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Competitive endogenous RNA (ceRNA) represents a novel layer of gene regulation that plays important 

roles in the physiology and development of diseases such as cancer and their dysregulation could 

contribute to cancer pathogenesis. Here, we proposed a computational method to systematically identify 

genome-wide dysregulated ceRNA-ceRNA interactions by integrating microRNA regulation with 10 

expression profiles in cancer and normal tissues by RNA sequencing, as well as considering details of 

how ceRNAs behavior has changed. These gain or loss dysregulations further assembles into a 

dysregulated ceRNA-ceRNA network, lncRNAs and pseudogenes are also considered. After applying the 

method to lung adenocarcinoma, we found that most dysregulations are connected together and formed a 

lung adenocarcinoma dysregulated ceRNA-ceRNA network (LDCCNet). Our analyses found that ceRNA 15 

pairs with gain regulations have consistent expression in cancer, otherwise for loss regulation, it is not 

necessary. Moreover, ceRNAs with more significant gain regulations (gain ceRNAs) are underwent 

stronger regulation in cancer, thus their expression are more likely to decrease in cancer, while the 

expression of loss ceRNAs display the rising trend. Additionally, we found gain and loss ceRNAs as 

topological key nodes are implicated in the development of cancer. Finally, dysregulated ceRNA modules 20 

were identified, which are significantly enriched with known lung cancer microRNAs. We further found 

that several modules have the power as diagnostic biomarkers even in three independent datasets. For 

example, the module with lncRNA RP11-457M11.2 as a center is involved in epithelial cell 

morphogenesis process and provides the average AUC values of 0.95. Our study about LDCCNet opens 

up the possibility of a new biological mechanism in cancer that could be served as biomarkers for 25 

diagnosis. 

Introduction 

MicroRNAs (miRNAs) are small single-stranded RNAs of 18-25 

nucleotides in length that guide many key biological processes, 

such as cell proliferation, signal transduction, and apoptosis 1. 30 

MiRNAs can repress their targets through binding to miRNA 

response elements (MREs) on the 3’UTR of mRNAs, causing 

translational repression or mRNA degradation 2, 3. In addition to 

coding mRNAs, MREs can also be found on non-coding 

transcripts such as pseudogenes and long non-coding RNAs 35 

(lncRNAs). Importantly, each miRNA regulates numerous RNA 

targets, both coding and non-coding RNAs, and the vast majority 

of RNA molecules harbor several MREs and are thus repressed 

by different miRNAs. This target multiplicity has led to the 

observation that different RNAs might compete for limited pools 40 

of miRNAs, thus acting as ceRNAs 4. Currently, convincing 

evidences have been provided that ceRNAs are involved in 

tumorigenesis. For example, Kumar et al. have shown that 

Hmga2 promotes lung cancer progression in human cells and 

mouse by operating as a ceRNA 5. In addition, non-coding RNAs 45 

are also involved in cancer by acting as target decoys, such as the 

lncRNA HULC regulating activity of miR-372 to reduce miRNA 

mediated translational repression of PRKACB in hepatocellular 

carcinoma, and pseudogene PTENP1 protecting PTEN 

messenger as a ceRNA 6, 7. Linc00974 affects KRT19 expression 50 

as a ceRNA interacting with miR-642 in hepatocellular 

carcinoma (HCC) and acts as a biomarker in predicting the 

growth and metastasis of HCC 8. These ceRNAs could cross-

regulate each other and constitute a ceRNA network allowing 

RNA to communicate.  55 

Cancers are increasingly modeled by using different biological 

networks, since analyzing the properties of the entire networks 

has the potential to rapidly generate new biological hypotheses, 

such as identifying functionally coherent modules 9. Most studies 

have focused on analyzing the ceRNA networks in certain 60 

disease or physiological status. A predicted miRNA-mediated 

ceRNA network in glioblastoma, has been found to regulate 
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canonical oncogenic pathways 10. Paci et al. built normal and 

cancer networks of lncRNA-mRNA sponge interactions mediated 

by miRNAs using breast cancer expression data 11. Additionally, 

Li et al. examined the change of ceRNA networks in different 

subtypes of prostate cancers based on a previous predicted 5 

ceRNA network 12. Normal ceRNA regulations are needed for the 

proper functioning of a cell, thus disruption of these ceRNA pairs 

may promote the development of cancer. Detecting such 

disruptions can help us better understand the initiation and 

propagation of cancer, compared to commonly used ceRNA 10 

network analysis only under cancer status. 

Lung cancer is the leading cause of cancer-related human 

deaths worldwide 13, 14. Lung cancer can be classified based on 

histopathologic findings, and adenocarcinoma is one of most 

common subtypes 15. An early and correct diagnosis may warrant 15 

immediate therapy to potentially reduce the mortality rate. The 

dysregulated ceRNA-ceRNA network may provide new hope for 

exploration of pathogenesis of lung adenocarcinoma and new 

biomarkers with high accuracy in diagnosis. 

Based on the above observation, in the current study, we 20 

proposed a computational approach to identify dysregulated 

ceRNA-ceRNA interactions by integrating miRNA regulation 

with RNA-seq data in cancer and normal tissues. To reflect the 

effect of dysregulated ceRNA interactions on the phenotype, 

differentially expressed ceRNAs were used to build the 25 

dysregulated network. At the same time, we introduced both gain 

and loss ceRNA interactions in the dysregulated network, in 

order to further understand the roles of ceRNA in cancer 

progression. After applying this method to lung adenocarcinoma, 

we found that most dysregulations are connected together and 30 

formed a lung adenocarcinoma dysregulated ceRNA-ceRNA 

network (LDCCNet). Then, the LDCCNet was used to study the 

roles of coding-genes, lncRNAs and pseudogenes as dysregulated 

ceRNAs in pathogenesis of lung adenocarcinoma. The properties 

of dysregulated ceRNA interactions were analyzed and two kinds 35 

of special ceRNAs significantly enriched by dysregulated ceRNA 

interactions (gain and loss ceRNAs) were focused on. Finally, 

multiple dysregulated ceRNA modules significantly regulated by 

known lung cancer miRNAs were identified and might serve as 

novel diagnostic biomarkers. Collectively, our findings provide a 40 

comprehensive dysregulated ceRNA-ceRNA network landscape 

in lung adenocarcinoma and present several new diagnostic 

biomarkers. The identification of dysregulated ceRNA-ceRNA 

network not only dictates a promotion of our understanding of 

gene regulatory networks in cancer but also opens up the 45 

possibility of a new biological mechanism that could be served as 

biomarkers for diagnosis 16. 

