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Abstract 8 

Principal component analysis (PCA) has been widely applied in fluxomics to compress data 9 

into a few latent structures in order to simplify the identification of metabolic patterns. 10 

These latent structures lack a direct biological interpretation due to the intrinsic constraints 11 

associated to a PCA model. Here we introduce a new method that significantly improves 12 

the interpretability of the principal components with a direct link to metabolic pathways. 13 

This method, called Principal elementary modes analysis (PEMA), establishes a bridge 14 

between a PCA-like model, aimed at explaining the maximum variance in flux data, and the 15 

set of elementary modes (EMs) of a metabolic network. It provides an easy way to identify 16 

metabolic patterns in large fluxomics data sets in terms of the simplest pathways of the 17 

organism metabolism. The results using a real metabolic model of Escherichia coli show 18 

the ability of PEMA to identify the EMs that generated the different simulated flux 19 

distributions. Actual flux data of E. coli and Pichia pastoris cultures confirm the results 20 

observed in the simulated study, providing a biologically meaningful model to explain flux 21 

data of both organisms in terms of the EMs activation. The PEMA toolbox is freely 22 

available for non-commercial purposes on http://mseg.webs.upv.es. 23 
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 2 

1 Introduction  25 

Principal component analysis (PCA) is one of the most applied statistical methods in 26 

Systems Biology. Its ability to compress large amounts of data, combining different kinds 27 

of variables, allows distinguishing between biologically relevant information and noise. 28 

This information is contained in a set of new variables built by PCA, the so-called principal 29 

components (PCs). In the context of fluxomics, PCA has been widely applied
1-3

 with two 30 

main goals: (i) identify which parts of the metabolism retain the main variability in flux 31 

data and (ii) relate them to the behaviour of the organism, e.g. substrates consumption and 32 

protein production. This way, the PCs identify subsets of reactions based on the correlation 33 

structure of the flux data.  34 

However, in the context of fluxomics PCA has some limitations. It is difficult to drive the 35 

PCs into a biologically meaningful solution, since PCA is a hard modelling method. For 36 

example, the main active pathways in a metabolic network could not be orthogonal, so PCA 37 

would be unable to describe them accurately in their PCs. To overcome these problems 38 

Multivariate Curve Resolution - Alternating Least Squares algorithm
4
 (MCR-ALS) has 39 

been proposed to improve the biological interpretation of the components
5
. This method 40 

permits the incorporation of constraints, such as non-negativity and selectivity, when 41 

building the components. Finally, as with PCA, different sets of reactions or pathways 42 

emerge as the driving forces guiding the fluxes in the metabolic network.  43 

Here we propose a new method to improve the interpretability of the components extracted 44 

by PCA and MCR-ALS, using the topology of the network to obtain the biologically 45 

relevant pathways in the model. This method is called Principal elementary modes analysis 46 

(PEMA). Its main advantage, over the previous methods, is that instead of building 47 

artificial components based solely on the correlation structure of the data (and some a 48 

priori knowledge in the case of MCR-ALS), the components are selected from the 49 

complete set of elementary modes (EMs) of the metabolic network. The EMs are the 50 

simplest representations of pathways across a metabolic network. Basically, each EM 51 

connects substrates with end-products concatenating reactions in a thermodynamically 52 

feasible way. The EMs analysis of a metabolic network allows extracting meaningful 53 
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 3 

information of a fluxome data set, since a given metabolic state can be represented as a 54 

linear combination of a specific subset of EMs. The PEMA algorithm is designed to 55 

identify the most relevant set of active EMs in flux data, using a strategy akin to PCA in 56 

dimensionality reduction.  57 

Some methods have been proposed in the literature to select a set of representative or active 58 

EMs. One such attempt is the concept of the α−spectrum
6
, which involves a linear 59 

optimization to determine how the extreme pathways (a systemically independent subset of 60 

