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(E)- and (Z)-Stereodefined enol phosphonates derived 

from ββββ-ketoesters: Stereocomplementary synthesis of 

fully-substituted α,βα,βα,βα,β-unsaturated esters 

Hidefumi Nakatsuji,* Yuichiro Ashida, Hiroshi Hori, Yuka Sato, Atsushi Honda, 
Mayu Taira, Yoo Tanabe*  

A versatile, robust, and stereocomplementary synthesis of full-substituted (E)- and (Z)-

stereodefined α,β-unsaturated esters 3 from accessible α-substituted β-ketoesters 1 via (E)- 

and (Z)-enol phosphonates was achieved.  The present method involves two accessible reaction 

sequences: (i) (E)- and (Z)-stereocomplementary enol phosphorylations of a wide variety of β-

ketoesters 1 (24 examples; 71-99% yield, each >95:5 ds), and (ii) (E)- and (Z)-stereoretentive 

Suzuki-Miyaura cross-coupling (16 examples; 71-91% yield, >81/19 ds) and Negishi cross-

coupling (32 examples; 65-96% yield, >95;5 ds) using (E)- and (Z)-enol phosphates 2.  1H-

NMR monitoring for a key reactive N-phosphorylammonium (imidazolium) intermediate I and 

an application to the synthesis of both (E)- and (Z)-tamoxifen precursors 6 are described. 

 

Introduction 

(E)- and (Z)-α,β-unsaturated esters are widely distributed in natural 

products, pharmaceuticals, and supramolecules as key structural 

building blocks.  They also serve as well-recognized useful structural 

scaffolds for various stereodefined olefins and conjugate (Michael) 

addition acceptors in organic synthesis.  Stereocontrolled preparation 

of these (E)- and (Z)-esters is pivotal in organic synthesis and has 

been developed over the last few decades.  Despite the demand for 

fully (tri)-substituted (E)- and (Z)-α,β-unsaturated esters, 

stereoselective synthetic methods are not yet fully established due to 

the inherent higher complexity in differentiating the substituents 

compared with mono- or di-substituted α,β-unsaturated esters.1  

Several excellent methods utilizing the carbometallation–mediated 

reaction using α-alkynyl esters,2 Mizoroki-Heck reaction,3 the 

ynolate-mediated reaction (Shindo’s group),4 cross-couplings using 

enol phosphates (Skrydstrup’s group),5 Horner-Wadsworth-Emmons 

reaction,6 and conjugate addition-elimination,7 have been evaluated 

to date.  However, (E)- and (Z)-stereocomplementary method using 

same common starting materials with sufficient substrate-generality 

is quite limited.  

To investigate this critical topic, here we present a versatile 

synthesis of fully-substituted both (E)- and (Z)-α,β-unsaturated 

esters 3 utilizing (E)- and (Z)-stereocomplementary enol 

phosphorylations of accessible α-substituted (R2) β-ketoesters 1 and 

subsequent (E)- and (Z)-stereoretentive Suzuki-Miyaura and Negishi 

cross- couplings (Scheme 1).  A literature survey revealed no 

available general method for stereocomplementary enol 

phosphorylation of β-ketoesters 1.  Our longstanding interest in N-

methylimidazole (NMI)-promoted acylations8 and sulfonylations9 

led us to attempt this objective. 
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 Scheme 1.  Stereocomplementary synthesis of fully-substituted (E)- and 

(Z)-α,β-unsaturated esters 3. 

 

Results and discussion 
 

The initial stereoselective enol phosphorylation was intentionally 

guided using stereocongested methyl 2-butyl-3-oxooctanoate 1a10 as 

a much less reactive α-substituted β-ketoester probe (Table 1).  

