Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Page 1 of Organic & Biomolecular Chemistry Chemistry

Cite this: DOI: 10.1039/b000000x

www.rsc.org/obc

Cobalt (II) catalyzed C(sp)-H bond functionalization of alkynes with phenyl hydrazines: A facile access to diaryl 1,2-diketones^{†‡}

Jaideep B. Bharate,^{a,b} Sheenu Abbat,^c Rohit Sharma,^{a,b} Prasad V. Bharatam,^c* Ram A. Vishwakarma,^{a,b,*} and Sandip B. Bharate^{a,b,*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: XXX

A cobalt acetylacetonate catalyzed oxidative diketonation of alkynes via C(sp)-H bond functionalization has been described. The reaction involves a free-radical mechanism, wherein the phenyl radical formed from phenyl hydrazine couples with Co(II) activated alkyne to produce 1,2-diketones. The reaction proceeds at room temperature in DMF with the use of Ag₂O/air as ¹⁰ oxidizing system. The utility of the protocol for synthesis of a series of imidazoles including a potent platelet aggregation inhibitor

Literature reports

trifenagrel has been demonstrated.

Introduction¹

- Diaryl 1,2-diketones are privileged building blocks for the ¹⁵ synthesis of biologically active heterocycles including imidazoles, quinoxalines and indolone-*N*-oxides.¹⁻⁴ 1,2-Diketones are also precursors for the synthesis of *N*-heterocyclic carbenes which are used as ligands in organometallic chemistry and catalysis.⁵ Because of their importance in medicinal and ²⁰ organometallic chemistry, 1,2-diketones are attractive
- chemotypes to synthetic chemists.⁶ Numerous methods are available for their synthesis (Scheme 1) including (a) radical coupling of phenyl hydrazine with styrene in the presence of copper triflate/ ferric nitrate,⁷ (b) AlCl₃-catalyzed cross-coupling
- $_{25}$ of α -oxo acid chloride with organostannane compound at -30 °C), 8 (c) Ru-catalyzed oxidation of stilbenes, 9 (d) coupling of iodobenzene with phenyl propiolic acid in the presence of CuI/Cu(OTf)_2, 10 (e) Ru(bpy)_2Cl_2, 9 VOCl_3, 11 Fe_3O_4, 12 Bi(NO_3)_3/Cu(OAc)_2 13 catalyzed oxidation of α -halo or α -hydroxy
- ³⁰ ketones, (f) conversion of 1,3-diketones to 1,2-diketones in the presence of Lewis acid (FeCl₃) and TBN or I₂/DMSO,^{14, 15} (g) PdBr₂/ CuBr₂,¹⁶⁻¹⁹ PdCl₂,²⁰ CuI,²¹ Ru,²² or KMnO₄²³ catalyzed Wacker-type oxidation of internal alkynes, (h) SmI₂ catalyzed transformation of N-acylbenzotriazoles to 1,2-diketones.^{24, 25}
- ³⁵ Additionally, few metal-free synthesis of 1,2-diketones have also been reported.^{26, 27}

 $\begin{array}{c} \begin{array}{c} N=N \\ N=N \\$

Scheme 1. Literature methods and our new method for preparation of 1,2-40 diketones

Although several methods are reported, most of them have one or other drawback such as: (a) expensive metal catalysts,^{9, 11, 13, 16-19} (b) prior synthesis of starting materials (phenyl propiolic acids ⁴⁵ and diphenyl alkynes,^{10, 16-19, 23} α-haloketones,^{9, 11, 13} and 1,3-diketones^{14, 15}) is required, and (c) many involve vigorous and harsh reaction conditions. In this context, we thought of exploiting terminal alkynes towards the synthesis of diaryl 1,2-diketones *via* transition metal catalyzed C(sp)-H bond ⁵⁰ functionalization.

Transition metal-catalyzed coupling of sp C–H bond of alkynes is perhaps one of the most synthetically useful C–H bond functionalization reactions.²⁸⁻³² Among various transition metalcatalyzed C-H bond functionalizations, cobalt-mediated C–H ⁵⁵ bond functionalization has met with recent success for C-C bond formation reactions.³² Herein, we employed the strategy to utilize a phenyl hydrazine as a phenyl radical source,³³⁻³⁸ for coupling with activated C–H of phenyl acetylene to yield diphenyl 1,2-

Paper

^aMedicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu-180001, India. Fax: +91-191-2586333;; Tel: +91-191- 2585006;; *E-mail: sbharate@iiim.ac.in (SBB); ram@iiim.ac.in (RAV).

^bAcademy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

^c Departments of Pharmacoinformatics and Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab-160062, India. *E-mail: pvbharatam@niper.ac.in [†] IIIM Publication number IIIM/1714/2014

^{*}Electronic supplementary information (ESI) available for experimental details. See DOI: XXX

This journal is © The Royal Society of Chemistry [year]

$H_{NH_2} + H_{O} \longrightarrow H_{NN_2} + H_{O} \longrightarrow H_{O} $						
	1a	2a 3a	4a	5a		
Entry	Oxidant (mol%)	Catalyst (mol%)	Solvent	Temp.	Time (h)	3a yield ^b
1	Air	None	DMF ^c	rt	0.5	20
2	Air	None	DMSO	rt	8	5
3	Air	None	DMF	rt	8	25
4	O_2	None	DMF	rt	0.5	16
5	O_2	None	DMF	rt	8	23
6	none ^d	None	DMF	rt	8	traces ^e
7	Air, $K_2S_2O_8(50)$	None	DMF	rt	8	5
8	Air, $Na_2S_2O_8(50)$	None	DMF	rt	8	5
9	Air, BQ (50)	None	DMF	rt	8	35
10	Air, $MnO_2(50)$	None	DMF	rt	8	32
11	Air, $PhI(OAc)_2(50)$	None	DMF	rt	8	30
12	Air, AgOAc (50)	None	DMF	rt	8	30
13	Air, $Ag_2CO_3(50)$	None	DMF	rt	8	20
14	Air, Ag ₂ O (50)	None	DMF	rt	8	38
15	$O_2, Ag_2O(50)$	None	DMF	rt	8	38
16	Air, $Ag_2O(10)$	None	DMF	rt	0.5	35
17	Air, $Ag_2O(10)$	None	DMF	rt	8	$40^{\rm f}$
18 ^g	Air	$CuCl_2$ (10)	DMF	rt	8	0
19	Air	CuBr (10)	DMF	rt	8	0
20	Air	CuI (10)	DMF	rt	8	0
21	Air	$Cu(OTf)_{2}(10)$	DMF	rt	8	0
22	Air	$Cu(OTf)_2$ (10), $Fe(NO_3)_3$ (10), DABCO (3 equiv.)	DMF	0	8	50
23	Air	Co(acetate) (10)	DMF	rt	8	58
24	Air	$Co(acac)_2$ (10)	DMF	rt	8	64
25 ^h	Air, Ag ₂ O (10)	$Co(acac)_2 (10)$	DMF	rt	8	70 ^g
26	Air, $Ag_2O(10)$	$Co(acac)_2$ (10)	DMF	70	8	35
27	Air, $Ag_2O(10)$	$Co(acac)_2$ (10)	DMF: H ₂ O (9:1)	rt	8	68
-		d oxidizing agent and/ or catalyst (wherever mentione			-	