EMs) contribute to a given steady-state flux distribution. This algorithm allows the 61 

determination of maximum and minimum possible weightings for each extreme pathway. A 62 

different approach involves the quadratic decomposition of a single steady-state flux into a 63 

set of EMs
7
. In this algorithm, a particular set of EMs is chosen, based on the minimization 64 

of the weighting vector length. A reinterpretation of this methodology was also proposed 65 

by projecting the flux space into the yield space
8
, thus restricting the search for active EMs 66 

in a bounded convex space. The PEMA algorithm is quite different from the previous 67 

approaches. On the one hand, since PEMA is considering the whole set of EMs, instead of 68 

only the extreme pathways, the flux data can be interpreted with fewer pathways. On the 69 

other hand, PEMA finds the common set of active EMs in several flux distributions, 70 

reducing substantially the number of pathways needed to explain a complete flux data set.  71 

 72 

2 Methods 73 

2.1 Principal Component Analysis (PCA) 74 

PCA is a multivariate projection method aimed at finding the underlying patterns of data 75 

that represent their main features
9
. The projection is achieved defining new variables, the 76 

so-called principal components (PCs), which are built as linear combinations of the original 77 

variables, exploiting the correlations among them. The PCA model equation is:  78 

X=T·P
T
+F (1) 

where X is the original data set, T is the score matrix, containing the new uncorrelated 79 
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 4 

variables (PCs), P  is the loading matrix, which contains the coefficients for the linear 80 

combinations of the original variables, and F  is the error matrix. The number of 81 

components extracted by PCA is usually assessed taking into account the eigenvalues of the 82 

decomposition and the cumulative explained variance of the components
10

.  83 

2.2 Elementary modes  84 

The concept of elementary mode (EM) is key for the analysis of metabolic networks. The 85 

set of EMs arises from the stoichiometric matrix, and each EM is defined as a minimal set 86 

of cellular reactions able to operate at steady-state, with each reaction weighted by the 87 

relative flux they need to carry for the mode to function
11

. The EMs are usually organized 88 

in a data matrix, EM, having the EMs by columns, the reactions in the metabolic network 89 

by rows, and the relative fluxes in its entries.  90 

The set of EMs is obtained from convex analysis
12

 and it is unique for a given metabolic 91 

network. Since this set represents a convex basis, any particular steady-state flux 92 

distribution can be obtained as a non-negative linear combination of EMs. Current 93 

algorithms for the computation of EMs face a common problem when dealing with highly 94 

interconnected metabolic networks
13

. In such cases, the combinatorial explosion of the 95 

number of EMs renders the analysis of large networks difficult. Very recently, two new 96 

methods
14,15

 have been proposed to compute the EMs in large networks in a fast and 97 

efficient way.  98 

2.3 Principal elementary modes analysis  (PEMA) 99 

PEMA is proposed with the aim of improving the interpretability of the PCA results. This 100 

way PEMA uses the set of EMs as the candidates for the PCs. Let X be a flux data set with 101 

N observations or experiments and K fluxes. The PEMA model is as follows:  102 

X=Λ·PEM
T+F (2) 

where PEM is the K×E principal elementary modes matrix, formed by a subset of E EMs 103 

from the entire EM matrix; Λ  is the N×E  weightings matrix; and F  is the N×K  residual 104 

matrix. It is worth noting that the values in Λ are forced to be positive, since from a 105 
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 5 

network-based point of view, each possible steady-state flux distribution can be expressed 106 

as a non-negative combination of EMs
16

.  107 

In PEMA algorithm, the PEMs are chosen from the complete set of EMs in a step-wise 108 

fashion. The weightings associated to the PEMs are obtained by solving Equation 2:  109 

Λ=X·PEM·(PEM
T·PEM)

-1
 (3) 

Unlike the loadings in PCA, the PEMs are not orthonormal, so Equation 3 usually requires 110 

the computation of the pseudo-inverse of PEM
T·PEM.  111 

The first step of PEMA consists of calculating the weightings for each EM. So, initially, 112 

PEM and Λ are column vectors. Then the explained variance by each EM is obtained as 113 

follows
10

:  114 

�� = 100% ∙ (‖�‖ − ‖�‖)/‖�‖ (4) 

The EMs are sorted by EV, and the EM explaining most variance becomes the first PEM, 115 

with its associated Λ values. Afterwards, the variance explained jointly by the first PEM 116 

and each of the rest of EMs is calculated, and the pairs of EMs are sorted again by EV. The 117 

EM explaining more variance (jointly with the first PEM) becomes the second PEM, with 118 

their corresponding new Λ values. This procedure is iterated until reaching the maximum 119 

number of EMs. Since the weightings are recalculated for the 1st-ith PEMs when the 120 