Results 

Global properties of the LDCCNet 

To systematically explore the influence of dynamic changes of 50 

ceRNA regulation to gene expression in lung adenocarcinoma, 

we first constructed the LDCCNet using computational method 

developed by us from 72 adenocarcinomas and adjacent normal 

pairs (see Materials and methods). 4857 dysregulated ceRNA 

interactions among 1674 protein-coding genes, 46 lncRNAs and 55 

32 pseudogenes were detected (Table 1). In these dysregulated 

ceRNA interactions, there are 2068 gains and 2789 losses (Table 

1). In addition, gain and loss regulations respectively account for 

0.07% and 0.1% of all 2,635,721 ceRNA-ceRNA candidates 

(Table 1). That is to say, a relatively small part of the ceRNA-60 

ceRNA interactions are dysregulated in lung adenocarcinoma. 

These results show that in lung adenocarcinomas not only some 

normal ceRNA regulations could disappear or be reduced, but 

also some new ceRNA regulations could appear, so as to create 

more favorable conditions for development of cancer cells.  65 

Table 1  - Statistics of the nodes and edges in the LDCCNet 

Network   Node  Edge  

LDCCNet Coding-genes  lncRNAs pseudogenes  gain  Loss  

 1674 

(622/1052)  

46 

    (23/24) 

32 

(20/12)  

2068 

(0.07%)  

2789 

(0.1%)  

Note:% represents the percentage of dysregulated ceRNA interactions in genome-wide ceRNA interactions. (a/b) ‘a’ represents the 

number of ceRNAs with up expression in lung adenocarcinoma, and ‘b’ represents the number of ceRNAs with down expression in lung 

adenocarcinoma. 

Next, we discussed the structure and organization of the 70 

LDCCNet. As shown in Figure 1A, most dysregulated ceRNAs 

in the LDCCNet are connected and form a large connecting 

subnetwork. We found that a few ceRNAs have a relatively large 

number of dysregulated ceRNA partners, whereas most ceRNAs 

have few dysregulated ceRNA partners. Additionally, 70% of 75 

ceRNAs in the LDCCNet participate in at least two dysregulated 

ceRNA interactions. The examination of the degree distribution 

of the LDCCNet reveals a power law distribution. Therefore, like 

many large-scale networks, the LDCCNet displays scale-free 

characteristics (Figure 1B), indicating that the LDCCNet is not 80 

random but is characterized by a core set of organizing principles 

in its structure that distinguish it from randomly linked networks. 

Lastly, we found the LDCCNet has larger clustering coefficient 

than random, as expected for module characteristics (Figure 1C 

and Supplementary Text S1). The scale-free and module 85 

characteristics of LDCCNet make dysregulated ceRNA 

interactions influence each other and effectively exchange 

dysregulated information both at a global and at a local scale. The 

dysregulation of one point amplifies affect along veins of the 

LDCCNet and it may make the LDCCNet more powerful to 90 

influence gene expression in lung adenocarcinomas. A recently 

study also has indicated that indirect interactions critically 

amplify ceRNA cross-talk 17. 
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Figure 1. The layout of the LDCCNet and its structural features. 

(A) The LDCCNet generated by the procedure described in the Methods. 

A circle node marks coding-gene, a diamond node marks lncRNA, and a 

hexagon node marks pseudogene. A node colored by green represents low 5 

expression in lung adenocarcinoma, and a node colored by red represents 

high expression in lung adenocarcinoma. A red edge represents a gain 

dysregulation between two ceRNAs, and a green edge represents a loss 

dysregulation between two ceRNAs. The width of edge represents the 

absolute value of PCC difference of a ceRNA pairs ∆� (see methods) (B) 10 

Degree distribution of the LDCCNet. (C) The cluster coefficient of 

LDCCNet is higher than random networks. 

Dysregulated ceRNA interactions contributing aberrant 

expression in cancer 

To more deeply explore roles of these emerging dysregulations in 15 

cancer, we investigated the contribution of dysregulated ceRNA 

interactions to aberrant expression of lung adenocarcinoma. As 

the ceRNAs regulate each other in trans, we first analyzed the 

distribution of these dysregulated ceRNAs on chromosomes. We 

found that the ceRNA pairs in 93.24% of dysregulated 20 

interactions located on different chromosomes. Known lung 

cancer genes and their ceRNA regulators also located on different 

chromosomes. The proportion of the dysregulated ceRNAs on 

chromosome 6 is the highest (Supplementary Figure S1).  