Consequently, both (E)- and (Z)-selective phosphorylations of 1a 

successfully proceeded in excellent yield with excellent  

stereoselectivity (>98:2) using (PhO)2POCl−NMI−KOtBu with 18-

crown-6 (Method A) and  (PhO)2POCl−NMI−LiOtBu (Method B) to 

give, respectively, (E)-2a and (Z)-2a, (entries 2, 4).  Notably, the 

corresponding enol tosylation using reported TsCl−NMI−base 

reagents7 gave inferior results.11  We speculate that the present 
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smooth enol phosphorylation can be attributed to the higher 

reactivity of (PhO)2POCl over TsCl.12   

Table 2 lists the successful results of the present (E)- and (Z)-

stereocomplementary enol phosphorylations of α-substituted β-

ketoesters 1 using fine-tuned Methods A-D.  A notable aspect is the 

high substrate-generality.  The salient features are as follows.  (i) All 

substrates 1a-1l examined, produced good to excellent yield and 

excellent (E)- and (Z)-selectivities.  (ii) Much less reactive 

(stereocongested) β-ketoesters 1a, 1i, and 1j-1l could be applied 

successfully (entries 1, 2, 19-24).  (iii) Not only α-aliphatic 

substrates but also α-aromatic substrates underwent the reaction 

smoothly using (E)-selective (PhO)2POCl−NMI−DBU (Method C) 

and (Z)-selective (PhO)2POCl−NMI−iPr2NEt−LiCl (Method D) 

(entries 19-24).  (iv) Several functional groups such as ω-chloro, 

BnO, and a double bond were compatible (entries 11–16).  (v) 

Because of the close Rf values of (E)- and (Z)-enol phosphates 2 on  

thin layer chromatography excellent stereoselectivities of >95 / 5% 

are required for complete column chromatographic purification with 

high yield.13   

As depicted in Figure 1, 1H-NMR monitoring (−45 oC in CD3CN) 

revealed that (PhO)2POCl coupled with NMI formed a highly 

reactive N-phosphorylammonium (imidazolium) intermediate I, 

which functioned as  the key active species.14    

A plausible mechanism for the successful emergence of (E)- and 

(Z)-enol phosphorylation stereoselectivity is illustrated in Scheme 2, 

wherein substrate 1a is exemplified.  The (E)-stereoselective 

reaction with highly reactive intermediate I proceeds via a non-

chelation pathway to give (E)-2a; K-cation captured by 18-crown-6 

aids (E)-enolate formation through dipole-dipole repulsive 

interactions between the oxy anion and ester function.  In clear 

contrast, the (Z)-stereoselective reaction proceeds via a chelation 

mechanism to give (Z)-2a; the Li-cation facilitates (Z)-enolate 

formation. 

 

Table 2. (E)- and (Z)-Stereocomplementary enol phosphorylation of α-

substituted β-ketoesters 1 using Methods A – D. 

Table 1. (E)- and (Z)-Stereocomplementary enol phosphorylation of 1a 

using (PhO)2POCl–NMI–bases. 

 

entry Base additive method yield / % E / Z
a
 

1 KOtBu -- -- 44 2 / >98 

2 KOtBu 18-Crown-6 A 84 (42
b
) 98 / 2 

3 LiHMDS -- -- 93 2 / >98 

4 LiOtBu -- B 97 (79
b
) 2 / >98 

a Determined by 1H NMR of crude products.  b In the absence of NMI in 

CD3CN. 

 

Figure 1.  Formation of N-phosphorylammonium (imidazolium) 

intermediate I monitored  by 
1
H NMR measurement  at −45

 o
C.   

entry substrate
a 

 method product yield / % E / Z
b
 

1 

 

1a 
A (E)-2a 84 98 / 2 

2 B (Z)-2a 97 2 / >98 

3 

 

1b 
A (E)-2b 90 98 / 2 

4 B (Z)-2b 86 2 / >98 

5 

 

1c 
A (E)-2c 71 >98 / 2 

6 B (Z)-2c 91 2 / >98 

7 

 

1d 
A (E)-2d 83 >98 / 2 

8 B (Z)-2d 94 5 / 95 

9 

 

