 

preparation of FA methyl esters. Table 3 shows the results obtained 

in the experimental determination of the values of IPA (%) after 

different acid-/base- methylations. This table reports the Average 

and Standard Deviation (SD) values of IPA (%) for those fatty acids 

for the first time. In general, base-catalyzed methylation proceeds 

more rapidly under mild temperature conditions than acid-

catalyzed reactions.
51

  

 

 

 

 

 

 

 

 

Table 3. Internal peak area values, IPA (%) 
a
, of LCFA profiles of ruminal mixed microbes by acid- and/or base-catalyzed methylation 

Name of fatty acids  
Average 

b
 SD 

B A A&B B A A&B 

Lauric Acid C12:0 0.55 0.52 1.87 0.07 0.16 0.76 

Myristic Acid C14:0  1.06 1.24 2.12 0.05 0.26 0.69 

Myritoleic Acid C14:1 1.95 2.31 2.38 0.11 0.49 0.69 

Pentadecanoic Acid C15:0 1.20 1.47 1.60 0.02 0.35 0.43 

cis-10-Pentadecenoic acid C15:1 0.40 0.53 0.68 0.08 0.10 0.25 

Palmitic Acid C16:0 17.91 18.86 19.70 0.54 1.73 0.98 

Palmitoleic Acid C16:1 1.85 2.30 2.14 0.07 0.32 0.18 

Heptadecanoic acid C17:0 0.99 1.39 1.49 0.25 0.20 0.28 

cis-10-heptadecanoic acid C17:1 0.00 0.17 0.53 0.00 0.20 0.29 

Stearic acid C18:0 49.76 49.17 40.21 1.02 1.62 0.80 

Elaidic acid C18:1 n9t 8.68 8.23 8.76 0.65 0.69 1.30 

Oleic acid C18:1 n9c 9.00 8.69 8.17 0.09 0.88 2.12 

Linolelaidic acid C18:2 n6t 0.65 0.74 0.85 0.04 0.05 0.64 

Linoleic acid  C18:2 n6c 2.37 2.63 2.81 0.06 0.11 0.36 

Arachidic acid C20:0 0.84 0.68 1.23 0.17 0.07 1.50 

γ-Linolenic acid C18:3 n6 0.45 0.58 0.80 0.06 0.14 0.34 

Linolenic acid C18:3 n3 0.00 0.00 1.52 0.00 0.00 1.25 

cis-11,14-Eicosadienoic acid C20:2 0.34 0.14 0.75 0.67 0.16 0.63 

Behenic acid C22:0 0.59 0.13 1.33 0.15 0.15 0.78 

cis-8,11,14-Eicosatrienoic acid C20:3 n6 0.58 0.05 0.82 0.22 0.10 1.11 

Erucic acid C22:1 n9 0.82 0.17 0.24 0.42 0.19 0.47 

Unsaturated fatty acids  27.10 26.55 30.44 1.46 1.08 3.29 

Long chain fatty acids >= 18 carbons  74.07 71.20 67.50 0.95 3.51 3.76 

18 carbons unsaturated fatty acids  21.15 20.88 22.91 0.68 1.46 4.03 

cis-fatty acids  11.36 11.32 10.98 0.06 0.79 1.88 

trans-fatty acids  9.34 8.97 9.61 0.61 0.64 1.89 

Ratios (cis/trans)  1.22 1.26 1.14 0.07 0.05 0.11 

Ratios (Stearic acid: Palmitic acid)  2.78 2.61 2.04 0.03 0.32 0.12 

Odd-carbon fatty acids  2.60 3.56 4.30 0.31 0.59 0.85 

Even-carbon saturated fatty acids  70.71 70.59 66.47 1.25 0.69 2.96 

Even-carbon unsaturated fatty acids  26.70 25.85 29.23 1.52 1.13 3.76 

Saturated/unsaturated fatty acids  2.69 2.77 2.28 0.19 0.15 0.40 

a
 Internal peak area values, IPA(%), means the relative proportion of different fatty acids in the corresponding individual sample. 

b
 “A” = acid methylation, “B” = base methylation, 

or “A&B” = acid methylation with subsequent base methylation. Average and Standard Deviation (SD) of IPA (%) values for long chain fatty acids.

3.2. LCFA profiles in bacteria and protozoan 

This work is focused on the lipid metabolism of exogenous FAs by 

direct determination of the IPA (%) values of LCFA from ruminal 

microbe/protozoa biological membrane, including FAs from 

bacteria (Table 4) and protozoan (Table 5) biological membrane 

under different experimental conditions (cj). 