(i+1)th PEM is computed, the amount of variance explained by the current set of PEMs is 121 

maximum.  122 

When the PEMs are extracted step-wise, selecting the EMs explaining most variance at 123 

each step, the greedy solution is obtained. This is the usual procedure in PCA. The loadings 124 

are built in such a way that they explain as much variance in data as possible, and 125 

additionally, the resulting loadings are orthonormal. However, with PEMA, the EMs are 126 

not orthonormal (neither orthogonal). Therefore, the greedy solution may not be the best 127 

subset of EMs for explaining the data, since the choice of the first PEM influences the 128 

variance in data that the following PEMs could explain.  129 
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 6 

Two tuning parameters are introduced in the algorithm to cope with the previous problem. 130 

The greedy selection of the EMs is improved using a relaxation parameter R . This 131 

parameter makes the algorithm considers the best R EMs for the current PEM, and based on 132 

the variance explained extracting more PEMs, the best EM from the set of R is selected. 133 

This relaxation step can be done for several consecutive selections of PEMs. The branch 134 

point number, B, marks up to which PEM the relaxed selection is performed. Figure 1 135 

shows an example of how the tuning parameters affect the selection of EMs. For instance, 136 

with R=3 and B=2, if one PEM is selected in the PEMA model it will be EM1, since it is the 137 

EM explaining most variance; if two PEMs are selected it is possible that EM1 and any of 138 

its 2nd PEM candidates (EM6, EM11, or EM19) explain less variance that, for example, 139 

EM4 and EM8, so these last two will be the EMs selected in the PEMA model with two 140 

PEMs, and so on. The greedy approach accumulates the selected PEMs, but with R>1 the 141 

EMs may change completely from one PEM to the next one, in order to explain more 142 

variance with a fixed number of PEMs. 143 

The number of PEMs evaluations, i.e. the number of times that the algorithm solves 144 

Equation 4 for all EMs, can be calculated using R and B. Let M be the maximum number of 145 

PEMs to be extracted by PEMA. Then, the number of evaluations, A, has the following 146 

expression:  147 

� =��� + (� − �) ∙ ��
�

���
 

(5) 

where A  grows exponentially with the number of branch points B . This way, the 148 

computation time required for each possible pair (R, B) can be estimated using Equation 5 149 

and the computation time of the greedy approach (R=B=1 and Agreedy=M).  150 

PEMA is an heuristic approach to solve the problem which EMs do reconstruct the flux 151 

data? The mathematical formulation of this problem consists of minimizing the 2-norm of 152 

X-Λ·PEM
T subject to PEM⊆⊆⊆⊆EM. The problem with this formulation is that it represents a 153 

mixed integer nonlinear programming problem, and since the number of fluxes and EMs 154 

may be extremely high, it is justified the application of an heuristic algorithm to find a 155 
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 7 

suboptimal solution to this problem. The proposed problem could be solved using genetic 156 

algorithms, however, different models have to be fit in order to get solutions with different 157 

number of PEMs. As well, the solution may change drastically depending on the initial 158 

points and the genetic operator chosen. This kind of algorithms improve an objective 159 

function, which can be the explained variance as in PEMA, but at some steps of the 160 

algorithm the search within the feasible space is performed in a random fashion, while 161 

PEMA focuses at each step in selecting the EMs explaining most variance. In this way, a 162 

single run of PEMA presents several solutions with a different number of PEMs.  163 

2.4 Data preprocessing  164 

PCA aims at explaining the main variability in data using a few PCs. If the original 165 

variables have strongly different means and/or variances, the PCs may focus on explaining 166 

only the variables with the highest values and/or variances, disregarding the small variance 167 

associated to the rest of variables.  168 

PEMA has the same problem as PCA, so the flux data has to be preprocessed. While in 169 

PCA it is relatively easy to scale and mean center the original data, in PEMA, since the 170 