1e 
A (E)-2e 87 95 / 5 

10 B (Z)-2e 90 2 / >98 

11 

 

1f 
A (E)-2f 83 93 / 7 

12 B (Z)-2f 93 2 / >98 

13 

 

1g 
A (E)-2g 75

c
 >98 / 2 

14 B (Z)-2g 86 2 / >98 

15 

 

1h 
A (E)-2h 83 97 / 3 

16 B (Z)-2h 98 2 / >98 

17 

 

1i 

A (E)-2i 74 >98 / 2 

18 
B (Z)-2i 86 2 / >98 

19 

 

1j 
C (E)-2j 74 >98 / 2 

20 
D (Z)-2j 86 2 / >98 

21 

 

1k 
C (E)-2k 88 >98 / 2 

22 
D (Z)-2k 97 2 / >98 

23 

 
1l 

C (E)-2l 86 >98 / 2 

24 D (Z)-2l 88 2 / >98 

     
a 
1a was prepared (Ref. 10). 1b-1e, 1g, 1i-1l were commercially available.  

1f and 1h were prepared by the reported Ti-crossed condensation (Ref. 7b)   
b
 Determined by 

1
H NMR of crude products.  

c
 TMEDA instead of iPr2NH.  

 

Page 2 of 5Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 3  

 

Bu

CO2Me
Pen

O

Bu

Pen

O

OMe

O

Li

Bu

CO2Me
Pen

OPO(OPh)2

Bu
Pen

O

CO2Me

Bu
Pen

OPO(OPh)2

CO2Me

NMe(PhO)2PN

Cl

K

1a

+

-

+

-

+

-

KOtBu
18-Crown-6

LiOtBu

O

(E)-2a

(Z) -2a

O
O
O

OO
O

 

Scheme 2.  Mechanistic investigation into (E)- and (Z)-

stereocomplementary enol phosphorylation of 1a.. 

 

With the successful results taken in hands, stereoretentive Suzuki-

Miyaura cross-coupling was investigated using (E)- and (Z)-

stereodefined enol phosphonate partners 2a-2f to obtain fully-

substituted (E)- and (Z)-α,β-unsaturated esters 3a-3f.  Table 3 lists 

the successful results, and the salient features are as follows.  (i) 

Among various catalysts screened, the Pd(dppb)Cl2 catalyst 

produced a successful result.15  (ii) Even the less reactive 

(stereocongested) substrate 2a smoothly underwent the reaction 

(entries 1, 2).  (iii) Three ArB(OH)2 nucleophiles containing both 

electron-donating and electron-withdrawing substituents (p-Me, p-

OMe, p-Cl) were applicable (entries 5-10). (iv) High substrate-

generality was obtained; good to excellent yield, and excellent (E)- 

and (Z)-stereoretention (>95:5) were achieved for most (E)- and (Z)-

2 examined.  (v) Slight isomerization occurred in a few cases, 

however, likely due to the harsh DMF/reflux conditions (entries 1, 

15).  Since the substrates (E)-2a and (E)-2f is considerably less 

reactive due to the stereocongestion, the slight isomerization is 

considered to occur. 

 
Table 3  Stereoretentive Suzuki-Miyaura cross-coupling of (E)- and (Z)-

enol phosphates 2.    

 

 
 

