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Abstract: A procedure has been developed for the regioselective, high yielding synthesis of 

2H-indazoles that involves direct alkylation of indazoles with various allyl and benzyl 

bromides, and -bromocarbonyl compounds. 

 

Introduction 

Numerous medicinal chemical studies have led to the identification of the indazole ring 

system as a highly effective pharmacophore. This ring system serves as a core component of 

important nitrogen containing heterocycles that display a broad range of biological properties, 

such as inhibition of nitric oxide1 and HIV protease,2 anti-inflammator,3 antitumor4 and 

anti-cancer5 activities, and serotonin 5-HT3 receptor antagonist behavior.6 

Recently, the 2H-indazole ring system has been utilized as an important pharmacophore 

in drug discovery efforts.7 Compared with their 1H analogs, 2H-indazoles have been much 

less studied owing partly to difficulties associated with their preparation. One of the synthetic 

strategies used to prepare members of the 2H-indazole family utilizes the cyclization reaction 

of properly tethered substrates such as iminonitroaromatics derived from 2-nitrobenzaldehyde 

and amines, 2-azidoimines derived from 2-azidobenzaldehyde and amine, and [3+2] dipolar 
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cycloaddition of sydnone and benzyne.8 Perhaps the most straightforward route to 

construction of 2H-indazoles utilizes direct alkylation reactions of the corresponding 

1H-indazoles. However, only a very few reactions of this type produce 2H-indazoles with 

high levels regioselectivity.9 For example, Cheung et. al. reported highly regioselective 

synthesis of 2-methyl and 2-ethyl 2H-indazoles from reaction of indazoles with Meerwein’s 

salts under kinetic control conditions.9 Normally, direct alkylation of indazoles in the 

presence of a base generally provides a mixture of N-1 and N-2-alkylation products (eq. 1) or 

the thermodynamically favored N-1 alkylated product predominantly.10 Therefore, the 

development of methods to prepare 2H-indazoles in a direct and highly regioselective manner 

through alkylation of indazoles remains a significant challenge in heterocyclic chemistry. 

N-2N-1

N
H

N

N

N

R

N

N R+
O2N O2N O2N

DMF, rt

R = allyl; 34% yield of N-1 (N-1:N-2 = 1:1)

R = CH2CO2Me; 87% yield of N-1 (N-1:N-2 = 25:1)

(eq.1)
RBr

Cs2CO31

2

3

  

It has been suggested that the N-2 lone pair electrons in indazoles participate in 

kinetically controlled reactions that lead to N-protected products (e. g., THP derivatives) 

when carried out under mildly acidic conditions.11 Moreover, it has been reported that 

indazole serves as a chelating ligand for aluminum and gallium cations through coordination 

utilizing its N-2 lone pair.12 In a related effort, it has been shown that gallium and allyl 

bromide participate in nucleophilic substitution reactions in aqueous media, as is exemplified 

by C-3 allylation reactions of indoles.13 These observations led us to propose a new method 

for regioselective synthesis of 2-substituted 2H indazoles that involves gallium-mediated N-2 

allylation reactions with allyl bromide. We envisaged that an allylgallium/allylaluminium 
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cation would be generated in this process by reaction of gallium/aluminium metal and allyl 

bromide and that enables allylation of indazole at the kinetically more reactive N-2 position. 

 

Results and discussion 

The effort designed to evaluate this proposal began with an investigation of the 

gallium-mediated allylation reaction between indazole and allyl bromide (Table 1). As 

anticipated, we observed that the process produces the N-2 regioisomer 2a exclusively with a 

moderate isolated yield and unreacted indazole starting material (Table 1, entry 1).14 

Screening other metals led to the observation that the use of a combination of gallium and 

aluminum is optimal for promotion of the alkylation reaction (Table 1, entry 6) and that the 

efficiency of the process is not increased when a phase transfer reagent such as 

tetrabutylammonium bromide is present in the reaction mixture (Table 1, entry 8). In addition, 

when the reaction is performed in the presence of a base such as potassium carbonate (2 equiv, 

pH of the resulting solution is 10), a mixture of N-1 and N-2 allylation products is formed 

(Table 1, entry 9). Finally, adding aqueous hydrobromic acid does not lead to an improvement 

in the yield of the N-2 regioisomer (Table 1, entry 10 versus 6). 
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Table 1. Metal mediated regioselective N-2 allylation of indazolea 

DMF/H2O

Metal/additive

entry

1

metal/additive (equiv)

2a (N-2)2a' (N-1)

2a':2ab

N
H

N
N

N

N

N+

Ga (1) 0 : 100

2 Ga (2) 0 : 100

3 Ga (1)/In (1) 0 : 100

4 Ga (1)/Cu (1) 0 : 100

5 Ga (1)/Zn (1) 0 : 100

6 Ga (1)/Al (1) 0 : 100

7

8 Ga (1)/Al (1)/Bu4NBr (1)

0 : 100

9 Ga (1)/Al (1)/K2CO3 (2)

0 : 100

10 Ga (1)/A l(1)/HBr (0.1 mL)

50 : 50

0 : 100

42

44

22

14

20

54

48

33

42

42

allyl bromide

Al (2)

2a (%)c

1

 
aConditions: indazole (1.0 mmol), allyl bromide (2.0 mmol), and indicated metal in 

DMF (1.5 mL)/water (0.5 mL) at rt. bRatio was determined by 1H NMR. cIsolated yield. 