As the trans-regulation of dysregulated ceRNAs is expected to 25 

contribute to the cancer aberrant transcriptome, we next 

investigated the correlation between expression change and 

dysregulated interactions. The expression pattern of ceRNA pairs 

was observed and we found the distribution of patterns is 

significantly different between gain interactions and loss 30 

interactions (Figure 2A). As results show that 92% of ceRNA 

pairs with gain regulations have the same direction of expression 

change, while for loss regulations, the ceRNA pairs with the 

same direction of expression change is only 28% and most 

ceRNA pairs have the opposite direction of expression change 35 

(Figure 2A). In other words, a gain interaction may mean that the 

regulation for the two ceRNAs each other is enhanced, and 

therefore the ceRNAs have a consistent expression in cancer, 

while for a loss ceRNA regulation, the ceRNAs are not 

necessarily with a consistent expression. Moreover, we found the 40 

proportion of gain ceRNA pairs co-occurring in the same GO 

terms is 1.5 times more than that of loss ceRNA pairs by 

analyzing gain ceRNA pairs and loss ceRNA pairs annotated in 

GO. This result indicated that gene pairs with gain ceRNA 

interactions may cooperatively regulate the same biological 45 

functions, and furthermore their consistent expression changes 

are more likely to increase or decrease efficiency of the function, 

leading to cancer. In addition, to explore how the ceRNA 

dysregulations affect changes of gene expression in cancer, we 

focused on two kinds of ceRNAs, “gain ceRNA” and “loss 50 

ceRNA” (see Materials and methods). 528 gain ceRNAs and 520 

loss ceRNAs were defined. The two kinds of ceRNAs participate 

in as many as 73% of all the dysregulated ceRNA interactions. 

The distribution of up-regulated ceRNAs and down-regulated 

ceRNAs in gain ceRNAs is significantly different with in loss 55 

ceRNAs (Figure 2B Fisher's Exact Test p-value =4.3*e-5). There 

are more down-regulated ceRNAs belonging to gain ceRNAs 

than loss ceRNAs. However, for loss ceRNAs, the proportion of 

up-regulated ceRNAs becomes higher than gain ceRNAs. These 

results suggest that gain ceRNAs get stronger regulation and their 60 

expressions are more likely to decrease in cancer, while loss 

ceRNAs’ expressions have the rising trend. Although ceRNAs 

can regulate gene expression, we found the extent of expression 

change has no obvious correlation with the ceRNA dysregulated 

intensity (Supplementary Figure S2). But some ceRNAs with lots 65 

of dysregulated interactions indeed have relatively larger fold 

change in expression. For example, CAV2 is a major component 

of the inner surface of caveolae and involved in signal 

transduction, cellular growth control and apoptosis, which has 48 

dysregulated interactions in the LDCCNet. At the same time, 70 

expression of CAV2 in lung adenocarcinoma is significantly 

decreased to about a quarter of the normal expression. These 

results indicate that dysregulated ceRNAs may play important 

roles in fine-tuning gene expression. 

 75 

Figure 2. Gain and loss ceRNA interactions contributing aberrant 

expression in lung adenocarcinoma. 

(A) The expression pattern of a ceRNA pair is divided into three 

categories: i. both are up-expression in lung adenocarcinoma (up-up); ii. 

both are down-expression in lung adenocarcinoma (down-down); iii. one 80 

is down-expression and the other is up-expression in lung 

adenocarcinoma (down-up). The distributions of expression pattern of 

ceRNA pair respectively in gain and loss ceRNA interactions. 

**P < 0.005 for Fisher's Exact Test. (B) The distributions of up-

expression ceRNAs and down-expression ceRNAs respectively in gain 85 

and loss ceRNAs. 

Gain ceRNAs and loss ceRNAs as topological key nodes 
involving in cancer progression 

We further studied topological and functional properties of gain 

ceRNAs and loss ceRNAs. Firstly, to further inspect whether 90 

gain ceRNAs and loss ceRNAs are critical for global network 

connectivity, we systematically removed either gain or loss 

ceRNAs from the LDCCNet and analyzed the number of paths 

between ceRNAs using a topological measure betweenness. In a 

biological context, betweenness measures the ways of indirect or 95 

direct regulation in the regulation network. We found 

betweenness is more strongly affected by removing gain and loss 

ceRNAs than other ceRNAs (Kolmogorov-Smirnov test, p-value 

gain =3.87e-5, p-value loss =2.83e-3) (Figure 3A). Another two 

topological measures are the number of components and the size 100 
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of maximum component, which measure global network 

connectivity and the integrity of a network. We found separate 

removal of gain or loss ceRNAs produces consistent change, the 

number of components becomes larger and the main component 

becomes smaller than removal of other ceRNAs (Figure 3B and 5 

Supplementary Figure S3). The sensitivity of these topological 

measures to removal of gain and loss ceRNAs suggests that the 

two kinds of ceRNAs are topological key nodes in the LDCCNet 

and play important roles in ceRNA dysregulations. 

 10 

Figure 3. Gain ceRNAs and loss ceRNAs. 

(A) Network betweenness remaining after removing the gain ceRNAs, 

loss ceRNAs and other ceRNAs. (B)The number of components 

remaining after removing the gain ceRNAs, loss ceRNAs and other 

ceRNAs.(C) An example of gain ceRNA LATS2 with all its dysregulated 15 

interactions in the LDCCNet. A node with yellow border represents 

known lung cancer gene. (D) One example of ceRNA pair (LATS2 versus 

PEAK1) whose expression variation across individuals (x- and y- axis) 

reveals a gain ceRNA interaction in lung adenocarcinoma. (E) An 

example of loss ceRNA ERBB3 with all its dysregulated interactions in 20 

the LDCCNet. A node with yellow border represents known lung cancer 

gene. (F) One example of ceRNA pair (ERBB3 versus EMP2) whose 

expression variation across individuals (x- and y- axis) reveals a loss 

ceRNA interaction in lung adenocarcinoma. 