EMs are fixed, this is a subtle issue. To maintain the biological meaning of the EMs, if X is 171 

scaled column-wise by their standard deviations, the EM matrix has to be modified scaling 172 

row-wise all the EMs by the same values. The scaling of the X and EM matrices gives, 173 

initially, equal importance to all fluxes in the data, since their variances are equal to 1. This 174 

preprocessing is always recommended, since the variance of external fluxes can be 175 

exponentially greater than internal fluxes. 176 

The mean centering of the PEMA model must not be done. When the data matrix X is mean 177 

centered, irreversible reactions would take negative fluxes thus the directionality of the 178 

fluxes is lost. In this way, if X is mean centered the PEMs are no longer able to fit the flux 179 

data. One way to overcome the mean centering problem is fitting additional PEMA models 180 

excluding the variables with the highest means. Once computed, the global and the local 181 

models can be compared in terms of EMs activation and reaction usage, to assess whether 182 

the global model is accounting for the fluxes with small values. 183 
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 8 

2.5 PEMA algorithm 184 

The PEMA algorithm consists of the following steps:  185 

1. Scale column-wise the original flux data X by their standard deviations.  186 

2. Scale row-wise the elementary modes matrix, EM, using the standard deviations of the 187 

original data set.  188 

3. Choose the number of relaxations (R) and branch points (B).  189 

4. Obtain the different PEMA models with 1 PEM, 2 PEMs, ..., M PEMs, solving Equation 190 

2.  191 

5. Select the number of EMs based on the aim of the study.  192 

6. Recalculate the weightings Λ and the explained variance with the original flux data 193 

(without scaling).  194 

Practitioners should start with the greedy approach (R=B=1) and then, using the prediction 195 

of the computation time, select different configurations to compare the models. To span the 196 

different solutions that PEMA produces when changing the parameters, users are 197 

encouraged to follow the configurations presented in section 3.1 (see also Table 1). For 198 

large datasets, e.g. genome-scale networks with millions of EMs, the computation of the 199 

greedy solution may take several hours. To avoid this long computation time, users can pre-200 

select a subset of relevant EMs prior to applying PEMA. 201 

Also, the number of PEMs selected in each model, as in PCA, depends on the aim of the 202 

study
17,18

. In this way, the scree plot (see next section) may help to select the EMs 203 

explaining most variance in the flux data.  204 

 205 

3 Results 206 

3.1 Escherichia coli simulated study  207 
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 9 

A simulated study is proposed here to validate the performance of PEMA. The study 208 

consists of simulating different flux data sets, using several subsets of elementary modes 209 

(EMs), in order to assess if PEMA algorithm is capable of identifying them. The metabolic 210 

model of Escherichia coli, presented in reference 
19

, is used for this purpose (see Figure 2). 211 

The set of reactions can be found online in the Supplementary Materials section. The set of 212 

255 EMs from the metabolic network of E. coli are obtained using EFMTOOL
20

.  213 

The simulated study is as follows: 100 different data sets are generated using from 1 to 10 214 

EMs selected at random from the EM matrix. Ten different configurations of PEMA are 215 

applied on the present data, varying the values of the relaxations and branches R-B: 1-1, 5-216 

1, 10-1, 20-1, 2-2, 5-2, 10-2, 3-3, 5-3, 4-4. The configurations are sorted in increasing 217 

computation time. 218 

The identifiability of each PEMA configuration can be assessed computing how many 219 

times the complete set of EMs that generated the simulated flux data is identified. This 220 

information is presented in Table 1. As expected, for a fixed value of B, the higher is R the 221 

better tends to be the solution. Also, the more branch points are considered the more sets of 222 

EMs tend to be completely identified.  223 

Even though not all the EMs are identified when the number of generating ones increases, 224 

all PEMA configurations are able to detect a subset of them. The precision and recall of the 225 

EMs identifications are shown in Figure 3. The high precision implies that most of the EMs 226 

identified are true ones, and also the high recall implies that the method identified most of 227 

the original EMs. With the exception of the greedy approach, all PEMA configurations are 228 

able to identify 80-100% of the original 3-4 EMs. The most complex configurations, i.e. 229 

when B=3 or B=4, maintain this level of accuracy with 5-6 generating EMs.  230 

It is also interesting to check the mean number of PEMs identified by the different 231 

configurations and the percentage of explained variance. Since there exists a high degree of 232 

redundancy in any EM matrix, different linear combinations of EMs can represent a given 233 

flux distribution. This is clearly seen in Figure 4. Up to 5-6 generating EMs, the most 234 