It is well known that the imbalance of ω-6/ω-3 ratios in the diet 

has the potential to induce inflammation, asthma, arthritis, vascular 

disease 
52

, but high level of ω-3 exert a suppressive effect 
53-56

. As 

expected, the FA composition of ruminal bacteria and protozoa 

biological membrane, VFAs in media were indeed changeable with 

the exogenous ω-6/ω-3 PUFAs ratios. This study had no significance 

statistical difference in the main IPA (%) of fatty acids (e.g., C16:0, 

C18:0), but some valuable information has still been extracted from 
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the results. First of all, cis-FAs content increased with exogenous ω-

3 PUFA, trans-FAs decreased in bacteria biological phase. For 

example, the cis-FA profiles in ω-6/ω-3 = 20:80 was 1.76 times 

(bacterial phase) and 1.60 times (protozoan phase) than that in ω-

6/ω-3 = 100:0, and trans-FA profiles in ω-6/ω-3 = 100:0 was 1.24 

times (bacterial phase) and 0.98 time (protozoan phase) than that 

in ω-6/ω-3 = 20:80. This directly results in the increasing ratio of 

cis/trans- fatty acid compositions with the increasing of the 

exogenous ω-3 PUFA, such as 2.18 times in bacterial phase and 1.58 

times in protozoan phase, when ω-6/ω-3 = 20:80 compared with ω-

6/ω-3 = 100:0, respectively. It means exogenous PUFAs are 

degraded by rumen microorganisms, or have more complex 

metabolism processes to leading to intermediary metabolism with 

both of cis- and trans- unsaturated FAs formulation. The 

biohydrogenation of linoleic acid (LA, cis 9, cis 12- C18:2) in rumen 

is isomerized to cis 9, trans 11- C18:2 isomer (conjugated linoleic 

acid, CLA), conversion of this isomer to trans 11- C18:1 (vaccenic 

acid), and reduction to stearic acid (C18:0) 
57

. Whereas the bio-

hydrogenation of α-linolenic acid (ALA) is characterized by 

isomerization to 9, 11, 15- cis, trans, cis- C18:3 isomer and 

subsequent reduction via cis, trans isomers C18:2, C18:1 and then 

to stearic acid 
58

. This research showed that ω-3 PUFA (α-linolenic 

acid) could increase the cis-FAs content compared to ω-6 PUFA 

(linoleic acid) on both of bacteria and protozoa phases.  

Secondly, IPA values of C16:0 and C18:0 in bacterial phase were 

18.7% and 57.8%, whereas those in protozoan phase were 13.3% 

and 67.5%, respectively. The exogenous ω-6/ω-3 ratios have no 

significant effect on these two major fatty acids in both bacterial 

and protozoan phases. However, the minor difference of lipid 

composition like ratios of palmitic/stearic acid, or 

unsaturated/saturated fatty acids on bacterial and protozoan 

biological membrane, may trigger a great difference in the function 

of membranes of bacteria and protozoan (e.g., membrane fluidity, 

permeability, hydrophobicity and stability)
59, 60

, or further in the 

functional groups 
61, 62

 such as specific peptide, enzymes, or 

channels, etc. Stearic acid in protozoa membrane is higher (about 

14.0%) than that in bacteria membrane, unlike other fatty acids. 

Table 4. Internal peak area values, IPA (%), of LCFA profiles in bacterial fraction 
a
  