^a**1a** (1.0 mmol), **2a** (1.2 mmol) and oxidizing agent and/ or catalyst (wherever mentioned) in a mentioned solvent at rt; ^bIsolated yields after silica gel column chromatography; ^creaction does not proceed in other solvents such as ACN, DCE, dioxane, ethanol, methanol, toluene and NMP; ^dreaction under N₂ atmosphere; ^e 1.3% yield, determined by GCMS; ^f under this reaction condition, we have also isolated side products azobenzene **4a** (14%) and stilbene **5a** (13%); ^g Reactions does not proceed in presence of iron acetate, iron bromide, gold chloride and palladium acetate catalysts (10 mol%), under air, DMF, rt, 8 h reaction condition; ^h bold entry indicates optimized reaction condition for synthesis of 1,2-diketones; BQ: benzoquinone.

diaryl ketones. To the best of our knowledge, there has been no previous report on the direct synthesis of 1,2-diketones from terminal alkynes and phenyl hydrazines. In the present communication, we report $Co(acac)_2$ catalyzed synthesis of diaryl

- $_{\rm 5}$ 1,2-diketones using atmospheric oxygen and Ag₂O as a mixed oxidizing system (Scheme 1). The developed method showed good substrate scope for variety of substituted phenyl hydrazines and phenyl acetylenes.
- The study was initiated with the preliminary reaction of phenyl ¹⁰ hydrazine **1a** with phenylacetylene **2a** in an open air atmosphere using various solvents. Among various solvents investigated, DMF was the best solvent for this reaction. Reaction of **1a** with **2a** in DMF at room temperature for 30 min led to the formation of diphenyl 1,2-diketone **3a** in 20% yield (Table 1, entry 1).
- ¹⁵ Intriguingly, this result does not involve the use of any metal catalysts or oxidizing agent; however, the poor yields warranted optimization of the reaction conditions. When the open air catalyst-free reaction was continued further for 8 h, the desired product was formed in 25% yield (entry 3). When the reaction ²⁰ was performed with molecular oxygen, the desired product **3a**
- was formed in similar yields to that of atmospheric air (entries 1 and 3 *versus* 4-5). Interestingly, under N₂ atmosphere in dry DMF, only trace amount of product was formed (1.3%, entry 6), which indicated the role of oxygen for the progress of the

²⁵ reaction. Next, we investigated the reaction in the presence of various oxidants such as K₂S₂O₈, Na₂S₂O₈, benzoquinone, MnO₂, PhI(OAc)₂ and silver catalysts AgOAc, Ag₂CO₃ and Ag₂O in DMF (entries 7-17). Reactions performed in the presence of benzoquinone, MnO₂, PhI(OAc)₂, AgOAc and Ag₂O showed
³⁰ formation of diphenyl 1,2-diketone **3a** in 30-40% yield. The 10 mol% of Ag₂O was found to be optimal for efficient formation of desired product (entry 17). We further made attempts to improve the product yield beyond 40% under catalyst and oxidant free reaction conditions, by varying the relative equivalents of both
³⁵ the substrates; however all such attempts were unsuccessful.

Next, we tried to improve the reaction yield by using various catalysts such as iron acetate, iron bromide, gold chloride and palladium acetate, Cu-based catalysts CuCl₂, CuBr, CuI, Cu(OTf)₂, Co(acetate) and Co(acac)₂ (entries 18-21 and 23-24). ⁴⁰ The copper triflate/ ferric nitrate,⁷ which was used earlier for the synthesis of 1,2-diketones from phenyl hydrazines and styrenes, was also investigated for our reaction. Under this condition (entry 22), desired 1,2-diketone **3a** was formed in 50% yield. However, with the use of only copper triflate, it did not led to the product ⁴⁵ formation (entry 21). Among various catalysts attempted, Co(aceta) in the presence of Arg O provided best results (70%)

 $Co(acac)_2$ in the presence of Ag_2O provided best results (70% yield of **3a**) (entry 25). When the entry 25 condition, was attempted under heating (70 °C), the product yield was decreased

Page 2 of 7

from 70 to 35% (entry 25 versus 26). Next, in order to check whether addition of water as an additional oxygen source results in the improvement of product yield, reaction was performed in the mixture of DMF and water. Reaction in DMF: water (9:1) led 5 to the formation of equivalent yield of the desired product 3a to

that of optimized condition (entry 27 versus 25). Thus, we used entry 25 as an optimized reaction for further experiments.

With the optimized reaction condition in hand, we explored the utility of this approach for oxidative coupling of various

- 10 substituted phenyl hydrazines with phenylacetylene. As shown in Table 2, various substituted phenyl hydrazines were well tolerated in the reaction. The phenyl hydrazines substituted with various electron-withdrawing groups such as F, Cl, Br, I, CF₃ (entries 2, 5, 12, 13, 15) as well as electron-donating groups such
- 15 as OCF₃, t-Bu groups (entries 3 and 10) gave corresponding 1,2diketones in good yields. In order to check whether the reaction works with -CN, -NO₂ substituents on aromatic rings, the reaction between 4-cyano phenyl hydrazine and 3-nitro phenyl hydrazine with phenylacetylene was attempted, however desired
- 20 products were not obtained (entries 29-30 in Table 2). The phenylacetylenes substituted with various electron-donating groups (e.g. methyl, ethyl, propyl, OMe, acetylene, tert-butyl; entries 6-9 and 21-26), as well as electron withdrawing groups (e.g. F, Cl, Br; entries 11, 14, 16), participated well in the
- 25 reaction. Reaction of 2-ethynylpyridine (entry 31) was also attempted, however the product was not formed. However, the reaction was also well tolerated for thiophene heterocycle (entries 17 and 27), bicyclic (entries 18 and 28), tricyclic (entry 19) and biphenyl (entry 20) acetylenes, producing desired products in
- 30 good yields All our attempts with aliphatic alkynes such as 1hexyne, 1-heptyne, 1-octyne failed to give desired 1,2-diketones; wherein primarily the azobenzene 4a and styryl products were formed.