complex PEMA configurations identify the same number of PEMs, matching the original 235 

ones (see Figure 4a). From 7 generating EMs onwards, the average number of PEMs grows 236 
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slower, identifying between 7 and 8 PEMs on average with 10 generating EMs. However, 237 

the percentage of explained variance by these PEMs remains very high, more than 99% 238 

having 7-10 generating EMs (see Figure 4b). The reduction in the number of EMs might 239 

also be due to the fact that some of the randomly selected EMs, with a random weighting 240 

on the model, have a small contribution to the variance in comparison to the EMs with 241 

greater coefficients. A table with the minimum, mean and maximum values for Figure 4a 242 

and the standard deviations for Figure 4b) can be found in Supplementary Materials.  243 

3.2 E. coli real data  244 

The flux data of E. coli presented in reference 
19

 is used in this section to check the 245 

performance of PEMA with real data. Each observation in this dataset describes a flux 246 

distribution in E. coli, after a specifically targeted gene knock-out. The metabolic network 247 

and EMs set considered here are the same as in the simulated study (see Figure 2). The flux 248 

data matrix, X considered in this paper has 21 observations (rows) and 42 fluxes (columns). 249 

In these 21 observations, a subset of the original 32 observations, the same set of reactions 250 

is considered. The flux data set can be found online. 251 

Based on the results of the simulated study, the tuning parameters R and B are both set to 4, 252 

to obtain more accurate results. The computation time of PEMA in this case is 2 minutes 253 

(2.9 GHz Intel Core I7, 8GB RAM 1600 MHz), while the computation time of the greedy 254 

approach is less than a second. Figure 5a shows the cumulative scree plot of the PEMs. 255 

This kind of plot is usually employed in PCA to assess the appropriate number of principal 256 

components. Here, 8 PEMs are selected: EM125 , EM167 , EM254 , EM27 , EM235 , EM16 , 257 

EM143 and EM145, explaining 97.8% of variance with the scaled data, and 99.4% of the real 258 

variance. As opposed to PCA, in PEMA the PEMs are usually explaining common sources 259 

of variability. This can be seen in Figure 5b, where the direct sum of all variances explained 260 

by the PEMs is 150%. For instance, EM125 explains more than 80% of variance in data, but 261 

this variance is shared with other PEMs. Nevertheless, the PEMs explaining most variance 262 

can be considered the most relevant in the model.  263 

The degree of orthogonality of the PEMs can be obtained by dividing the variance 264 

explained by the model (99.4%) by the sum of the explained variances of each PEM. Here, 265 
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the degree of orthogonality is 66.3%, which implies that the solution obtained by the 266 

PEMA is strongly non-orthogonal and, therefore, quite different from the PCA one.  267 

To assess if some observation is not well modelled the percentage of explained variance per 268 

observation can be computed (see Figure 6a). Also the observed versus predicted plot can 269 

be used to visualise the differences at a data point level (see Figure 6b). In the present case, 270 

the percentage of explained variance is 97-99% for all observations, and the predicted 271 

values lay close to the true ones.  272 

The PEMA model can be easily interpreted using an adaptation of the classical PCA 273 

loadings and scores plot. This way, Figures 7-8 shows the principal elementary modes plot 274 

and the weightings plot, respectively. The PEMs plot shows which reactions are active for a 275 

specific EM, while the weightings plot represents the contribution weight of each PEM on 276 

each observation (i.e. knock-out). A first look at the selected PEMs shows that the whole 277 

set captures the formation of all metabolic requirements for cell synthesis, that is, reactions 278 

31-41 (see Figure 7). EM125 is the PEM explaining most variance in data (see Figure 5b). 279 

This pathway depicts the glucose flux into glycolysis and TCA, without any exchange 280 

fluxes for cell synthesis metabolites. This leads to a high rate of NADH production, which 281 

generally is used to synthesize ATP. For this, EM125 can be interpreted as the cell’s 282 

catabolic pathway, while the remainder PEMs capture the fluxes for cell synthesis 283 

metabolites, thus representing anabolic pathways leading to synthesis of biomass.  284 

Since EM125 is related to the catabolism, it has a strong weight in each knock-out (see 285 