Name of fatty acids 

Various exogenous ω-6/ω-3 PUFAs Ratios (x: [100-x]; in total of 100 mg/g 

substrate) Average 

100-0 90-10 80-20 66-33 50-50 20-80 

Lauric Acid 0.62 0.67 0.56 0.55 1.89 0.52 0.80 

Myristic Acid 1.53 1.45 1.31 1.27 1.71 1.23 1.42 

Myritoleic Acid 2.66 2.61 2.32 2.20 1.90 2.06 2.29 

Pentadecanoic Acid 2.13 1.86 1.82 1.68 1.53 1.61 1.77 

cis-10-Pentadecenoic acid 0.83 0.73 0.64 0.58 0.45 0.44 0.61 

Palmitic Acid 18.38 18.73 18.82 18.82 18.79 18.39 18.65 

Palmitoleic Acid 1.45 1.91 1.97 1.29 1.72 1.94 1.71 

Heptadecanoic acid 1.77 2.16 2.01 1.73 1.65 1.92 1.87 

cis-10-Heptadecenoic acid  0.62 0.41 0.16 0.00 0.25 0.25 0.28 

Stearic acid 56.93 56.17 58.64 58.97 58.22 57.58 57.75 

Elaidic acid 5.95 6.61 5.71 5.59 4.89 5.01 5.63 

Oleic acid 2.93 3.86 3.07 3.59 3.90 5.33 3.78 

Linolelaidic acid 2.09 0.97 1.18 1.65 1.05 1.47 1.40 

Linoleic acid  1.03 1.07 1.04 1.02 1.24 1.62 1.17 

Arachidic acid 0.56 0.59 0.46 0.68 0.55 0.33 0.53 

γ-Linolenic acid 0.53 0.22 0.28 0.37 0.25 0.31 0.33 

Unsaturated fatty acids, % 18.07 18.38 16.38 16.29 15.66 18.43 17.20 

Long chain fatty acids ≥ 18 carbons, % 70.02 69.49 70.39 71.87 70.09 71.65 70.58 

18 carbons unsaturated fatty acids, % 12.52 12.73 11.28 12.22 11.33 13.74 12.30 

cis- fatty acids, % 3.95 4.93 4.12 4.61 5.13 6.95 4.95 

trans- fatty acids, % 8.04 7.58 6.89 7.24 5.94 6.48 7.03 

Ratios (cis-/trans-) 0.492 0.650 0.598 0.637 0.864 1.072 0.72 

Ratios (Stearic acid: Palmitic acid) 3.098 2.999 3.116 3.134 3.098 3.131 3.10 

Odd-carbon fatty acids, % 5.34 5.15 4.63 4.00 3.89 4.22 4.54 

Even-carbon saturated fatty acids, % 78.03 77.60 79.80 80.29 81.16 78.04 79.15 

Even-carbon unsaturated fatty acids, % 16.63 17.24 15.58 15.71 14.95 17.74 16.31 

Saturated/unsaturated fatty acids 4.53 4.44 5.11 5.14 5.39 4.43 4.81 
a
 Internal peak area values, IPA (%), means the relative proportion (%) of different fatty acids in the corresponding individual sample. 
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Thirdly, even-carbon saturated FA in the treatment of ω-6/ω-3 = 

100:0 and ω-6/ω-3 = 20:80 were 85.1% and 81.7% in the protozoan 

phase, whereas even-carbon unsaturated FA in those treatments 

were 13.0% and 15.8%, respectively (Table 5). Herein, the highest 

value of even-carbon unsaturated FA appeared in the treatment of 

ω-6/ω-3 = 20:80, this phenomenon also happened in the bacterial 

phase, which means that, according to this study, a high amount of 

ω-3 PUFAs has the tendency to increase the even-carbon 

unsaturated FAs compared to ω-6 PUFAs. 

An interesting fact is that linolelaidic acid (C18:2, 6t) proportion 

in ω-6/ω-3 = 100:0 was a little higher than other treatments in 

bacterial phase, whereas a higher proportion appeared in 

protozoan phase when ω-6/ω-3 = 20:80. This might be due to the 

biohydrogenation of PUFAs (such as linoleic and linolenic acid) in 

rumen resulting in the production of primarily trans- fatty acids and 

stearic acid.
63

 All the difference in fatty acid distributions between 

bacterial and protozoan phases can reflect the protozoan and 

bacteria having a different and complex metabolism in the 

processes of assimilation, absorption, degradation or de novo 

synthesis. Thanks to these differences, that makes the different 

phases (bacterial and protozoan phase), as an important input 

variable, more reasonable in our new Hansch Perturbation Theory – 

LFER model. The LCFAs and VFAs distribution was stated in the 

entire fermentation system of ruminal micro-niche environment, 

shown in Fig. 3.  

Table 5. Internal peak area values, IPA (%), of LCFAs in protozoan fraction 
a
 

Name of fatty acids 
Various exogenous ω-6/ω-3 PUFAs Ratios (x: [100-x]; in total of 100 mg/g substrate) 