entry R
1
 R

2
 R

3
 substrate

a
 Ar product yield 

/ %
b
 

1 Pen Bu Me (E)-2a Ph (E)-3a 83
c
  

2    (Z)-2a    (Z)-3a 91 

3 Me Me Et (E)-2b  Ph (E)-3b-1 81 

4    (Z)-2b   (Z)-3b-1 81 

5 Me Me Et (E)-2b (p-Me) 

C6H4 

(E)-3b-2 83 

6    (Z)-2b   (Z)-3b-2 83 

7 Me Me Et (E)-2b (p-MeO) 

C6H4 
(E)-3b-3 83 

8    (Z)-2b  (Z)-3b-3 84 

9 Me Me Et (E)-2b (p-Cl) (E)-3b-4 71 

C6H4 

10    (Z)-2b    (Z)-3b-4 82 

11 Me Bn Et (E)-2d Ph (E)-3d 88 

12    (Z)-2d    (Z)-3d 83 

13 Pen Me Me (E)-2e Ph (E)-3e 81 

14    (Z)-2e    (Z)-3e 80 

15 BnO 

(CH2)5 
Me Me (E)-2f Ph (E)-3f 90

d
  

16    (Z)-2f  (Z)-3f 80  

        
a
 (E) or (Z): >98% purity based on 

1
H NMR analysis.   

b
 Isolated.  Unless 

otherwise noted, E / Z = >95 / 5 for (E)-3 and E / Z = 5 / >95 for (Z)-3.       
 

c
 E / Z = 83 / 17.  

d
 E / Z = 81 / 19. 

 

To address the obvious problems (high temperature and slight 

isomerization) resulting from Suzuki-Miyaura cross-coupling, 

Negishi cross-coupling was investigated using a variety of (E)- and 

(Z)-stereodefined enol phosphonate substrates 2a, 2c, 2f-2l.  Table 4 

(α-aliphatic substrates) and Table 5 (α-aromatic substrates) list the 

positive results, and the salient features are as follows.  (i) The 

substrate-generality was certainly enhanced in every case examined 

when using α-aliphatic as well as α-aromatic substrates with 

consistent and nearly perfect (E)- and (Z)-stereoretention to give the 

corresponding fully-substituted (E)- and (Z)-α,β-unsaturated esters 

3a, 3c-1 ‒‒‒‒ 3c-8, 3f ‒‒‒‒ 3l.  (ii) Milder conditions were applicable; 

MeCN/reflux for (E)-substrates 2 and THF/reflux for (Z)-substrates 

2.  (iii) The loading quantity of the Pd(dppb)Cl2 catalyst could be 

decreased from 0.05 equiv to 0.02 equiv.  (iv) Various ArZnCl 

nucleophiles containing both electron-donating and electron-

withdrawing substituents (p-Me, p-OMe, o-Me, p-Cl) and a bulky 1-

naphtyl group, were employable (Table 4, entries 5-18).  (v) 

Heterocyclic nucleophiles (furan-2-yl and thiophen-2-yl) also 

underwent the reaction smoothly (Table 4, entries 15-18).  (vi) 

Several functional groups, such as ω-BnO, ω-chloro, and a double 

bond were compatible (Table 4, entries 19-24).  (vii) The reaction 

using α-aromatic substrates 2j‒‒‒‒2l proceeded smoothly under the 

identical conditions (Table 5).   

The wide substrate-generality may be ascribed to the high 

reactivity and mildness of conditions of Negishi cross-coupling.  

Compared with the reported syntheses for several known compounds, 

3b-1, 3b-2, 3b-3, 3b-4, 3c-1, 3c-3, 3d, 3e, 3j, higher E/Z-selectivity 

was produced in almost cases (details: ESI).    

 
Table 4  Stereoretentive Negishi cross-coupling of R

1
, R

2 
aliphatic (E)- 

and (Z)-enol phosphates 2.  

 

 
entry R

1
 R

2
 Substrate

a
 Ar product Yield

b
 

/ % 

1 Pen Bu (E)-2a Ph (E)-3a 78 

2   (Z)-2a   (Z)-3a  84 

3 Me Me (E)-2c Ph (E)-3c-1 82 

4   (Z)-2c   (Z)-3c-1 81 
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5 Me Me (E)-2c (p-Me) 