35 Table 2. Substrate scope for the synthesis of diary	l 1,2-diketones ^a
н	o

	$R \xrightarrow{\Pi} NH_2 + = Ar = \frac{Co(acac)_2/Ag_2O}{DMF/rt, 8 h} R \xrightarrow{\Pi} O$			
	1	2	3a-i	
Entry	R	Ar	Product	% yield ^b
1	Н	-Ph	3a	70
2	$p-CF_3$	-Ph	3b	65
3	p-OCF ₃	-Ph	3c	68
4	m-CF ₃	-Ph	3d	68
5	p-I	-Ph	3e	72
6	H	-Ph(p-Me)	3f	70
7	Н	-Ph(p-C=CH)	3g	64
8	Н	-Ph(p-CH ₂ CH ₂ CH ₃) 3h	60
9	Н	-Ph(p-tBu)	3i	68
10	<i>p</i> -tBu	-Ph	3i	70
11	H	-Ph(<i>p</i> -F)	3ј	68
12	p-F	-Ph	3j	70
13	p-Cl	-Ph	3k	62
14	H	-Ph(p-Cl)	3k	67
15	<i>p</i> -Br	-Ph	31	68
16	Н	-Ph(p-Br)	31	66
17	Н	-thiophen-3-yl	3m	62
18	Н	-naphthalen-1-yl	3n	72
19	Н	-anthracen-10-yl	30	64
20	Н	-Ph(p-Ph)	3р	64
21	p-OCF ₃	-Ph(p-OMe)	3q	62
22	p-CF ₃	-Ph(p-Me)	3r	65
23	p-CF ₃	-Ph(p-Et)	3s	68

This journal is © The Royal Society of Chemistry [year]

24	<i>p</i> -tBu	-Ph(p-Me)	3t	63	
25	p-F	-Ph(p-OMe)	3u	66	
26	p-I	-Ph(p-OMe)	3v	65	
27	p-Br	-thiophen-3-yl	3w	63	
28	p-F	-naphthalen-1-yl	3x	68	
29	p-CN	-Ph	3у	0	
30	$m-NO_2$	-Ph	3z	0	
31	Н	-pyridin-2-yl	3aa	0	

^aReagents and conditions: 1 (1.0 mmol), 2 (1.2 mmol), Co(acac)₂/Ag₂O (10 mol% each), DMF, rt, 8 h. ^bIsolated yields after silica gel column chromatography.

40 The possibility of free-radical mechanism was investigated by performing reaction in the presence of free-radical quencher TEMPO. Reaction performed in the presence of TEMPO produced trace amounts of product 3a, which indicated that the reaction involves free-radical mechanism. As confirmed by 45 TEMPO experiment and quantum chemical calculations (details provided in section S6 of ESI), the reaction pathway possibly involves a radical mechanism. The reaction mechanism showing key possible reaction intermediates is depicted in Scheme 2.

50 Scheme 2. Plausible reaction mechanism

Next, utility of the protocol for the synthesis of imidazoles was investigated. The treatment of 1,2-diketone 3a with aldehydes 6ac in acetic acid produced imidazoles 7a-c in 60-70% yields 55 (Scheme 3, route A). It is noteworthy to mention that the one-pot

synthesis of 2,4,5-trisubstituted imidazoles 7a-c directly from phenylacetylene 2a and phenyl hydrazine 1a was also successful (Scheme 3, route B).

65 Trifenagrel (8), a 2,4,5-triaryl imidazole is a potent platelet aggregation inhibitor.³⁹ The present method was utilized for the synthesis of this inhibitor as depicted in Scheme 4. It is noteworthy to mention that we could prepare imidazole 7d using a one-pot manner directly from precursors 1a, 2a and 6d. 70 Treatment of phenyl hydrazine 1a, phenylacetylene 2a and 2-

Journal Name, [year], [vol], 00-00

formyl phenol **6d** in one-pot in presence of the Co(II)/Ag₂O/air catalytic system and NH₄OAc/ AcOH produced imidazole **7d**. Treatment of intermediate **7d** with 2-chloro-N,N-dimethylethanamine (**9**) in the presence of K₂CO₃ produced s trifenagrel (**8**) in 70% yield.

Scheme 4. Synthesis of trifenagrel (8). Reagents and conditions: (a). 10 mol% Co(acac)₂, 10 mol% Ag₂O/DMF, air atm, AcOH, NH₄OAc, 120 °C, 2 h, 55%; (b) K_2CO_3 , rt, 6 h, 70%.

Conclusion

10

In summary, we have successfully developed new cobalt (II) catalyzed synthesis of 1,2-diketones using air/Ag_2O as a mixed oxidizing system. This is the first report on the synthesis of 1,2-

¹⁵ diketones from terminal alkynes. Developed method is operationally simple and could be used efficiently for the preparation of variety of biologically important heterocycles as demonstrated by the synthesis of trifenagrel. This protocol may serve as an excellent method for C–H activation of terminal
 ²⁰ alkynes to study its scope in other reactions.

Experimental section

General. All chemicals were obtained from Sigma-Aldrich Company and used as received. ¹H, ¹³C and DEPT NMR spectra ²⁵ were recorded on Brucker-Avance DPX FT-NMR 500 and 400

- MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃, 7.26 ppm). Carbon nuclear magnetic resonance spectra (¹³C
- ³⁰ NMR) were recorded at 125 MHz or 100 MHz: chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent (CDCl₃, 77 ppm). ESI-MS and HR-ESIMS spectra were recorded on Agilent 1100 LC-Q-TOF and HRMS-6540-
- ³⁵ UHD machines. IR spectra were recorded on Perkin-Elmer IR spectrophotometer. Melting points were recorded on digital melting point apparatus.

General procedure for synthesis of diaryl 1,2-diketones 3a-

- **x.** To the mixture of phenyl hydrazine (1.0 equiv.) and phenyl ⁴⁰ acetylene (1.2 equiv.) in dimethylformamide was added 10 mol% of cobalt acetylacetanoate Co(acac)₂, 10 mol% silver oxide (Ag₂O) and reaction was stirred at room temperature for 8 h. After completion of the reaction (monitored by TLC), reaction mixture was filtered using whatman filter paper and then was
- ⁴⁵ extracted with ethyl acetate. The combined organic layers were dried over anhydrous sodium sulphate and evaporated on vacuo rotavapor to get crude product. The crude product was purified by silica gel (#100-200) column chromatography using *n*-hexane and ethyl acetate as an eluent to get pure products **3a-3x** in 60-72% ⁵⁰ yield.