Average 
100-0 90-10 80-20 66-33 50-50 20-80 

Lauric Acid 0.61 0.50 1.09 0.25 0.28 0.21 0.49 

Myristic Acid 0.76 1.07 1.16 0.73 0.93 0.68 0.89 

Myritoleic Acid 0.63 0.96 0.88 0.75 0.87 0.59 0.78 

Pentadecanoic Acid 0.79 1.24 1.04 0.93 1.00 0.73 0.96 

cis-10-Pentadecenoic acid 0.48 0.67 0.66 0.32 0.59 0.48 0.53 

Palmitic Acid 11.39 13.46 15.78 13.16 14.07 11.93 13.30 

Palmitoleic Acid 0.39 0.89 0.92 0.99 1.10 0.89 0.86 

Heptadecanoic acid 0.44 1.72 1.70 1.26 1.59 1.19 1.31 

cis-10-Heptadecenoic acid  0.20 0.15 0.17 0.17 0.19 0.10 0.16 

Stearic acid 71.29 66.40 63.53 68.44 66.89 68.55 67.52 

Elaidic acid 7.29 6.67 6.63 6.50 6.20 5.83 6.52 

Oleic acid 3.04 3.50 3.90 4.04 3.98 5.08 3.93 

Linolelaidic acid 0.69 0.59 0.60 0.88 0.95 2.25 0.99 

Linoleic acid  0.78 1.44 1.05 0.83 0.94 1.05 1.02 

Arachidic acid 1.01 0.42 0.53 0.47 0.24 0.31 0.50 

γ-Linolenic acid 0.21 0.33 0.35 0.28 0.16 0.14 0.24 

Unsaturated fatty acids, % 13.71 15.20 15.17 14.77 14.99 16.41 15.04 

Long chain fatty acids ≥ 18 carbons, % 84.31 79.34 76.60 81.45 79.37 83.21 80.71 

18 carbons unsaturated fatty acids, % 12.01 12.52 12.54 12.54 12.24 14.36 12.70 

cis- fatty acids, % 3.82 4.94 4.96 4.87 4.92 6.13 4.94 

trans- fatty acids, % 7.98 7.25 7.23 7.38 7.16 8.09 7.51 

Ratios (cis-/trans-) 0.480 0.681 0.685 0.661 0.688 0.758 0.66 

Ratios (Stearic acid: Palmitic acid) 6.258 4.933 4.027 5.202 4.753 5.746 5.15 

Odd-carbon fatty acids, % 1.90 3.78 3.56 2.68 3.37 2.50 2.96 

Even-carbon saturated fatty acids, % 85.07 81.85 82.10 83.05 82.42 81.67 82.69 

Even-carbon unsaturated fatty acids, % 13.04 14.38 14.34 14.28 14.21 15.83 14.34 
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Saturated/unsaturated fatty acids 6.29 5.58 5.60 5.78 5.67 5.09 5.65 
a
 Internal peak area values, IPA (%), means the relative proportion (%) of different fatty acids in the corresponding individual sample.

 

Fig. 3 Illustration of the Sub-network of LCFAs and VFAs in rumen micro-

niches 

3.3. VFA profiles in media provided with exogenous ω-6/ω-3 

PUFAs 

In this study, the peak area (PA) of VFA was determined in each 

sample to calculate the internal peak area, IPA (%), at 48 h 

fermentation. On the other hand, the absolute concentration of 

VFA was also calculated, using the PA combined with the 

corresponding standard curve in the same situation (Table 6). 

Volatile fatty acids (VFAs) are widely regarded as secondary 

metabolites to reflect the hydrogenation metabolism of lipids, 

microbial degradation enzyme activity, and the lifecycle of microbial 

organism in the rumen micro-ecological niche.
64, 65

 The acetic, 

propionic and butyric acids are the major VFAs, with proportions of 

43.6%, 23.1% and 19.2%, respectively. Meanwhile, the residue 

VFAs, including isobutyric, isovaleric and valeric acid had a total 

proportion of 14.1%. It is noteworthy that there was no significant 

difference in VFAs when supply of different exogenous ω-6/ω-3 

PUFAs ratios. The values of all VFAs in the treatment of ω-6/ω-3 = 

80:20 were lower than others, which might be the result of the 

bottle cap of storage containers which was broken or was not 

sealed properly. However, this study is focused on the proportion 

peak areas of VFA on the same sample or treatment. It can be 

concluded that acetic acid had a minor decrease, but propionic acid 

had a slight increase, with an increasing proportion of ω-3 PUFAs in 

the total supplementation exogenous PUFAs. Even if both acetic 

acid and propionic acid changed a little in terms of different 

proportion of ω-6 and ω-3 PUFAs in a total of 100 mg/g substrate, 

the ratio of acetic and propionic acid was regularly decreased, as 

increasing proportion of ω-3 PUFAs with an average of 1.89. 