Next, we found that 56% of the known lung cancer genes in 25 

the LDCCNet belong to the gain or loss ceRNAs. But the 

distributions of known lung cancer genes in the two types of 

ceRNAs are not significantly different (Fisher's Exact Test p-

value =0.28), suggesting that both gain and loss ceRNA 

regulations contribute to lung adenocarcinoma progression. For 30 

example, the well-known lung cancer gene LATS2 is a gain 

ceRNA, and gains 22 ceRNA regulations in lung adenocarcinoma 

(Figure 3C). These regulations significantly change in cancer 

compared with normal, such as LATS2 and PEAK1, which are 

more significantly positively correlated in cancer than normal 35 

(Figure 3D). These dysregulated ceRNA-ceRNA interactions are 

significantly mediated by lung cancer-related miRNAs 

(Hypergeometric test p-value=2.12*e-8). LATS2 is 

serine/threonine protein kinase belonging to the LATS tumor 

suppressor family. It has been shown that down-regulation of the 40 

LATS2 gene was observed in most non-small cell carcinoma but 

was not related to any mutation or polymorphism 18. So gain 

ceRNA regulations at post-transcriptional level could be an 

inducement for down-regulation of LATS2. Another known lung 

cancer gene, ERBB3, is a member of the epidermal growth factor 45 

receptor (EGFR) family of receptor tyrosine kinases and has been 

recognized showing strong association with malignant 

proliferation 19. ERBB3 is a loss ceRNA and losses 10 ceRNA 

regulations in lung adenocarcinoma (Figure 3E). These 

regulations work well in normal while are disrupted in cancer. 50 

Figure 3F highlights an example of the pairwise correlation 

between ERBB3 and EMP2 showing obviously disrupted co-

expression patterns in lung adenocarcinoma. EMP2 has been 

recognized as a putative tumor suppressor gene in certain model 

systems and down-regulated in lung adenocarcinoma 20. There 55 

are four known lung cancer-related miRNAs involved in these 

loss dysregulations. One of the miRNAs is hsa-mir-372 which 

has been found highly expressed in lung cancer, and it 

participates in 70% of loss dysregulations 21. With confidence 

that the gain and loss ceRNAs play important roles in lung 60 

adenocarcinoma, we next interrogated which biological processes 

may be subjected to ceRNA-mediated regulation. In Gene 

Ontology analysis done systematically for gain and loss ceRNAs, 

respectively, biological processes related to cancer are 

significantly enriched. Remarkably, we found an 65 

overrepresentation of both gain and loss ceRNAs involved in cell 

cycle (Table 2). At the same time, gain ceRNAs also specifically 

participate in cell adhesion, cell proliferation and vasculogenesis 

(Table 2). The hallmarks of cancer are shared in common by 

most and perhaps all human tumor types, defined as acquired 70 

functional capabilities that allow cancer cells to survive, 

proliferate, and disseminate22. A list of GO terms related to the 

hallmarks of cancer was obtained from a previous study23, and 

genes annotated in these GO terms were considered as the known 

gene sets involved in these cancer hallmarks. After performing 75 

function enrichment, we found that gain ceRNAs or loss ceRNAs 

were significantly enriched in most of the hallmarks 

(Supplementary Table S1). This analysis revealed that ceRNA 

regulations as a new regulatory mechanism might be involved in 

most cancer hallmarks in lung adenocarcinoma, such as 80 

antigrowth signals, reprogramming energy metabolism, tissue 

invasion and metastasis and so on. Lastly, we also mapped the 

hallmark genes onto the LDCCNet to generate the hallmark 

networks proposed by Wang et24, 25. Then, we identified a ceRNA 

associated survival network, in which all the ceRNAs involves 85 

the functions to sustain chronic proliferation, resist to cell death, 

and resist inhibitory signals (Supplementary Figure S4). Such a 

network represents the ceRNA regulation mechanism for lung 

adenocarcinoma cell survival and proliferation. Additionally, 

another ceRNA associated hallmark network, the EMT network, 90 

was identified in which all the ceRNAs participate in tissue 

invasion and metastasis (Supplementary Figure S5). 

Table2  - Functional enrichment of gain ceRNAs and loss ceRNAs based on GO biological process terms 
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Category of ceRNAs Term name Count FDR 

Gain ceRNAs mitotic cell cycle 35 0 

 cell adhesion 33 0.000014 

 negative regulation of cell proliferation 25 0.000262 

 regulation of cell cycle 10 0.00032 

 cell proliferation 23 0.000753 

 mitosis 16 0.001248 

 negative regulation of tumor necrosis factor production 6 0.001625 

 immune response 22 0.001928 

 M phase of mitotic cell cycle 10 0.002263 

 vasculogenesis 7 0.00733 

Loss ceRNAs mitotic cell cycle 23 0.002706 

 G1 phase of mitotic cell cycle 6 0.033278 

 M phase of mitotic cell cycle 9 0.033278 

 neuromuscular junction development 5 0.033278 

 brown fat cell differentiation 5 0.033278 

Diagnosis power of dysregulated ceRNA modules 

It is widely accepted that the occurrence of cancer is carried out 

through the concerted activity of many genes 26. Functionally 

coherent modules can be as biomarkers to distinguish cancer 

from normal. We applied affinity propagation clustering 5 

approach to detect modules in the LDCCNet 27. Then the 

modules were further required to be composed of more than 4 

ceRNAs and significantly enriched by known lung cancer 

miRNAs. We finally detected 35 modules (Supplementary Table 

S2). For example, Figure 4A shows a module with FGF2 as 10 

center, which is enriched by gain ceRNA interactions. In human 

cancer, FGF-2 promotes cancer cell proliferation, migration, and 

invasiveness, as well as angiogenesis and the cycling of cancer 

stem cells 28. The dysregulated ceRNA interactions in this 

module are significantly regulated by many well-known lung 15 

cancer-related miRNAs and function analysis reveals that this 

module is involved in the regulation of epithelial cell 

proliferation. As known that, lung adenocarcinoma is mainly 

originated from the bronchial epithelial cells, and these results 

suggest that the dysregulated ceRNA module may contribute to 20 

development of lung adenocarcinoma 29. Additionally, the 

lncRNA MALAT1 in the module, is up-regulated in several 

malignancies, and has been implicated in non-small cell lung 

cancer 30. The loss of the ceRNA regulation for FGF2 to 

MALAT1 may cause the over-expression of MALAT1. Then, we 25 

inspected the potential of this module as a biomarker for early 

detection. Hierarchical clustering analysis based on the 

expression of ceRNAs in the module clearly separates cancer 

from normal tissue samples, independently of clinic pathologic 

characteristics (Supplementary Figure S6). The performance of 30 

the module is evaluated by area under the receiver operation 

characteristic (ROC) curve (AUC). ROC curves of the module 

gives AUC values of 0.966 in the LAC72s dataset (Figure 4B). 