Benzil (*3a*):⁷ Yellow solid; m.p. 94-96 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.99 (d, J = 8.0 Hz, 4H), 7.66 (t, J = 8.0 Hz, 2H), 7.52 (t, J = 8.0 Hz, 4H); ¹³C NMR (CDCl₃,100 MHz): δ 194.6, 135.0, 133.0, 129.9, 129.1; IR (CHCl₃): v_{max} 3438, 2923, 1725, 55 1682, 1596, 1581, 1449 cm⁻¹; GC-MS: *m*/z (EI) 210 (M⁺, 7), 105 (100), 77 (64), 51 (17).

I-Phenyl-2-(4-(trifluoromethyl) phenyl) ethane-1,2-dione (*3b*):⁷ Brown sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, ⁶⁰ 2H), 7.69 (t, J = 8.0 Hz, 1H), 7.54 (t, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.5, 193.1, 136.0 (t, ² $J_{CF} = 32.69$ Hz), 135.6, 135.3, 132.6, 130.3, 130.0, 129.2, 126.2; ¹⁹F NMR (376.5 MHz, CDCl₃): δ -63.36 (s, 3F); IR (CHCl₃): v_{max} 3435, 2922, 1737, 1674, 1596, 1450 cm⁻¹; GC-MS: *m/z* (EI) 278 (M⁺, 1), 173 ⁶⁵ (16), 145 (22), 125 (5), 105 (100), 77 (31), 51 (6).

1-Phenyl-2-(4-(trifluoromethoxy) phenyl) ethane-1,2-dione (*3c*):⁷ Brown sticky oil; ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H); ¹³C NMR ⁷⁰ (CDCl₃, 100 MHz): δ 193.8, 192.7, 153.9, 135.2, 132.7, 132.1, 130.0, 129.1, 128.8 (t, ^{*J*}_{CF} = 32.69 Hz), 120.7 ; ¹⁹F NMR (376.5 MHz, CDCl₃): δ -57.54 (s, 3F); IR (CHCl₃): v_{max} 3437, 1674, 1599, 1259, 1211, 1167 cm⁻¹; GC-MS: *m/z* (EI) 294 (M⁺, 2), 189 (55), 105 (100), 95 (9), 77 (26), 63 (7), 50 (3).

⁷⁵ *1-Phenyl-2-(3-(trifluoromethyl) phenyl) ethane-1,2-dione* (*3d*):⁷ Brown sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 8.28 (s, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.71-7.64 (m, 2H), 7.54 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.3, 192.6, 135.3, 133.6,

⁸⁰ 133.2, 132.6, 132.0 (t, ${}^{2}J_{CF} = 41.50$ Hz), 131.2, 130.0, 129.7, 129.2, 126.5; ${}^{19}F$ NMR (376.5 MHz, CDCl₃): δ -62.93 (s, 3F); IR (CHCl₃): v_{max} 3438, 2924, 1686, 1674, 1611, 1556, 1450 cm⁻¹; GC-MS: m/z (EI) 278 (M⁺ 1), 259 (4), 173 (18), 145 (19), 125 (4), 105 (10), 95 (1), 77 (7), 51 (1).

⁸⁵ *I*-(*4*-*Iodophenyl*)-2-*phenylethane-1*,2-*dione* (*3e*):⁴⁰ Yellow solid; m.p. 79-80 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.97 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.69-7.66 (m, 3H), 7.52 (t, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.9, 193.7, 138.4, 135.1, 132.8, 132.3, 131.0, 130.0, 129.1, 103.7; IR ⁹⁰ (CHCl₃): v_{max} 3437, 2924, 1671, 1581, 702 cm⁻¹; GC-MS: *m/z* (EI) 336 (M⁺7), 231 (69), 209 (8), 203 (15), 105 (100), 77 (54), 50 (16).

1-Phenyl-2-(p-tolyl)ethane-1,2-dione (*3f*):⁷ Yellow solid; m.p. 94-96 ⁰C; ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, J = 8.0 Hz, 95 2H), 7.88 (d, J = 8.0 Hz, 2H), 7.65 (t, J = 8.0 Hz, 1H), 7.51 (t, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.8, 194.4, 146.3, 134.8, 133.1, 130.6, 130.1, 129.9, 129.8, 129.1, 22.0 ; IR (CHCl₃): v_{max} 3436, 2923, 1726, 1671, 1450, 1216 cm⁻¹; GC-MS: *m/z* (EI) 224 (M⁺ 5), 119 100 (100), 105 (22), 91 (28), 77 (19), 65 (12), 51 (7).

1-(4-Ethynylphenyl)-2-phenylethane-1,2-dione (*3g*): Yellow sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 7.98-7.93 (m, 4H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 8.0 Hz, 2H), 3.32 (s, 1H); ¹³C NMR (CDCl₃,100 MHz): δ 194.1, 105 193.6, 135.1, 132.8, 132.7, 130.0, 129.7, 129.1, 128.8, 128.5,

82.5, 81.7; IR (CHCl₃): ν_{max} 3440, 2921, 1665, 1617, 1450 cm⁻¹; GC-MS: *m/z* (EI) 234 (M⁺ 6), 206 (32), 129 (100), 105 (88), 101 (35), 77 (50), 75 (22), 51 (17).

1-Phenyl-2-(4-propylphenyl) ethane-1,2-dione (**3h**): Yellow ⁵ sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 7.99-7.88 (m, 4H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.66 (t, *J* = 8.0 Hz, 2H), 1.70-1.59 (m, 2H), 0.95 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (CDCl₃,100 MHz): δ 194.8, 194.4, 150.9, 134.8, 130.8, 130.1, 129.9, 129.2, 129.0, 128.8, 38.3, 24.2, 13.8; ¹⁰ IR (CHCl₃): v_{max} 3439, 2923, 1721, 1668, 1604, 1450, 1049 cm⁻¹; GC-MS: *m/z* (EI) 252 (M⁺, 2), 147 (100), 119 (4), 91 (18), 51 (5).

l-(4-(Tert-butyl)phenyl)-2-phenylethane-1,2-dione (3*i*):⁷ Yellow sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 7.99 (d, J = 8.0 Hz, 2H), 7.92 (d, J = 8.0 Hz, 2H), 7.65 (t, J = 8.0 Hz, 1H), ¹⁵ 7.54-7.49 (m, 4H), 1.34 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ

- 194.8, 194.3, 159.1, 134.8, 133.1, 130.5, 129.9, 130.0, 126.1, 31.0; IR (CHCl₃): v_{max} 3449, 1733, 1669, 1598, 1217, 1177 cm⁻¹; GC-MS: m/z (EI) 266 (M⁺, 2), 161 (100), 146 (10), 105 (20), 77 (20), 51 (6).
- ²⁰ *1-(4-Fluorophenyl)-2-phenylethane-1,2-dione:* (3j):⁷ Brown solid, m.p. 68-70 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.04 (dd, J = 4.0 & 4.0 Hz, 2H), 7.98 (d, J = 4.0 Hz, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 2H); 7.19 (t, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.1, 192.7, 168.1, (d, ¹J_{CF} = 258 Hz), ²⁵ 135.1, 132.9, 132.8, 132.7, 130.0, 129.1, 116.5, (d, ²J_{CF} = 22.13

²⁵ 135.1, 132.9, 132.8, 132.7, 130.0, 129.1, 116.5, (d, ${}^{-}J_{CF} = 22.13$ Hz); ${}^{19}F$ NMR (376.5 MHz, CDCl₃): δ -101.18 (s, 1F); IR (CHCl₃): v_{max} 3440, 1657, 1643, 1633, 1452, 718 cm⁻¹; GC-MS: m/z (EI) 228 (M⁺, 6), 123 (60), 105 (100), 77 (50), 51 (15).

1-(4-Chlorophenyl)-2-phenylethane-1,2-dione (*3k*):⁷ Yellow ³⁰ solid, m.p. 66-67°C; ¹H NMR (CDCl₃, 400 MHz): δ 7.98-7.92 (m, 4H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.54-7.48 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.9, 193.2, 141.9, 135.1, 131.3, 131.2, 130.0, 129.5, 129.4, 129.1; IR (CHCl₃): v_{max} 3436, 2923, 1721, 1676, 1587, 1208, 837 cm⁻¹; GC-MS: *m/z* (EI) 244 (M⁺, 2), 209 ³⁵ (4), 139 (41), 111 (20), 105 (100), 77 (50), 51 (13).

1-(4-Bromophenyl)-2-phenylethane-1,2-dione (*3I*):⁷ Yellow solid, m.p. 86-88 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 3H), 7.53 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.8, ⁴⁰ 193.3, 135.1, 132.8, 132.5, 131.8, 131.3, 130.5, 130.0, 129.1; IR (CHCl₃): v_{max} 3443, 1633, 1456, 1420 cm⁻¹; GC-MS: *m/z* (EI) 290 (M⁺, 2), 209 (5), 185 (24), 157 (10), 105 (100), 77 (52).

1-Phenyl-2-(thiophen-3-yl)ethane-1,2-dione (*3m*):⁴¹ Yellow sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 8.22 (s, 1H), 8.02 (d, 45 *J* = 8.0 Hz, 2H), 7.68-7.64 (m, 2H), 7.51 (t, *J* = 8.0 Hz, 2H); 7.41 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.3, 187.3, 138.1, 137.0, 134.8, 132.8, 130.2, 129.0, 127.2, 127.1; IR (CHCl₃): v_{max} 3435, 1737, 1617, 1577, 1465 cm⁻¹; GC-MS: *m/z* (EI) 216 (M⁺, 18), 105 (99), 77 (71), 51 (21), (4).

⁵⁰ *I*-(*Naphthalen-1-yl*)-2-*phenylethane-1,2-dione* (**3n**):⁴² Yellow solid, m.p. 100-102 °C; ¹H NMR (CDCl₃, 400 MHz): δ 9.32 (d, *J* = 8.0 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 2H), 7.96 (dd, *J* = 8.0 & 8.0 Hz, 2H); 7.75 (t, *J* = 8.0 Hz, 1H), 7.68-7.62 (m, 2H), 7.54-7.48 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): ⁵⁵ 197.2, 194.8, 136.0, 135.0, 134.7, 130.0, 129.5, 129.0, 128.8, 128.7, 127.1, 126.0, 124.4; IR (CHCl₃): v_{max} 3443, 1633, 1452, 1120 cm⁻¹; GC-MS: *m/z* (EI) 260 (M⁺6), 155 (100), 127 (54), 105 (15), 77 (29), 51 (9).

1-(Anthracen-9-yl)-2-phenylethane-1,2-dione (**3***o*): Yellow sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 9.30 (d, *J* = 8.0 Hz, 1H), 8.70 (d, *J* = 8.0 Hz, 1H), 8.64 (d, *J* = 12.0 Hz, 1H), 8.16 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 12.0 Hz, 1H), 7.75-7.69 (m, 3H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.1, 65 194.5, 138.8, 134.8, 133.2, 131.0, 130.1, 129.5, 129.1, 128.4, 127.7, 127.4, 126.9, 122.8; IR (CHCl₃): v_{max} 3443, 1757, 1633, 1453 cm⁻¹; ESI-MS: *m/z* 311.10 [M+H⁺]; HRMS: *m/z* 311.1093 (ESI) calcd for C₂₂H₁₅O₂ (311.1093).

 I - ([1, 1'-Biphenyl]-4-yl)-2-phenylethane-1, 2-dione (3p):¹⁰

 70 Yellow solid, m.p. 103-105 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (dd, J = 8.0 Hz, 4H), 7.75 (d, J = 8.0 Hz, 2H), 7.68-7.62 (m, 2H), 7.55-7.42 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.6, 194.2, 147.7, 139.5, 134.9, 133.1, 131.7, 130.5, 130.0, 129.1, 128.7, 127.7, 127.4; IR (CHCl₃): v_{max} 3443, 1639, 1449, 1321

 75 cm⁻¹; GC-MS: m/z (EI) 286 (M⁺ 2), 181 (100), 152 (41), 105 (14), 77 (21), 51 (7).

1-(4-Methoxyphenyl)-2-(4-(trifluoromethoxy) phenyl) ethane-1,2-dione (**3***q*): Yellow sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (d, *J* = 12.0 Hz, 2H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 80 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (CDCl₃,100 MHz): δ 193.0, 192.4, 165.2, 153.7, 132.5, (d, ¹*J*_{CF} = 55.33 Hz), 131.3, 125.8, 120.6, 114.5, 55.7 ; ¹⁹F NMR (376.5 MHz, CDCl₃): δ -57.53 (s, 3F); IR (CHCl₃): v_{max} 3437, 2925, 1726, 1667, 1599, 1424, 1260 cm⁻¹; GC-MS: *m*/*z* (EI) 324 (M⁺, 85 1), 189 (10), 135 (100), 107 (7), 92 (13), 77 (16), 63 (8).

l-(*P*-*Tolyl*)-2-(4-(*trifluoromethyl*) *phenyl*) *ethane-1,2-dione* (*3r*): Brown solid; m.p. 77-78 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (d, *J* = 8.0 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 12.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 2.45 (s, 3H); ¹³C NMR 90 (CDCl₃,100 MHz): δ 193.2, 193.1, 146.7, 136.0, (t, ²*J*_{CF} = 15.0 Hz), 135.6, 130.3, 130.2, 130.1, 129.9, 126.1, 21.9; ¹⁹F NMR

(376.5 MHz, CDCl₃): δ -63.35 (s, 1F); IR (CHCl₃): v_{max} 3436, 2924, 1677, 1664, 1605, 1117 cm⁻¹; GC-MS: *m/z* (EI) 292 (M⁺, 1), 173 (9), 145 (17), 119 (100), 91 (40), 65 (17).