Table 6. Internal peak area values, IPA (%), and absolute Concentration (mM) of volatile fatty acids (VFAs) in media fraction 
a
 

VFA name 
IPA (%) values of VFAs supplemented with various exogenous ω-6/ ω-3 PUFAs Ratios 

b
 

Average 
100-0 90-10 80-20 66-33 50-50 20-80 

Acetic acid 44.72 43.86 43.61 43.62 42.83 42.74 43.56 

Propionic acid 22.80 22.62 22.90 23.15 23.36 23.66 23.08 

isobutyric acid 2.48 2.57 2.78 2.37 2.39 2.65 2.54 

Butyric acid 18.31 19.06 19.55 19.21 19.66 19.62 19.24 

isovaleric acid 5.93 5.99 5.84 5.89 5.77 5.81 5.87 

Valeric acid 5.77 5.89 5.32 5.77 5.99 5.51 5.71 

Ac/Pro 1.96 1.94 1.90 1.88 1.83 1.81 1.89 

VFA name 
Absolute concentration (mM) of VFAs supplemented with various exogenous ω-6/ ω-3 PUFAs Ratios 

c
 (r

2
)

 d
 

100-0 90-10 80-20 66-33 50-50 20-80  

Acetic acid 124.4 ±1.66 104.2 ± 2.89 75.6 ± 2.26 114.1 ± 1.85 109.4 ± 1.01 110.5 ±0.71 0.9964 

Propionic acid 31.6 ± 0.54 26.8 ± 0.71 19.8 ± 0.56 30.2 ± 0.59 29.7 ± 0.37 30.5 ± 0.22 0.9974 

isobutyric acid 2.3 ± 0.04 2.1 ± 0.02 1.6 ± 0.07 2.1 ± 0.02 2.1 ± 0.02 2.3 ± 0.27 0.9985 

Butyric acid 19.1 ± 0.41 16.9 ± 0.87 12.6 ± 0.22 18.8 ± 1.15 18.8 ± 0.35 19.0 ± 0.10 0.9983 

isovaleric acid 5.0 ± 0.11 4.3 ± 0.13 3.1 ± 0.10 4.6 ± 0.21 4.4 ± 0.04 4.5 ± 0.04 0.9988 

Valeric acid 4.8 ± 0.10 4.2 ± 0.10 2.8 ± 0.22 4.5 ± 0.03 4.6 ± 0.04 4.3 ± 0.25 0.9986 

Ac/Pro 
e
 3.93 ± 0.02 3.89 ± 0.01 3.83 ± 0.01 3.78 ± 0.02 3.68 ± 0.04 3.63 ± 0.01 - 

a
 Internal peak area values, IPA(%), means the relative proportion (%) of different fatty acids in the same individual sample. 

b
 The entire supplementation amount of ω-6/ ω-3 PUFAs was standard: 100 mg/g alfalfa substrate, means ± standard errors. 

c
 Standard curve was used to calculate the values of each VFA; the standard curve equation is f(x) = a·x + b, with f(x) = concentration of the VFAs, x = Peak Area (PA), a = coefficient 

of peak area, b = intercept. The values of (a, b) found for different VFAs were the following: for Acetic acid (3,000,000; 3,000,000), Propionic acid (6,000,000; 1,000,000), isobutyric 

acid (9,000,000; 465,874), Butyric acid (8,000,000; 767,690), isovaleric acid (10,000,000; 501,483), and Valeric acid (10,000,000; 644,543). 
d
 “r

2
” the correlation coefficient square of standard curve for calculating each corresponding volatile fatty acid.

 

e
 Ac/Pro = the ratio of acetic acid with propionic acid. 
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3.4. PT-LFER model for FA distribution network 

A new model was developed useful to predict the proportion of FAs 

(LCFAs and VFAs) in different phases of ruminal microbiome 

within/without exogenous PUFAs after perturbations in chemical 

molecular descriptors (Vk) and under initial experimental boundary 

conditions (cj). Each value represents a corresponding coefficient in 

the new model for predicting the IPA(%)new of each FA (Table 7). As 

explained, this model can classify as high (Lnr = 1)/ low (Lnr= 0) the 

expected proportion of FAs (LCFA/VFA) between the new and 

reference states after changing the boundary conditions cj. The 

parameter n(Lnr = 1) represents the number of cases in the sub-set 

with Lnr = 1 (links in the network), or the same with IPA(%)new of 

new sub-set is higher than that of reference IPA(%)ref. On the other 

hand, n(Lnr = 0) represents the number of cases observed and 

predicted in the sub-set with Lnr = 0 (not connected nodes) or 

explained as that the IPA(%)new value is lower than IPA(%)ref value. 

The best PT-LFER model found using the LDA algorithm has only 12 

variables and it is described by the following algorithm.