Lastly, to confirm the robustness of this module as biomarker, 

three independent datasets were analyzed, including one RNA-35 

seq LACtcga, two microarray LAC107 and LAC58s datasets. We 

found most cancers are able to be distinguished from benign 

adjacent tissues in these three datasets and the AUCs are 0.967, 

0.974 and 0.916 respectively in the LACtcga, LAC107 and 

LAC58s datasets (Figure 4B). Moreover, we also used the re-40 

sampling tests to estimate the robustness of biomarkers 31. We 

generated 20 subsets by randomly selecting 19 paired lung 

adenocarcinomas and adjacent non-tumor samples (25% of all 

samples) from LAC72s, with < 30% sample overlap among these 

subsets. Then, we calculated the AUCs of the biomarker in each 45 

subset respectively and found that on the whole the AUCs do not 

vary greatly from one subset to another, although some AUCs’ 

value become lower (Supplementary Figure S7A). These results 

suggested that the biomarker is relatively robust. Another module 

with a loss ceRNA ZBTB4 as center, is mainly involved in 50 

differentiation, metabolism and regulation of cell proliferation 

(Figure 4C). It has been shown down-regulation of ZBTB4 

relative to normal tissue occurs in lung carcinoma and could 

promote cell cycle arrest in response to activation of p53 and 

suppress apoptosis through regulation of P21CIP1 32. At the same 55 

time, a lot of well- known lung cancer-related miRNAs mediate 

the dysregulation of this module, such as hsa-mir-139, hsa-mir-

196 and hsa-mir-20a. Then, we also evaluated its capacity for 

distinguishing between cancer and normal. As the Supplementary 

Figure S8 shown that normal samples and cancer samples are 60 

clearly grouped in two distinct sub-branches in LAC72s dataset, 

and AUC is as high as 0.983 (Figure 4D). The module is also 

powerful as biomarker in three independent datasets, and the 

AUCs are 0.976, 0.984 and 0.888 respectively in the LACtcga, 

LAC107 and LAC58s datasets (Figure 4D). The re-sampling tests 65 

also showed the robustness of this module (Supplementary 

Figure S7 B).  
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Figure 4. ceRNA modules as biomarkers. 

(A, C, E) Examples of ceRNA modules. Triangle represents lung cancer 

miRNA. A gray edge represents a regulation from a miRNA to one of its 

targets. A node with yellow border represents known lung cancer gene. 5 

(B, D, F) ROCs of the ceRNA module biomarkers in “LAC72s”, 

“LACtcga”, “LAC107” and “LAC58s” expression dataset, respectively. 

Non-coding RNAs have been shown to play a critical role in 

tumorigenesis and we indeed found some lncRNAs and 

pseudogenes are involved in the lung adenocarcinoma ceRNA 10 

dysregulations. Non-coding RNAs are very promising as 

diagnostic biomarkers. And, as expected, we explored a module 

mainly composed of non-coding RNAs, including three lncRNAs 

and one pseudogene (Figure 4E). Most of ceRNAs in this module 

are connected by loss interactions. The hub of this module is 15 

RP11-457M11.2, a loss ceRNA. RP11-457M11.2 is significantly 

higher expressed in lung adenocarcinoma and the average 

expression value of it is 4.13*e9 (FPKM), which is two times of 

the average expression value of all lncRNAs in lung 

adenocarcinoma. These dysregulations among non-conding 20 

RNAs and coding RNAs in the module are mediated by some 

known lung cancer miRNAs. Most of the miRNAs belong to let-

7 family postulated to function as tumor suppressor, expression 

of which is reduced in non-small cell lung cancer 33, 34. Coding 

genes in the module are mainly involved in epithelial cell 25 

morphogenesis process, suggesting that these non-coding RNAs 

may participate in the regulation of epithelial cell function to 

promote the development of cancer by acting as ceRNAs. Then, 

hierarchical clustering analysis recommended this module as 

another promising biomarker for lung adenocarcinoma, and the 30 

AUCs also reach up to 0.99 and 0.914 in the LAC72s and 

LACtcga datasets, respectively (Figure 4F and Supplementary 

Figure S9). Because the two independent datasets are microarray 

data without non-coding RNA expression, we only validated it in 

TCGA dataset. This module also showed robust by the re-35 

sampling tests (Supplementary Figure S7 C). 

Currently, several published studies have dedicated in 

identifying diagnostic biomarkers in lung adenocarcinoma based 

on gene expression, miRNA expression, DNA methylation, etc. 

For example, Melissa Rotunno et al found eight genes as a 40 

biomarker with AUC=0.81 based on gene expression data35. 