⁹⁵ *l*-(4-*Ethylphenyl*)-2-(4-(*trifluoromethyl*) *phenyl*) *ethane-1,2-dione* (*3s*): Brown sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (d, *J* = 8.0 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 12.0 Hz, 2H), 2.77-2.71 (quartet, *J* = 8.0 Hz, 2H), 1.27 (t, *J* = 4.0 Hz, 3H); ¹³C NMR (CDCl₃,100 MHz): δ ¹⁰⁰ 193.3, 193.2, 152.8, 135.9, (t, ²*J*_{CF} = 17.1 Hz), 135.6, 130.4, 130.3, 130.2, 128.7, 126.0, 124.7, 29.2, 15.0; ¹⁹F NMR (376.5 MHz, CDCl₃): δ -63.35 (s, 3F); IR (CHCl₃): v_{max} 3437, 2925, 1672, 1604, 1325, 1068 cm⁻¹.

I-(*4*-(*Tert-butyl*) phenyl)-2-(p-tolyl)ethane-1,2-dione (**3**t): ¹⁰⁵ Brown sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 7.91-7.85 (m, 4H), 7.54 (t, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H), 1.35 (s, 9H); ¹³C NMR (CDCl₃,100 MHz): δ 193.4, 157.7, 144.9, 129.5, 129.3, 128.9, 128.7, 128.5, 124.8, 121.2, 30.1, 28.5, 20.8; IR (CHCl₃): v_{max} 1725, 1671, 1604, 1542, 1463, 1410 cm⁻¹;

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00-00 |5

Page 6 of 7

GC-MS: *m*/*z* (EI) 280 (M⁺4), 161 (100), 146 (9), 119 (48), 91 (28), 65 (10).

l-(4-Fluorophenyl)-2-(4-methoxyphenyl) ethane-1,2-dione (*3u*):⁴³ Yellow solid, m.p. 68-70 °C; ¹H NMR (CDCl₃, 400 5 MHz): δ 8.03-7.94 (m, 4H), 7.18 (t, J = 8.0 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.0, 192.6, 168.0 (d, ¹ $J_{CF} = 257$ Hz), 165.1, 132.8, 132.7, 132.4, 116.4, (d, ² $J_{CF} = 22.13$ Hz),114.4, 55.6; ¹⁹F NMR (376.5 MHz, CDCl₃): δ -101.64 (s, 1F); IR (CHCl₃): v_{max} 3440, 1650, 1643, 10 1633, 1599, 749 cm⁻¹.

1-(4-Iodophenyl)-2-(4-methoxyphenyl) ethane-1,2-dione (**3**ν): Yellow sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 7.94-7.87 (m, 4H), 7.69 (d, *J* = 12.0 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.7, 192.0, 134.5, 15 132.2, 130.5, 130.2, 129.7, 128.9, 128.6, 127.4, 126.8, 49.6; IR (CHCl₃): v_{max} 3441, 1733, 1675, 1593, 1018 cm⁻¹.

I-(*4*-*Bromophenyl*)-2-(*thiophen-3-yl*)*ethane-1*,2-*dione* (*3w*): Pale yellow sticky solid; ¹H NMR (CDCl₃, 400 MHz): δ 8.24 (s, 1H), 7.90 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 3H), 7.42 (s, 20 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 192.0, 186.4, 137.8, 137.3, 132.4, 131.5, 130.5, 127.3, 127.2; IR (CHCl₃): v_{max} 3443, 1633, 1449, 1417, 748 cm⁻¹; GC-MS: *m*/*z* (EI) 294 (M⁺, 3), 185 (24), 111 (100), 76 (11), 50 (7).

1-(4-Fluorophenyl)-2-(naphthalen-1-yl)ethane-1,2-dione

²⁵ (*3x*):¹⁹ Pale yellow solid; m.p. 68-70 °C; ¹H NMR (CDCl₃, 400 MHz): δ 9.29 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 8.07 (t, J = 8.0 Hz, 2H), 7.97 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 8.0 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.7, 192.9, 168.0, (d, ¹ $J_{CF} = 258$ Hz), 136.1, 135.1, 134.1, 132.9, 132.8, 129.5, 128.9, 127.2, 125.9, 124.4, 116.5, (d, ² $J_{CF} = 22.13$ Hz); ¹⁹F NMR (376.5 MHz, CDCl₃): δ -101.64 (s, 1F); IR (CHCl₃): v_{max} 3444, 1667, 1650, 1597, 1411, 776, cm⁻¹; GC-MS: m/z (EI) 278 (M⁺ 5), 155 (100), 127 (62), 95 (17), 75 35 (16), 50 (3).

General procedure for synthesis of imidazoles 7a-c from 1,2-diketones. Benzil (0.2 equiv.), benzaldehyde (0.2 equiv.), and ammonium acetate (2.0 equiv.) were mixed together and were dissolved in 1.0 mL of AcOH in a round bottom flask ⁴⁰ containing a magnetic stir bar. Reaction mixture was then refluxed at 100 °C for 3 h. Then, concentrated NH₄OH solution was added to the reaction mixture at 0 °C, which resulted in formation of a white precipitate which was collected by filtration and washed with H₂O. The solid was dried in a vacuum oven for ⁴⁵ 18 h at 50 °C to afford as imidazoles **7a-c** bright white solids.

General one-pot procedure for synthesis of imidazoles 7a-c from phenylacetylenes. To the mixture of phenyl hydrazine (1.0 equiv.) and phenylacetylene (1.2 equiv.) in DMF was added 10 mol% of cobalt acetylacetanoate and 10 mol% silver oxide.