Figure 8). Nevertheless, some observations seem to have a greater impact in this PEM than 286 

others, in particular the knock-outs 2, 3, 10, 14, 15 and 16, representing the genes glk, pgm, 287 

gpmB, rpiB, tktB and talB. The pgm gene codifies the phosphoglucomutase that converts 288 

G6P into G1P and its deletion would likely direct the carbon flux to glycolysis or the 289 

pentose phosphate pathway. The genes rpiB, tktB and talB, also scoring a high weight, are 290 

related to pentose phosphate reactions.  291 

The EMs related to anabolic metabolism represent all the remaining exchange fluxes that 292 

produce the cell synthesis metabolites. EMs 16, 27, 143, 145 and 167 connect glucose 293 

directly to the pentose phosphate pathway, which is fundamental in the metabolism, since it 294 
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generates NADPH, a reduced equivalent important in biosynthetic processes
21

. Moreover, 295 

EM16 and EM167 are responsible for balancing the metabolic fluxes towards E4P and R5P, 296 

being the sole PEMs that predict the fluxes of these metabolites to cell synthesis. With a 297 

few exceptions, the knock-out experiments have similar weight values inside each anabolic 298 

PEM. These exceptions are the observations 1, 5, 8, 12 and 14, representing the knockouts 299 

galM, pfkB, gapC, pykF and rpiB. This group of genes has low weightings in EM254 and 300 

EM235, meaning that these flux modes have a minor impact in the metabolism of these 301 

mutants, that is, a lower flux in the synthesis of Pyr, 3-PG, 2-KG and OAA for biomass 302 

synthesis. Conversely higher weightings from these mutants are observed for EM27  and 303 

EM16, that is, in the production of E4P, PEP and G6P. Another curious aspect of EM16 and 304 

EM27 is the activation of the glyoxylate bypass. This pathway is known to be active in low 305 

glucose concentrations
22

, but repressed when glucose becomes available in higher 306 

concentrations
23,24

. The observations 18 to 21 reflect E. coli wild-type cultured at a dilution 307 

rate of 0.2 h−1, used as control experiments. In these observations, positive fluxes for the 308 

gyoxylate pathway were registered, possibly due to a low glucose feed to the culture.  309 

Finally, all the PEMs have a zero coefficient for fermentative pathways (reactions 28-30), 310 

therefore these fluxes are not being represented by the model. However, looking at the 311 

original data, all the observations have zero values for fluxes 28 and 29. Regarding flux 30, 312 

few observations (4 out of 21) have a non-zero value for it. For the latter case, since PEMA, 313 

as PCA, aims at explaining the covariance between the original variables using the PEMs, 314 

if most of the values in a variable are 0 it is difficult for PEMA to identify the EM 315 

generating these slight differences. The extraction of more PEMs may correct that, 316 

however, the risk of overfitting is higher and the model would become less parsimonious.  317 

3.3 Pichia pastoris real data  318 

A second real case study is analysed here: a fluxome for the growth of recombinant P. 319 

pastoris. This data set was based on a statistical design of experiments to test the effects of 320 

culture media factors in the flux data. The media composition was prepared according to 321 

the Invitrogen’s guidelines for P. pastoris fermentation, and consists mainly on mineral 322 

salts. 26 shake flask experiments were performed with variations on 11 media factors 323 
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selected for statistical design. Glycerol was used as carbon source in every experiment.  324 

The metabolic network for the central carbon metabolism of P. pastoris used here is largely 325 

based on the network proposed in reference 
25

, with adaptations from other central carbon
26

 326 

and genome-scale networks
27

. The network consists of 43 metabolic reactions, 34 internal 327 

metabolites and 10 exchange reactions (see Figure 9). The main catabolic reactions are 328 

represented in this network, namely glycolysis and gluconeogenesis pathways, the 329 

tricarboxylic acid cycle (TCA), the pentose-phosphate pathway, anaplerotic, fermentative 330 

and phosphorylative oxidation pathways. A biomass formation reaction is also included in 331 

the model, from selected internal metabolites based on P. pastoris cells macromolecular 332 

compositon
28

. There exist 158 EMs in the metabolic model. The flux data set and the 333 

elementary modes matrix can be found online in the Supplementary Material section. 334 