Zeng XL et al discovered that low expression of miR-143 and 

high expression of miR-150 for distinguishing lung 

adenocarcinoma patients from healthy subjects respectively with 

AUC=0.885 and AUC=0.834 36. In addition, Anglim PP et al 45 

identified a panel of DNA methylation markers for lung cancer 

ranged from a modest AUC =0.75 for PITX2 to a much better 

AUC=0.9 for GDNF37. Thus, the prediction power of ceRNA 

modules we identified is relatively high compared with 

biomarkers from these published studies. In our study, we 50 

integrated multiple types of information to indentify the 

biomarkers, including competitive relationship among the 

mRNAs, mRNA expression, and miRNA-target regulations. We 

proposed that the integrated information may contribute to the 

higher AUC values of ceRNA modules in our study. 55 

Discussion 

In this study, we constructed the LDCCNet using a 

computational method. As general biological networks, the 

LDCCNet is scale-free, and modularity. There are abundant 

indirect interactions where two linked ceRNAs are also 60 

connected through a third ceRNA in the LDCCNet which greatly 

amplify dysregulated ceRNA cross-talk. Then, we found that 

gain ceRNA regulations may be one of the ways to guarantee the 

consistent expression of ceRNA pairs in cancer. Moreover, gain 

ceRNAs under stronger gain regulation are more likely to be 65 

lowly expressed in cancer while loss ceRNAs’ expression has the 

rising trend. We concluded that aberrant expression partly 

mediated by dysregulated ceRNAs in cancer may be controlled 

by these rules. Gain and loss ceRNAs participate in lots of 

cancer-related biological processes. Finally, several dysregulated 70 

ceRNA modules significantly regulated by known lung cancer 

miRNAs are identified and have the power to distinguish cancer 

from normal samples. In addition, another independent 

expression data from TCGA was used to re-construct the 

dysregulated ceRNA-ceRNA network and we found that patterns 75 

and the characteristics of the dysregulated ceRNA-ceRNA 

network are robust (details in Supplementary Text S2). 

Increasing evidences point that non-coding RNAs can operate 

cellular processes through a variety of mechanisms and the 

aberrant regulation of non-coding RNAs might contribute to 80 

cancer phenotypes 38. In our results, we discovered that lncRNAs 

and pseudogenes can potentially interact with miRNAs and act as 

ceRNAs to affect the competing RNAs’ level underpinning 

cancer development. By systematically analyzing their regulatory 

features in three different groups of RNAs, coding genes, 85 

lncRNAs and pseudogenes, we found that coding RNAs are 

under more wide and strict miRNA regulation compared with 

non-coding RNAs (Figure 5A and B). From the view of miRNAs, 
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we observed that a few miRNAs exhibit extensive regulation to 

non-coding RNAs, whereas many miRNAs interact with a 

relatively small number of non-coding RNAs, especially for 

pseudogenes (Figure 5C). In addition, if a miRNA tends to 

regulate many coding genes, the miRNA also exhibits strong 5 

regulation to non-coding RNAs (Figure 5D). Some non-coding 

ceRNAs indeed play a key role in the LDCCNet. For example, 

heat shock 60kDa protein 1 pseudogene 1(HSPD1-2P), is a hub 

in the LDCCNet. At the same time, HSPD1-2P is a highly 

expressed pseudogene in lung adenocarcinoma. Most of the 10 

genes regulated by HSPD1-2P are involved in cell cycle and up-

expressed in lung adenocarcinoma. These dysregulated ceRNA 

interactions may make the cell cycle more active to promote the 

development of lung adenocarcinoma. One of HSPD1-2P ceRNA 

partners is HLJ1 as a tumor suppressor in lung adenocarcinoma 15 

by inhibiting cell proliferation 39. The ceRNA regulation of 

HSPD1-2p to HLJ1 losses in lung adenocarcinoma and HLJ1 

expression is lower in lung adenocarcinoma than adjacent normal 

tissues. This loss ceRNA regulation may be as a potential cause 

for down-expression of HLJ1. 20 

 

Figure 5. Coding-genes, lncRNAs, and pseudogenes targeted by 

miRNAs. 

(A) Stacking barplots representing the percentages of coding-genes, 

lncRNAs, and pseudogenes regulated by miRNAs respectively. (B) Box 25 

plots representing the number of miRNA targeting coding-genes, 

lncRNAs, and pseudogenes per KB respectively. **P < 0.005 for 

Wilcoxon rank sum test (C) The distributions of the propotion of targets 

(coding-genes, lncRNAs, and pseudogenes) for miRNAs. (D) Three-

dimensional scatter plot displays relationship among the number of 30 

coding-gene targets, lncRNA targets, and pseudogene targets for 

miRNAs. 

Some studies have analyzed topology characteristics of known 

disease genes in different networks. Here, we also analyzed the 

properties of known lung cancer genes. The LDCCNet contains 35 

84 known lung cancer genes. These cancer genes in the 

LDCCNet have higher clustering coefficients than random 

conditions (Supplementary Figure S10A). Additionally, the 

average shortest path length among lung cancer genes is 4.2639, 

significantly lower than random conditions, indicating that lung 40 

cancer genes are close proximity each other in the LDCCNet 

(Supplementary Figure S10B). Based on these characteristics of 

known cancer genes in the LDCCNet, we ranked the ceRNAs in 

the LDCCNet by integrating the number of known lung cancer 

genes in neighbors and the distance to the known lung cancer 45 

genes to provide clues for predicting lung cancer gene candidates 

(Supplementary Table S3 and Supplementary Text S1). The 

smaller the rank of a ceRNA is, the more possibly the ceRNA 

serves as a lung cancer gene. Top-ranked ceRNAs are 

significantly more often associated with known lung cancer 50 

genes than expected (Supplementary Figure S11). CAV2 ranks 

fifth and it is involved in essential cellular functions, including 

cellular growth control and apoptosis as described above. CAV2 

is a hub ceRNA in LDCCNet and the expression of it is 

significantly down-regulated in lung adenocarcinoma with 0.22 55 

fold change (FDR=2.95e-60). Thus, CAV2 may be as a potential 

lung cancer gene and its roles are worth to be further studied in 

lung adenocarcinoma. In addition, we also extended lung cancer 

gene set from integrating the genes with frequency of mutations 

>1% based on the Level 4 data from Firehose 60 

(http://gdac.broadinstitute.org/) and lung cancer genes from three 

reports40-42. These lung cancer genes in the LDCCNet also have 

higher clustering coefficients than random conditions 

(Supplementary Figure S12A). At the same time, the average 

shortest path length among these lung cancer genes is 4.3164, 65 

significantly lower than random conditions (Supplementary 

Figure S12B). We also predicted lung cancer genes in the 

LDCCNet using the same method. We found that top-ranked 

ceRNAs are also significantly more often associated with known 

lung cancer genes than expected (Supplementary Figure S13). 70 

These analysis results indicated that the LDCCNet can provide 

clues for predicting lung cancer gene candidates. 