⁵⁰ Reaction mixture was stirred at room temperature for 8 h. Aldehyde (1 equiv.), ammonium acetate (2 equiv.) and acetic acid (2 ml) were then added to the reaction mixture and it was refluxed at 100 °C for 3 h. After completion of the reaction (monitored by TLC), reaction mixture was filtered, and filtrate ⁵⁵ was extracted with ethyl acetate. The combined organic layers were dried over anhydrous sodium sulphate and evaporated on vacuo rotavapor to get crude product. The crude product was purified by silica gel (#100-200) column chromatography using *n*-hexane and ethyl acetate as an eluent to get pure product **7a-d** $_{60}$ in 55-65% yield.

2,4,5-*Triphenyl-1H-imidazole* (7*a*):^{*1*} White solid; m.p. 274-276 °C; ¹H NMR (DMSO-d₆, 400 MHz): δ 12.71 (s, 1H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.56-7.23 (m, 13H); ¹³C NMR (DMSO-d₆,100 MHz): δ 145.0, 134.6, 130.5, 129.8, 128.1, 127.9, 127.7, 127.6, ⁶⁵ 127.2, 126.5, 126.0, 124.6; IR (CHCl₃): ν_{max} 3417, 1658, 1644, 1633, 1503, 1460 cm⁻¹; ESI-MS: *m/z* 297.00 [M+H⁺]; HRMS: *m/z* 297.1417 (ESI) calcd for C₂₁H₁₇N₂ (297.1417).

2-(*Naphthalen-1-yl*)-4,5-*diphenyl-1H-imidazole* (**7b**):⁴⁴ Brown solid, m.p. 220-222 °C; ¹H NMR (DMSO-d₆, 400 MHz): δ 12.88, ⁷⁰ (s, 1H), 8.63 (s, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 8.03-7.94 (m, 4H), 7.58-7.34 (m, 11H); ¹³C NMR (DMSO-d₆, 100 MHz): δ 145.5, 133.0, 132.7, 128.5, 128.4, 128.2, 128.1, 127.8, 127.7, 127.1, 126.7, 126.3, 123.7, 123.5; IR (CHCl₃): ν_{max} 3357, 1652, 1600, 1502, 1446 cm⁻¹; ESI-MS: *m/z* 347.00 [M+H]⁺; HRMS: *m/z* 75 347.9528 (ESI) calcd for C₂₅H₁₈N₂ (347.9528).

2-(Anthracen-9-yl)-4,5-diphenyl-1H-imidazole (7c):⁴⁵ Brown solid, m.p.166-168 °C; ¹H NMR (DMSO, 400 MHz): δ 12.96 (s, 1H), 8.81 (s, 1H), 8.22 (d, J = 12.0 Hz, 2H), 7.96 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 4.0 Hz, 6H), 7.45 (t, J = 80 4.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 3H), 7.27 (t, J = 4.0 Hz, 1H); ¹³C NMR (DMSO,100 MHz): δ 143.3, 136.9, 135.4, 131.1, 130.9, 130.8, 128.7, 128.4, 128.2, 127.9, 127.3, 126.6, 126.0, 125.5; IR (CHCl₃): v_{max} 3391, 1666, 1602, 1533, 1483, 1444, 1266 cm⁻¹; ESI-MS: m/z 397.00 [M+H]⁺; HRMS: m/z 397.1709 ss (ESI) calcd for C₂₉H₂₁N₂ (397.1709).

Procedure for synthesis of trifenagrel (8): To the mixture of phenyl hydrazine (1a, 1.0 equiv.) and phenylacetylene (2a, 1.2 equiv.) in DMF was added 10 mol% of cobalt acetylacetanoate and 10 mol% silver oxide. Reaction mixture was then stirred at 90 room temperature for 8 h. Salicyladehyde (6d, 1 equiv.), ammonium acetate and acetic acid (2 mL) was added to the reaction mixture and it was refluxed at 100 °C for 3 h. After completion of the reaction (monitored by TLC), reaction mixture was filtered, and filtrate was extracted with ethyl acetate and the 95 combined organic layers were dried over anhydrous sodium sulphate. Solvent was evaporated on vacuo rotavapor to get the crude product. The crude product was purified by silica gel (#100-200) column chromatography using n-hexane-EtOAc as an eluent to get imidazole 7d in 55% yield. Compound 7d (1 equiv.) 100 was then treated with 2-chloro-N,N-dimethylethanamine (1.5 equiv.) in presence of K_2CO_3 (2 equiv.) in dry acetone for 6 h at

equiv.) in presence of K_2CO_3 (2 equiv.) in dry acetone for 6 h at room temparature, resulting in formation of trifenagrel (8) in 70% yield.

2-(4,5-Diphenyl-1H-imidazol-2-yl)phenol (7d):⁴⁶ Yellow solid; ¹⁰⁵ m.p. 170-172 °C; ¹H NMR (acetone-d₆, 400 MHz): δ 8.00 (d, J =8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 4H), 7.43-7.28 (m, 7H), 7.03 (d, J = 8.0 Hz, 1H), 6.93 (t, J = 8.0 Hz, 1H); ¹³C NMR (acetone-d₆, 100 MHz): δ 158.5, 147.3, 131.0, 129.5, 128.8, 128.5, 125.8, 119.7, 118.0, 113.9; IR (CHCl₃): v_{max} 3436, 1629, 1604, 1488, ¹¹⁰ 1444 cm⁻¹; ESI-MS: *m/z* 313.10 [M+H]⁺; HRMS: *m/z* 313.1350 (ESI) calcd for C₂₁H₁₆N₂O (313.1350).

6|Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

Trifenagrel (8).¹ White solid; m.p. 132-134 °C ¹H NMR (CDCl₃, 400 MHz): δ 12.33 (s, 1H), 8.48 (d, J = 8.0 Hz, 1H), 7.75-7.40 (m, 4H), 7.35-7.20 (m, 7H), 7.13 (t, J = 8.0 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 4.22 (t, J = 4.0 Hz, 2H), 2.66 (t, J = 4.0 5 Hz, 2H), 1.97 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 155.1, 143.7, 129.0, 128.9, 128.3, 127.1, 124.0, 123.5, 122.2, 120.3, 115.9, 113.6, 65.7, 58.1, 44.5; IR (CHCl₃): v_{max} 3225, 2923, 1603, 1587, 1481, 1465, 1261, 765 cm⁻¹; ESI-MS: *m*/*z* 384.2070 [M+H]⁺.

10

Acknowledgements

JB thanks CISR Innovation Center project (ITR001) project for research fellowship. This research was supported by a grant from the CSIR 12th FYP project (BSC-0205).