( ) ( ) ( ) ( )

( )

005.0     244,532.9;;655,407

7236.13))((0182.0)( 1682.0)(  0036.0

)(0037.0)(0044.0)(0063.00237.0

103  1264.16  0709.1  3713.00026.0021.0'

2

2

36

2

664

51412615

6
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−∆∆⋅+⋅−∆∆⋅−
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⋅−⋅+⋅+⋅+⋅−=

pN

cVVcV

cVcVcVcV

VffLf

new
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refijrefijnewnr

χ

ωωεε
 

 

Table 7. Details of the PT-LFER model for the distribution network of fatty acids  

Coeff. 
Variable 
a Value 

Classic  

Symbols 
b
 

PT operators  

(ΔΔVk(cj))
 c 

a0 
Intercep

t 
-13.7236 - - 

a1 f(εij)ref -0.0210 - - 

a2 <f(εij)>ref 0.0026 - - 

a3 
new

V6 0.3713 V6 = LogP - 

a4 
new

V7 1.0709 V7 = (LogP)
2 

-
 

b5 
new

ω-6 -1.1264 - - 

b6 
new

ω-3 0.0237 - - 

b7 ΔΔV5(c1) -0.0063 V5 = MR 
= ΔV5(c1)new– ΔV5(c1)ref = p(c1)new · (

new
V5 - <V5(c1)>new) – p(c1)ref · (

ref
V5 - <V5(c1)>ref); <V5(c1)> = Average of 

MR for c1 

b8 ΔΔV6(c2) 0.0044 V6 = LogP 
= ΔV6(c2)new – ΔV6(c2)ref = p(c2)new · (

new
V6 - <V6(c2)>new) – p(c2)ref · (

ref
V6 - <V6(c2)>ref); <V6(c2)> = Average 

of LogP for c2 

b9 ΔΔV1(c4) -0.0037 V1 = Mw 
= ΔV1(c4)new – ΔV1(c4)ref = p(c2)new · (

new
V1 - <V1(c4)>new) – p(c2)ref · (

ref
V1 - <V1(c4)>ref); <V1(c4)> = Average 

of Mw for c2 

b10 ΔΔV1(c5) -0.0036 V1 = Mw 
= ΔV1(c5)new – ΔV1(c5)ref = p(c5)new · (

new
V1 - <V1(c5)>new) – p(c5)ref · (

ref
V1 - <V1(c5)>ref); <V1(c5)> = Average 

of Mw for c5 

b11 ΔΔV4(c6) -0.1682 V4 = Aeigp 
= ΔV4(c6)new – ΔV4(c6)ref = p(c6)new · (

new
V4 - <V4(c6)>new) – p(c6)ref · (

ref
V4 - <V4(c6)>ref); <V4(c6)> = Average 

of Aeigp for c6 

b12 
(ΔΔV6(c3)

)
 2

 
0.0182 V6 = LogP 

= ΔV6(c3)new – ΔV6(c3)ref = p(c3)new · [(
new

V6 - <V6(c3)>new) – p(c3)ref · (
ref

V6 - <V6(c3)>ref)]
2
;
 
<V6(c3)> = Average 

of LogP for c3 

a
 f(εij)ref = <εij>ref = <IPA(%)>ref average of reference entries for conditions of c1 = treatments, c2 = with/without fermentation, c3 = phase, c4 = gas chromatography protocol, c5 = 

replicates, and c6 = cis/trans pattern; 
b
 Symbols of molecular descriptors calculated with the DRAGON software: V1 = Mw, V2 = Aeigv, V3 = Aeige, V4 = Aeigp, V5 = AMR, V6 = LogP, and V7 = (LogP)

2
. The parameters ΔVk(cj) 

are Moving Averages, and ΔΔVk(cj) = p(cj)
new

 · (
new

Vk - <Vk(cj)>
new

) – p(cj)ref · (
ref

Vk - <Vk(cj)>
ref

) are PT operators.

Where, the output function 'f(Lnr)new is a function of 

connectivity pattern (Lnr) in the complex network for the co-

distribution of FAs in reference and new state (predicted values). 

The output function 'f(Lnr)new is useful to classify the pairs of states 

(pairs of nodes).The statistical parameters used were specificity 

(Sp), sensitivity (Sn), and accuracy (Ac). Consequently, the other 

input terms were expanded as follows. For instance, ΔΔVk(cj) = 

p(cj)new · ΔVk(cj)new – p(cj)ref · ΔVk(cj)ref. This can be further expanded 

in turn as ΔΔVk(cj) = p(cj)new (
new

Vk - <Vk(cj)>new) - p(cj)ref (
ref

Vk - 

<Vk(cj)>ref), among <Vk(cj)> = Average of Vk for cj. This new model 
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found predicted the effects of perturbations under the initial 

conditions (cj) over FA distribution with Sensitivity, Specificity, and 

Accuracy > 80% for a total of = 303,712 cases in training and = 

103,943 cases in external validation series (Table 8). These results 

are considered good for any LDA model. 