The change of ceRNA interactions might have direct 

relationship with the expression of ceRNA itself, the miRNA 

expression and the regulation between miRNAs and ceRNAs. 75 

The competitive interactions are mediated by miRNAs, thus the 

expression changes of miRNAs might influence the ceRNA 

interactions. For example, the expression of hsa-mir-192 is up-

regulated about 21 times by analyzing TCGA miRNA expression 

data, which might mediate two loss ceRNA interactions, 80 

KLHL15 and CXCL2, LACTB2 and ARHGAP11A. On the other 

hand, for a dys-regulated ceRNA pair, the expression changes of 

one ceRNA could influence the expression of its competitive 

interactor and cause the dysregulation of the ceRNA interaction. 

Increasing evidences have shown that several levels of genomic 85 

alterations could regulate the ceRNAs’ abundance in cancer, such 

as DNA deletions, amplifications or chromosomal translocations. 

In the LDCCNet, CDKN2B as a cell growth regulator has six 

dysregulations, all of which are loss ceRNA interactions. 

CDKN2B is frequently deleted in lung adenocarcinoma, 90 

accounting for 56% of the samples in TCGA. Additionally, the 

regulation alterations (gain or loss) between miRNAs and target 

mRNAs could also cause the ceRNA dysregulations, such as 

3’UTR shortening, mutations in MREs and so on. Totally, 

changes of one of these levels might bring out the dysregualtion 95 

of ceRNA interactions. 

Conclusions 

In conclusion, our study provides a global view of dysregulatory 

ceRNA-ceRNA network in lung adenocarcinoma by a new 

computational pipeline. Additionally, dysregulated ceRNA 100 

interactions are found contributing to the aberrant expression in 

cancer. Several dysregulated ceRNA modules are identified and 

have the power to distinguish cancer from normal samples. 

Although experimental validation of these dysregulated ceRNA 

interactions will be required to further estimate their roles in 105 
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cancer, our findings in this work can serve as a significant 

foundation for further investigating the pathogenesis of caner and 

developing biomarkers. 

Materials and methods 

Genome annotation 5 

Human genome (hg19) was used as a reference genome. 

GencodeV19 annotation file was obtained from Gencode 43. 

Protein-coding transcripts, lncRNA transcripts and pseudogene 

transcripts were respectively defined following Li et al 44. 

Meanwhile, we extracted 3'UTR sequences of protein-coding 10 

genes and DNA sequences of the whole human genome from the 

UCSC. The lncRNA and pseudogene sequences were 

respectively obtained based on the genomic coordinates of 

lncRNA and pseudogene transcripts. When multiple annotated 

3'UTR/lncRNA/pseudogene sequences were available for a 15 

protein-coding gene/lncRNA/pseudogene, the longest one was 

chosen for analyses. Known mature miRNA sequences of Human 

were downloaded from miRBaseV20 45. 

Expression profile datasets 

Raw data from previously sequenced lung adenocarcinoma RNA-20 

Seq datasets were downloaded: from GEO under accession 

number GSE40419 denoted by “LAC72s” 15 including 72 paired 

samples of lung adenocarcinomas and adjacent normal tissues. 

Sequence reads were aligned to the human genome (hg19) using 

the TopHatV2.0.9 with default parameters 46. The resulting 25 

alignment data from TopHat were then fed to Cufflinks V2.1.1 to 

perform transcript assembly and abundance estimation 47. Gene 

expression FPKM (Fragments Per Kilobase of exon per million 

fragments mapped) values were calculated with Cufflinks using 

gencodeV19 annotation file. Genes with FPKM > 0.001 were 30 

considered as expressed, and those genes expressed in less than 

90% of tumor or tumor-adjacent normal tissues were filtered out 

for the following analysis. 

Three independent datasets were used to test the power of 

modules as biomarkers. Level 3 IlluminaHiseq gene datasets of 35 

human lung tissues were obtained from TCGA, denoted by 

“LACtcga”, including 40 paired lung adenocarcinomas and 

adjacent non-tumor tissues, plus an additional 6 unmatched 

adjacent non-tumor tissues and 203 unmatched lung 

adenocarcinomas. Normalized HG-U133A array dataset with 58 40 

adenocarcinoma and 49 non-tumor tissue samples was 

downloaded from GEO (GSE10072), and denoted by “LAC107”. 

Another dataset was also downloaded from GEO (GSE32863), 

denoted by “LAC58s”, which is the expression data of 58 paired 

lung adenocarcinoma and adjacent non-tumor lung fresh frozen 45 

tissues profiled by Illumina HumanWG-6 v3.0 expression 

beadchip. 

Lung cancer genes, lncRNAs and miRNAs 

We widely collected experiment validated the lung cancer-related 

genes, lncRNAs and miRNAs from different databases. Lung 50 

cancer genes were collected by integrating LuGenD 48, OMIM 49, 

TSGDB 50, and methycancer 51. Lung cancer lncRNAs were from 

LncRNADisease 52 and White et al 53. In addition, lung cancer 

miRNAs were collected by integrating miRCancer 54, 

miR2Disease 55, HMDD 56 and OncomiRDB 57. 55 

miRNA target prediction 

miRanda with default parameters was used to identify miRNA 

target sites in the 3’UTR of coding transcripts and full length of 

lncRNA transcripts and pseudogene transcripts 58. All the CLIP-

identified AGO binding sites peaks of 26 human AGO1/2 CLIP-60 

seq datasets were directly downloaded from starBase v2.0 44. The 

target sites from miRanda that resided within any entry of the 

AgoCLIP peaks were considered as CLIP-supported sites. One 

miRNA was considered to regulate one target if and only if the 

miRNA had at least one CLIP-supported site in the target. 65 

 Identifying the dysregulated ceRNA-ceRNA interactions 

In order to identify dysregulated ceRNA-ceRNA interactions 

contributing aberrant expression in disease, we developed a 

computational method by integrating miRNA regulation with the 

expression profiles in disease and normal. Firstly, candidate 70 

ceRNA-ceRNA interactions were predicted by sharing 

significantly more miRNAs. Secondly, dysregulated ceRNA-

ceRNA interactions were identified in the context of disease. 