The results of PEMA with this data set are the same using either the greedy approach and 335 

the most complex approach presented here (R=B=4 ), which takes 35 seconds. This 336 

indicates that the results are stable against the different PEMA configurations. 99.5% of the 337 

scaled data is explained using 3 PEMs, with a degree of orthogonality of 70% (i.e. the 338 

variance explained by the 3 PEMs sums 141%). As in the previous real case study, this 339 

implies that PCA cannot obtain these results using orthogonal components. The cumulative 340 

scree plot and the variance explained by each PEM are shown in Figure 10.  341 

All scenarios are being represented by the selected EMs, as can be seen in the explained 342 

variance per observation plot (see Figure 11a); and the observed versus predicted plot (see 343 

Figure 11b) shows an even better fitting than with E. coli, which could be due to different 344 

levels of noise in the flux data sets.  345 

Figure 12 shows the PEMs and weightings plots. The PEMs identified are EM147, EM10 346 

and EM149. The binary version of the PEM plot appears in the Supplementary Material 347 

section. The binary version of the weightings plot is not included, since all observations use 348 

all PEMs.  349 

The first PEM consumes glycerol (reactions 35 and 29) and crosses half of the glycolytic 350 

pathway (reactions 4-7) to activate the TCA cycle (reactions 15, 17-20), clearly 351 
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representing the cell’s catabolism. EM10 uses also reactions 35, 29 and 4-7 to activate the 352 

TCA cycle, but in this case reaction 16 is used instead of 17. It also activates the pentose 353 

phosphate pathway (reactions 8-13), leading to the synthesis of redox equivalents 354 

(NADPH), but also precursor metabolites for the synthesis of biomass. For this reason, this 355 

PEM groups the reactions for the cell’s anabolism. At the end, this is the PEM responsible 356 

of the biomass production in all observations. The last PEM assimilates glycerol in the 357 

same way as EM147 and afterwards focuses on the production of ethanol (reactions 25 and 358 

39). The occurrence of ethanol synthesis during aerobic respiration in yeast is a common 359 

feature (Crabtree effect). Nonetheless, unlike most yeasts, P. pastoris does not typically 360 

exhibit a significant ethanol production, favouring the aerobic metabolism. This fact is well 361 

captured by the relative lower explained variance of EM149 in comparison to EM147 (see 362 

Figures 10 and 12b).  363 

Finally, as expected, no EM related to methanol assimilation (reactions 30-32 and 26) and 364 

final products such as pyruvate or citrate (reactions 41 and 42, respectively) is selected, 365 

since all fluxes are 0 for these reactions. 366 

 367 

4 Discussion 368 

In this paper a new method called principal elementary modes analysis (PEMA) is 369 

presented with the aim of improving the interpretability of a traditional PCA modelling in 370 

fluxomics. PEMA builds a PCA-like model using the complete set of elementary modes 371 

(EMs) in order to identify which ones, the PEMs, are the driving forces generating the flux 372 

distributions.  373 

The simulated study on E. coli shows the high identifiability of PEMA. The most complex 374 

PEMA configurations are able to detect completely 1-4 generating EMs and, a high 375 

percentage of them, up to 6-7 EMs. Even though not all the EMs are identified by PEMA, 376 

the method provides always a parsimonious solution explaining more than 99% of variance. 377 

The analysis of actual flux data of the same organism confirms the tendency shown with 378 

the simulated fluxes. 8 PEMs are identified explaining 99.4% of variance in the flux data. 379 
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This way, most of the PEMs identified are describing the glucose consumption, the 380 

glycolytic pathway and the TCA cycle, but afterwards, each of them has a different 381 

function in the cell synthesis. The results obtained with P. pastoris are coherent with E. 382 

coli’s. In this case 3 PEMs are selected describing accurately the metabolic pathways being 383 

activated when glycerol is used as main carbon source in aerobic conditions.  384 

A significant number of graphical tools, all of them integrated in the PEMA toolbox, are 385 

provided in this paper. The cumulative scree plot, the observed versus predicted plot, and 386 

the variance explained per observation plot can be used to decide the number of PEMs to 387 

extract. The plot showing the variance explained by each PEM and the PEMs and 388 

weightings plots are useful to exploit the PEMA model in terms of relevance and biological 389 

interpretation of the PEMs, and their activation among the observations.  390 

Additionally, the theoretical estimation of the runs of PEMA algorithm when the tuning 391 

parameters change permits to establish a relatively accurate upper bound of the 392 

computation time, based on the greedy approach solution. This allows designing wisely a 393 

set of trials to compare the results of the different configurations of PEMA.  394 