Table 8. Results of LDA PT-LFER model for the perturbation network of fatty 

acid distribution in ruminal microbiome 

Data sub-set 
a
 

Statistical 

parameter 

Prediction 

rates 

(%) 

Prediction cases 

No.(Lnr = 0) No.(Lnr = 

1) 

Training 

dataset 
 

 
  

No.(Lnr= 0) Specificity 82.9 127,292 26,275 

No.(Lnr = 1) Sensitivity 91.1 13,403 136,742 

Train total Accuracy 86.9 90.5% 
b
 83.9% 

c
 

Validation 

dataset    

No.(Lnr = 0) Specificity 81.7 40,118 8,986 

No.(Lnr = 1) Sensitivity 84.9 8,282 46,557 

Validation total Accuracy 83.4 82.9% 
b
  83.8% 

c
 

a 
Number in total = 407,655; No.(Lnr= 0) represents the number of cases in the sub-set 

with Lnr = 0 (not connected nodes) or the same with new and reference states when 

IPA(%)new ≤ IPA(%)ref. No.(Lnr= 1) represents the number of cases in the sub-set with Lnr 

= 1 (links in the network), or the same with new and reference states when IPA(%)new > 

IPA(%)ref; 
b 

NPV: negative predictive value; 
c
 PPV: positive predictive value. 

3.5. PT-NLFER model for a FA distribution network 

Additional tests have been conducted with STATISTICA, using linear 

and non-linear ANNs (LNNs and MLPs) methods in order to 

compare them with the above LDA model. LNNs have one input 

layer and one output layer, but no hidden layer. Therefore, the 

predicted output is a linear combination of the input neuron values, 

similar with the LDA model. MLPs have at least one hidden layer of 

neurons. The ANNs have been used in the literature to find diverse 

classification models
66-68

. Accordingly, and strictly speaking, the LNN 

models are also PT-LFER models because they are linear 

relationships. However, they are included in this section because 

they are a particular case of ANNs. In contrast, the MLP models can 

be classified as PT-NLFER (PT-Non Linear Free Energy Relationships), 

because they consider non-linear relationships between the input 

PT operators and the output. 

Table 9. Comparative study of PT-LFER vs. PT-NLFER models 
a
 

Model No.- 

description 

Typical 

topology  

Statistical parameters 
b
 

TP (%) VP (%) TE (%) VE (%) 

PT-NLFER models 

1- MLP 12:12-13-1:1 

 
 

87.61 87.91 59.97 85.07 

2- MLP 5:5-10-1:1 

 

 

82.25 88.31 56.22 47.65 

3- MLP 6:6-8-1:1 

 

 

87.60 90.07 49.93 51.87 

4- MLP 7:7-10-1:1 

 
 

88.22 90.40 46.13 40.90 

5- MLP 12:12-10-1:1 

 
 

92.54 92.10 43.61 53.88 

6- MLP 12:12-11-1:1 

 
 

92.54 93.73 41.81 41.18 

PT-LFER models 

7- LNN 8:8-1:1 

 

85.68 81.73 33.94 35.85 

8- LNN 9:9-1:1 86.60 82.12 33.50 36.09 

9- LNN 10:10-1:1 86.73 82.14 33.46 36.11 

10- LNN 11:11-1:1 86.63 82.00 33.45 36.16 

11- LNN 12:12-1:1 86.62 81.98 33.43 36.23 

12- LDA 12:12-1:1 86.94 83.39 15.03 19.92 
a 

PT-LFER: Perturbation Theory- Linear Free Energy Relationships; PT-NLFER: 

Perturbation Theory- Non Linear Free Energy Relationships.
 

b
 TP (%) = Training Performance, VP (%) = Validation Performance, TE (%) = Training 

Error, VE (%) = Validation Error. 

Table 9 presents the best 11 ANN models with the corresponding 

statistics for the best LDA classification. The MLP models have 

different input variables, from 5 to 12 and the LNN models are 

based on 8 to 12 variables. The results demonstrate the prediction 

power of the non-linear ANNs (MLPs) against the linear models 

(LDA and LNNs). The best MLP model (no. 6: MLP 12:12-11-1:1) has 

12 input variables and only one hidden layer with 11 neurons. It can 

predict 93.73% of the test cases and it classifies 92.54% of the 

training cases. This model has around 10% more prediction power 

compared to the LDA PT-LFER model but only 5.6% more 

classification power in training. The PT-NLFER model obtained with 

MLP number 6 classified our dataset better than the LDA PT-LFER 

model. However, PT-LFER is notably simpler and shows a direct 

relationship between the input variables and the output. If the 

results are sorted by the test classification (validation preference), 

the order of the models is the following: MLPs - 6, 5, 4, 3, 2, 1; 12 

(LDA model); LNNs – 9, 8, 10, 11, 7. Thus, the LDA model has a 

better prediction capacity than all LNNs but less than MLPs. 