Finally, ceRNAs in dysregulated ceRNA-ceRNA interactions 

were required to be differentially expressed in disease. 75 

Concretely, the computational approach encompasses the 

following three steps:  

i. Predicting candidate ceRNA-ceRNA interactions  

For a given RNA pair (RNA A and RNA B), we first identified 

miRNAs that regulate the two RNAs, and then hypergeometric 80 

test was used to measure whether these two RNAs significantly 

share miRNAs. The probability P is calculated as according to  

 

 

 85 

 

where N is the number of all human miRNAs (default 

background distribution), K represents the total number of 

miRNAs regulating A, M represents the total number of miRNAs 

regulating B, x is the number of shared miRNAs between A and 90 

B and is required to be at least three. We controlled for multiple 

hypotheses using the false discovery rate (FDR), and only pairs 

passing an FDR of 0.05 were considered to be significantly co-

regulated and as candidate ceRNA pairs. 

ii. Identifying dysregulated ceRNA-ceRNA interactions in the 95 

context of disease 

We used the change of correlation of the ceRNA pair’s 

expression in cancer samples compared with normal samples to 

determine the extent of dysregulation. Then, if the ceRNA pair’s 

expression for cancer samples is more obvious positive 100 

correlation than normal samples, the ceRNA pair is defined as 

“gain” dysregulation. If the ceRNA pair’s expression for normal 

samples is more obvious positive correlation than cancer samples, 

the ceRNA pair is defined as “loss” dysregulation. The Pearson 

correlation coefficients (PCC) of between the expression profiles 105 

of each ceRNA pair were calculated to measure the correlation. 

We defined the PCC difference of a ceRNA pair between cancer 

samples and normal samples: 

∆�=��������	
��, �� − ������
�����, �� 

��������	
��, ��  is the PCC estimated from the cancer 

samples between A and B, while ������
�����, �� is estimated 110 

from the normal samples. 
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To determine whether ∆�  was statistically significant, 

randomization tests were performed and realized by permuting 

the cancer/normal labels of all samples. For each ceRNA pair, the 

∆�  was calculated after permutation and the procedure was 

repeated 1,000 times. The significant P-value of each ∆�  was 5 

given as the frequency of the ∆� values in random conditions, 

which was greater than the value in the real condition. A 

bonferroni-corrected p-value of 0.05 was used as threshold. 

In order to further identify ceRNA interactions with dominant 

change, we required that for the gain ceRNA interaction in cancer,  10 

∆�  should be significant, ∆� > 0.5  and ��������	
��, ��  is 

significantly positive and for the loss ceRNA interaction in 

cancer, ∆�  should be significant, ∆� < −0.5  and 

������
�����, �� is significantly positive. 

iii. Requiring ceRNAs with differential expression patterns 15 

To reflect the regulation effect of dysregulated ceRNA 

interactions on the phenotype, we further required that ceRNAs 

were differentially expressed. EdgeR was used to estimate 

differential expression with default parameters 59. ceRNAs with a 

FDR < 0.005 and a fold change > 1.5 were considered to be 20 

differentially expressed. 

After identifying all significantly dysregulated ceRNA pairs, 

we generated the dysregulated ceRNA-ceRNA network. Vertices 

in the network represent dysregulated ceRNAs with differential 

expression. An undirected edge between the ceRNA pair exists if 25 

their relationship is significantly dysregulated (gain or loss), and 

the weight of the edge is set to the absolute value of PCC 

difference. 

Gain ceRNAs and Loss ceRNAs 

The ceRNAs which were significantly enriched with gain ceRNA 30 

interactions were defined as gain ceRNAs and the ceRNAs with 

significant loss ceRNA interactions were defined as loss ceRNAs. 

The hypergeometric test was used to measure statistically 

significant (Supplementary Text S1). A ceRNA with bonferroni-

corrected p-value<0.05 was considered to be gain or loss ceRNA. 35 

Functional analysis of ceRNAs 

Hypergeometric test was used to identify the significantly 

overrepresented biological function categories of a specific 

ceRNA set based on the GO database 60. Functional categories 

with a bonferroni-corrected p-value less than 0.05 and annotated 40 

by at least three ceRNAs were considered in our analyses. We 

used the same method to perform enrichment analysis for each 

hallmark of cancer. 

Identification of diagnostic biomarkers 

In order to evaluate the potential of dysregulated ceRNA modules 45 

as biomarkers, the scoring classifier was constructed. For each 

ceRNA module, we first performed Z-score transformation on the 

expression levels across the samples for each member of the 

module and then summarized the Z-scores as the integrated 

expression signature (score). Then, the samples could be divided 50 

into two classes (normal and tumor) by choosing a cutoff. And 

the receiver operation characteristic (ROC) curve was used for 

classifier evaluation which was drawn by plotting sensitivity 

against the false-positive rate. This procedure was performed by 

the R package ROCR 61. In addition, unsupervised hierarchical 55 

cluster analysis was carried out to visually display the 

classification performance. Complete linkage and 1-Pearson 

correlation as a distance measure were used to do hierarchical 

clustering of the expression profile. 
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