15

35

Notes and references

- S. E. Wolkenberg, D. D. Wisnoski, W. H. Leister, Y. Wang, Z. Zhao and C. W. Lindsley, *Org. Lett.*, 2004, 6, 1453–1456.
- 2. T. E. Barta, M. A. Stealey, P. W. Collins and R. M. Weier, *Bioorg.*
- Med. Chem. Lett., 1998, 8, 3443-3448.
 Z. Zhao, W. H. Leister, K. A. Strauss, D. D. Wisnoski and C. W.
- Lindsley, *Tetrahedron Lett.*, 2003, 44, 1123-1127.
 R. S. Bhosale, S. R. Sarda, S. S. Ardhapure, W. N. Jadhav, S. R. Bhusare and R. P. Pawar, *Tetrahedron Lett.*, 2005, 46, 7183-7186.
- 25 5. L. Benhamou, E. Chardon, G. Lavigne, S. Bellemin-Laponnaz and V. César, *Chem. Rev.*, 2011, **111**, 2705-2733.
 - F. Babudri, A. D'Ettole, V. Fiandanese, G. Marchese and F. Naso, J. Organomet. Chem., 1991, 405, 53-58.
- Y. Su, X. Sun, G. Wu and N. Jiao, *Angew. Chem. Int. Ed.*, 2013, 52, 9808-9812.
 - 8. T. Kashiwabara and M. Tanaka, J. Org. Chem., 2009, 74, 3958-3961.
 - S. Chen, Z. Liu, E. Shi, L. Chen, W. Wei, H. Li, Y. Cheng and X. Wan, Org. Lett., 2011, 13, 2274-2277.
 - H. Min, T. Palani, K. Park, J. Hwang and S. Lee, J. Org. Chem., 2014, 79, 6279-6285.
- 11. M. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata and H. Nemoto, *Chem. Commun.*, 1999, 1387-1388.
- M. Shaikh, M. Satanami and K. V. S. Ranganath, *Catal. Commun.*, 2014, **54**, 91–93.
- ⁴⁰ 13. S. A. Tymonko, B. A. Nattier and R. S. Mohan, *Tetrahedron Lett.*, 1999, **40**, 7657-7659.
 - L. Huang, K. Cheng, B. Yao, Y. Xie and Y. Zhang, J. Org. Chem., 2011, 76, 5732-5737.
 - 15. Y. Yuan and H. Zhu, Eur. J. Org. Chem., 2012, 2012, 329-333.
- ⁴⁵ 16. Z. Wan, C. D. Jones, D. Mitchell, J. Y. Pu and T. Y. Zhang, J. Org. Chem., 2005, **71**, 826-828.
 - W. Ren, Y. Xia, S.-J. Ji, Y. Zhang, X. Wan and J. Zhao, *Org. Lett.*, 2009, **11**, 1841-1844.
- C.-F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org. Lett., 2011, 13, 1556 1559.
 - 19. A. Gao, F. Yang, J. Li and Y. Wu, Tetrahedron, 2012, 68, 4950-4954.
 - M. S. Yusubov, G. A. Zholobova, S. F. Vasilevsky, E. V. Tretyakov and D. W. Knight, *Tetrahedron*, 2002, 58, 1607-1610.

- N. Xu, D.-W. Gu, Y.-S. Dong, F.-P. Yi, L. Cai, X.-Y. Wu and X.-X. Guo, *Tetrahedron Lett.*, 2015, 56, 1517–1519.
- W. Ren, J. Liu, L. Chen and X. Wan, *Adv. Synth. Catal.*, 2010, 352, 1424–1428.
- 23. N. S. Srinivasan and D. G. Lee, J. Org. Chem., 1979, 44, 1574.
- 24. X. Wang and Y. Zhang, Tetrahedron Lett., 2002, 43, 5431–5433.
- 60 25. X. Wang and Y. Zhang, *Tetrahedron*, 2003, **59**, 4201–4207.
 - 26. J. M. Khurana and B. M. Kandpal, *Tetrahedron Lett.*, 2003, 44, 4909–4912.
 - X. Wang, G. Cheng, J. Shen, X. Yang, M.-e. Wei, Y. Feng and X. Cui, Org. Chem. Front., 2014, 1, 1001-1004.
- 65 28. T. Hirabayashi, S. Sakaguchi and Y. Ishii, Adv. Synth. Catal., 2005, 347, 872–876.
 - 29. C. S. Yi and S. Y. Yun, J. Am. Chem. Soc., 2005, 127, 17000-17006.
 - J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, *Chem. Soc. Rev.*, 2011, 40, 4740–4761.
- 70 31. G. Song, F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651-3678.
- D. Tilly, G. Dayaker and P. Bachu, *Catal. Sci. Technol.*, 2014, 4, 2756-2777.
- J.-B. Liu, H. Yan, H.-X. Chen, Y. Luo, J. Weng and G. Lu, *Chem. Commun.*, 2013, 49, 5268-5270.
- 75 34. Y. Li, W. Liu and C. Kuang, Chem. Commun., 2014, 50, 7124-7127.
- 35. W. Li, M. Beller and X.-F. Wu, *Chem. Commun.*, 2014, **50**, 9513-9516.
- X.-Y. Duan, X.-L. Yang, R. Fang, X.-X. Peng, W. Yu and B. Han, J. Org. Chem. , 2013, 78, 10692–10704.
- 80 37. A. Dewanji, S. Murarka, D. P. Curran and A. Studer, *Org. Lett.*, 2013, **15**, 6102-6105.
 - T. Jiang, S.-Y. Chen, G.-Y. Zhang, R.-S. Zeng and J.-P. Zou, Org. Biomol. Chem., 2014, 12, 6922-6926.
- S. L. Abrahams, R. J. Hazen, A. G. Batson and A. P. Phillips, J.
 Pharmacol. Exp. Ther., 1989, 249, 359-365.
- 40. Y. Xu and X. Wan, Tetrahedron Lett., 2013, 54, 642-645.
- 41. C. J. Walsh and B. K. Mandal, J. Org. Chem., 1999, 64, 6102-6105.
- 42. Y. Saga, R. Motoki, S. Makino, Y. Shimizu, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 132, 7905-7907.
- 90 43. Y. Liu, X. Yun, D. Zhang-Negrerie, J. Huang, Y. Du and K. Zhao, *Synthesis*, 2011, **18**, 2984-2994.
 - 44. E. Chauveau, C. Marestin, F. Schiets and R. Mercier, *Green Chemistry*, 2010, **12**, 1018-1022.
- 45. A. O. Eseola and N. O. Obi-Egbedi, Spectrochim. Acta Part A: Mol. Biomol. Spectr., 2010, **75**, 693-701.
- 46. D. I. MaGee, M. Bahramnejad and M. Dabiri, *Tetrahedron Lett.* 2013, **54**, 2591-2594.

This journal is © The Royal Society of Chemistry [year]