Between MPLs, the models with only 5 input variables can be 

observed (compared with the 12 ones for LDA), but the LDA model 

classifies 4.70% more of the training set, even if the MLP one can 

predict 4.92% more of the test set. Another advantage of the LDA 

model are the low training and validation errors compared to all 

ANNs (around 25% of the ANN errors). In conclusion, the MLP 

models were better problem solvers, but notably more 

complicated. 

The number of nodes = fatty acids (sum of input results i
th

) of 

the complex networks was 744 (the full details are presented in 

http://dx.doi.org/10.6084/m9.figshare.1408852). It can be concluded that the 

classification results, obtained with this new PT-LFER equation, are 

promising and confirm the potential of the present methodology. 

The present model is the result of combining Hansch analysis with 

LDA models, Box-Jenkins Operators, and Perturbation Theory ideas. 

Our group and other authors
69-74

 have used LDA models alone or 

combined with Box-Jenkins Operators to predict properties of 

complex systems
75-78

, these models may include or not perturbation 

theory considerations
79

. However, in this paper these ideas are 

extended to the Hansch analysis for the first time. 

3.6. Construction of FA distribution network using the PT-LFER 

model 

Network biology 
80

 is accepted as a very useful approach to shed 

light on the functional organization of the cell. With this idea in 

mind, the observed complex networks were built for perturbations 

in FA metabolism/distribution between ruminal media and bacterial 
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or protozoan individuals. In so doing it was considered that two 

states are connected (Lnr = 1) if both f(εij)new = IPA(%)obs and f(εij)ref = 

IPA(%)obs - IPA(%)ref > 0, and Lnr = 0 otherwise. This condition 

indicates that the level of both fatty acids in the new state is higher 

than that of fatty acids in the state of reference (initial state). 

Consequently, our network is a network of co-distribution of fatty 

acids. In addition, the model was used to predict the same complex 

network. To this end, it was considered that Lnr = 1 (nodes linked) 

when both values of ꞌf(εij)new and ꞌf(εij)ref predicted by the model 

have the probability p(cij) > 0.5 of having f(εij)ref = IPA(%)obs - 

IPA(%)ref > 0. 

Last, two models of random networks (random network 1 and 2) 

were also built (Table 10). Each model was defined with a number 

of nodes and links as similar as possible to the observed and 

predicted networks respectively. The objective was to understand 

the overall nature of the FA metabolism/distribution data (similarity 

to a random process or not). The average values of some 

topological indices were calculated to compare quantitatively the 

structure of these networks. The indices calculated were the 

average values of the vertex-vertex topological distance 
50

, node 

degree, and closeness of the giant component of the observed, 

predicted network models and the two similar random ones. Erdős–

Rényi (ER) random networks where, apparently, similar to the 

observed and predicted networks. In fact, the average values of the 

topological distance, node degree, and closeness are similar, 

halfway between the observed and predicted network (1.83 vs. 

1.77, 72.75 vs. 80.29, and 0.000755 vs. 0.000836, respectively). 

 

 

Table 10. Giant components of the observed, predicted, and 

random networks 

Observed 

networks 

Value Average 

indexes 
a
 

Value Predicted 

networks 

 

1.8 Distance 1.8 

 

72.7 Degree 80.3 

0.0008 Closeness 0.0008 

ER random 

network
 b

 1 

Value Average 

indexes 

Value ER random 

network 2 

 

1.9 Distance 1.9 

 

68.6 Degree  80.0 

0.0007 Closeness 0.0008 
a
 Distance means the average values of the vertex-vertex topological distance, Degree 

and Closeness means the node degree, and closeness of the giant component, 

respectively.  
b
 ER random network means Erdős–Rényi random network. 

4. Conclusions 

Mixed experimental-theoretical methodology can be used to 

study the effect of multiple factors over fatty acids distribution 

networks on ruminal microbiome. PT and LFER ideas can be 

combined to develop a PT-LFER model of fatty acid distribution 

network. Box-Jenkins and PT Operators of physicochemical 

parameters are useful inputs in this sense. ANN algorithms are 

also useful to test the performance of alternative PT-NLFER; 

Non-Linear models. Last, ER random network models can be 

employed to carry out comparative studies with the observed 

and predicted networks in order to study the overall effect of 

perturbations on the fatty acid distribution processes. 
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