 395 

5 Conclusion 396 

In this work, PEMA is developed to explain the inherent variability on a fluxomics dataset, 397 

while preserving biological meaning. This can be regarded as an exploratory technique that 398 

allows researchers to interpret a data set by uncovering the most representative pathways 399 

operating in a cell. 400 

There is a potential use of this methodology in bioprocess engineering applications, such as 401 

the development of structured metabolic models in cell culture fermentations. PEMA can be 402 

useful in the identification of a specific set of EMs that explains variations in cellular 403 

metabolic rates under certain operational conditions, such as temperature and pH. This 404 

would allow the improvement of the process kinetics’ modelling by the incorporation of 405 

biological knowledge from the cellular system.  406 
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Tables 471 

 472 

Table 1. Complete identifications of the generating elementary modes.  473 

Configuration Number of generating elementary modes 

R-B 1 2 3 4 5 6 7-10 

1-1 10/10 7/10 2/10 2/10 0/10 0/10 0/10 

5-1 10/10 10/10 5/10 3/10 1/10 1/10 0/10 

10-1 10/10 10/10 5/10 4/10 1/10 0/10 0/10 

20-1 10/10 10/10 5/10 5/10 1/10 0/10 0/10 

2-2 10/10 9/10 5/10 4/10 1/10 0/10 0/10 

5-2 10/10 10/10 5/10 2/10 1/10 0/10 0/10 

10-2 10/10 10/10 7/10 7/10 2/10 1/10 0/10 

3-3 10/10 9/10 7/10 6/10 4/10 1/10 0/10 

5-3 10/10 10/10 7/10 8/10 5/10 1/10 0/10 

4-4 10/10 10/10 7/10 8/10 6/10 3/10 0/10 

  474 
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List of Figure captions 475 

 476 

Figure 1. Relaxation (R) and branch point (B) parameters. When B=R=1 the EM explaining 477 

most variance is chosen and fixed at each step. If these parameters change, different subsets 478 

are considered for each PEM identification.  479 

Figure 2. Metabolic network of E. coli considered for the present study. 480 

Figure 3. Precision and recall of the different configurations. Precision is calculated by 481 

dividing the sum of the true identified EMs by the sum of the true identified plus the false 482 

identified ones. The recall is calculated by dividing the true identified EMs divided by the 483 

true ones plus the true non-identified ones.  484 

Figure 4. a) Mean number of identified EMs. b) Mean percentage of explained variance. 485 

Figure 5. a) PEMA Cumulative scree plot and b) Percentage of variance explained by each 486 

PEM in E. coli study: 8 PEMs are selected explaining 97.4% of variance in the scaled data.  487 

Figure 6. a) Explained variance per observation and b) Observed versus predicted plot in E. 488 

coli study.   489 

Figure 7. Principal elementary modes plot in E. coli study. The PEMs are represented by 490 

columns and the corresponding reactions by rows. Blue squares represent positive values, 491 

and dashed red squares the negative ones. The darker the colour, the more highly 492 

positive/negative is the value.  493 

Figure 8. Weightings plot in E. coli study. The weightings of the PEMs are represented by 494 

columns and the observations by rows. The darker the colour, the more important is the 495 

PEM for the corresponding observation.  496 

Figure 9. Metabolic network of P. pastoris considered for the real case study. 497 

Figure 10. a) PEMA Cumulative scree plot and b) Percentage of variance explained by 498 

each PEM in P. pastoris study: 3 PEMs are selected explaining 99.5% of variance in the 499 
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scaled data.  500 

Figure 11. a) Explained variance per observation and b) Observed versus predicted plot in 501 

P. pastoris study.  502 

Figure 12. Principal elementary modes and weightings plots in P. pastoris study. The 503 

PEMs are represented by columns in both plots; reactions and observations appear row-504 

wise in each plot, respectively. Blue squares represent positive values, and dashed red ones 505 

the negatives. The darker the colour, the more highly positive/negative is the value.  506 
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