C6H4 
(E)-3c-2 91 

6   (Z)-2c   (Z)-3c-2  81 

7 Me Me (E)-2c (p-MeO) 

C6H4 
(E)-3c-3 79 

8   (Z)-2c   (Z)-3c-3  85 

9 Me Me (E)-2c (p-Cl) 

C6H4 
(E)-3c-4 83

c 

10   (Z)-2c   (Z)-3c-4  72
c 

11 Me Me (E)-2c (o-Me) 

C6H4 
(E)-3c-5 96 

12   (Z)-2c   (Z)-3c-5  81 

13 Me Me (E)-2c 1-Naph  (E)-3c-6 83  

14   (Z)-2c   (Z)-3c-6  63 

15 
Me Me (E)-2c 

 
(E)-3c-7 59 

16   (Z)-2c   (Z)-3c-7 74 

17 
Me Me (E)-2c 

 
(E)-3c-8 78 

18   (Z)-2c   (Z)-3c-8 82 

19 BnO 

(CH2)5 
Me (E)-2f Ph (E)-3f 71

d
 

20   (Z)-2f  (Z)-3f 58
d
 

21 Cl(CH2)4 Me (E)-2g Ph (E)-3g 74
d
 

22   (Z)-2g  (Z)-3g 76
d
 

23 CH2=CH

(CH2)8 
Me (E)-2h Ph (E)-3h 88

d
 

24   (Z)-2h  (Z)-3h 66
d
 

25 Cyclo 

hexyl 
Me 

(E)-2i Ph (E)-3i 81
d
 

 
  (Z)-2i  (Z)-3i 81

d
 

a
 (E) or (Z): >98% purity based on 

1
H NMR analysis.  

b
 Isolated.  E / Z = 

>95 / 5 for (E)-3 and E / Z = 5 / >95 for (Z)-3.  
c
 Reaction time: 1 h.  

d
 2 

equiv of PhZnCl were used.  

 

Table 5  Stereoretentive Negishi cross-coupling of R
2
 aromatic (E)- and 

(Z)-enol phosphates 2.  

 

 
 

entry Ar Substrate
a
 product yield 

/ %
b
 

1 Ph (E)-2j (E)-3j 81
 

2  (Z)-2j  (Z)-3j  96 

3 (p-MeO)C6H4 (E)-2k (E)-3k 88
c,d

 

4  (Z)-2k  (Z)-3k  92
 c
 

5 (p-Cl)C6H4 (E)-2l (E)-3l 86
 c,d

 

6 
 (Z)-2l (E)-3l 88

 c
 

a
 (E) or (Z): >98% purity based on 

1
H NMR analysis.  

b
 Isolated.  E / Z = 

>95 / 5 for (E)-3 and E / Z = 5 / >95 for (Z)-3.   
c
 Reaction time: 1 h.  

d
 

2.5 equiv of ArZnCl was used. 

Finally, to display the utility of the present method, we describe a 

facile stereocomplementary synthesis of the precursor 6 for both (E)- 

and (Z)-tamoxifen,16 an anti-tumor drug (Scheme 3).   Same starting 

β-keto ester 417 underwent stereocomplementary enol 

phosphorylations (Table 2, Methods C and D) smoothly to give (E)-

5 and (Z)-5, which were successfully converted to the desired (E)-6 

as well as (Z)-6 by successive Negishi cross-coupling with certain 

stereoretention.18      

  
Scheme 3.  Stereocomplementary synthesis of fully-substituted (E)- 

and (Z)-tamoxifen precursor 6. 

 

Conclusions 

A versatile synthesis of fully-substituted both (E)- and (Z)-α,β-

unsaturated esters utilizing (E)- and (Z)-stereocomplementary 

enol phosphorylations of β-ketoesters and subsequent (E)- and 

(Z)-stereoretentive Suzuki-Miyaura and Negishi cross-

couplings was achieved.  Compared with the reported methods, 

the present method exhibits wider substrate-generality for the 

synthesis of synthetically inaccessible fully-substituted (E)- and 

(Z)-α,β-unsaturated esters.  Further extension, especially for the 

parallel synthesis for fully-substituted olefins is now under 

investigation.      
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