 

The scope of the Ga/Al-mediated reaction of indazole was explored using a variety of 

electrophiles (Table 2). The results show that allyl bromide, benzyl bromide and 

-bromoacetophenone react with indazole in a highly regioselective and efficient manner 

(Table 2, entries 1, 4, and 12). In the Ga/Al-mediated reaction of benzyl bromide, benzyl 

alcohol is also produced. Therefore, an acetylation procedure was employed to 

chromatographically remove this hydrolysis product and obtain pure 2-substituted 

2H-indazole 2h. Importantly, alkyl chlorides (Table 2, entries 2, 5, 13), benzyl acetate (Table 

2, entry 6), benzyl trifluoroacetate (Table 2, entry 7) and aliphatic bromides (Table 2, entries 

9-11) do not participate in the alkylation reaction. Finally, propargyl bromide and secondary 

alkyl bromides do serve as substrates but the yields of the processes are low (Table 2, entry 3, 
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8 versus 4). 

 

Table 2. Scope of reaction with various alkylating agentsa 

DMF/H2O

Ga/Al

entry

1

N
H

N + RX
N

N R

allyl bromide 2a; 54 (0:100)c

2 allyl chloride 0

3 < 5

4 2h; 70 (0:100)c

5 0

6 0

7 0

8

9

10

11

12

RX

propargyl bromide

PhCH2Br

PhCH2Cl

PhCH2OAc

PhCH2OCOCF3

Ph Br

Me

< 5

Br

Br

0

0

NC Br 0

Ph
Br

O
2k; 76 (2:98)c

Cl
OEt

O O
13 0

21

2; yield (%)b

 
aConditions: indazole (1.0 mmol), RX (2.0 mmol), Ga (1.0 mmol), and Al (1.0 mmol) in 

DMF (1.5 mL)/water (0.5 mL) at rt. bIsolated yield. cN-1:N-2, ratio was determined by 1H 

NMR. 

 

Based on the results summarized in Table 2, reactions of a variety of functionalized allyl 

and benzyl bromides with indazole were examined (Table 3). The results show that the 

-bond stereochemistry of allylic bromides is retained in N-2 substituted 2H-indazole 

forming reactions (Table 3, entries 4-7). Moreover, in each case, C-N bond forming reaction 

occurs at the least substituted carbon of the allylic framework. These observations might 

suggest the reaction not through -allyl chemistry, and Lewis acid mediated substitution 
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reaction could be the scenario. In addition, a variety of -bromocarbonyl compounds, 

including arylacyl bromides, 1-bromopinacolone and ethyl bromoacetate, also participate in 

this process (Table 4, entries 7 and 8). Due to poor solubility of some arylacyl bromides in 

Ga/Al-mediated reaction condition at ambient temperature; therefore, heating was employed 

to solve the solubility problem (Table 4, entries 2-6). As can be seen in Tables 3 and 4, yields 

of the N-2 alkylation can be dramatically improved at higher reaction temperature and in 

more concentrated reaction solution (yields are shown in parentheses). The advantage of 

using a combination of gallium and aluminum over aluminum seems not obviously necessary 

at ambient temperature (Table 1, entry 6 versus 7). Therefore, Al-mediated reaction of 

indazole was also explored using a variety of electrophiles (Table 3 and 4) and Al-mediated 

reaction is applicable to indazoles, which possess a variety of aryl ring substituents (Table 5). 

However, when the nucleophilicity of indazole is reduced by the presence of the strong 

electron-withdrawing substituents (e. g., nitro) yields of the processes are lower (Table 5, 

entries 1 and 2). Finally, the allylation reaction takes place in the normal fashion even in the 

case of an indazole substrate bearing an amino substituent (Table 5, entry 4). 
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Table 3. Scope of allylation and benzylation reactions 

DMF/H2O (3:1)

Ga/Al or Al

entry

1

2; yielda (%)

from Ga/Al

N
H

N + RX
N

N R

54 (88)b

RX

1 2

Br

product

N

N

2a

2 45 (84)b
Br

N

N

2b

3 82Br

N

N

2c

CO2Et
EtO2C

4c 54 (71)c
Br

N

N

2d

5 49 (90)b
Br

N

N

2e

Br

Br

6 50 (69)b
Br

N

N

2f

Ph

Ph

7 58 (83)b
Br

N

N

2g

CO2Me
MeO2C

8 70 (81)d

Br
N

N

2h

9 66 (90)d

Br
N

N

2i

Br
Br

10 64 (76)d

Br
N

N

2j

Br

Br

2; yielda (%)

from Al

48 (87)b

92

(68)b

(91)d

(68)c

 
aConditions: indazole (1.0 mmol), RX (2.0 mmol), Ga/Al (1.0 mmol, each) or Al (2.0 

mmol) in DMF/H2O (2.0 mL) at rt. bConditions: indazole (1.0 mmol), RX (3.0 mmol), Ga/Al 

(1.5 mmol, each) or Al (3.0 mmol) in DMF/H2O (1.0 mL) at 55 oC.  cConditions: indazole 

(1.0 mmol), crotyl bromide (85%, 4.0 mmol), Ga/Al (1.5 mmol, each) or Al (3.0 mmol) in 

DMF/H2O (1.0 mL) at 55 oC. dConditions: indazole (1.0 mmol), RX (2.0 mmol) Ga/Al (1.0 

mmol, each) or Al (2.0 mmol) in DMF/H2O (1.0 mL) at 55 oC. 
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Table 4. Scope of -bromocarbonyl compounds 

DMF/H2O (3:1)

Ga/Al or Al

entry

1

2; yielda (%)

from Ga/Al

N
H

N +
N

N

76b

RCOCH2Br

1 2

Br

product

N

N
2k

R
Br

O R

O

O O

2 78Br

N

N
2l

O O

3 79Br

N

N
2m

O O

4 78Br

N

N
2n

O O

5 74Br

N

N
2o

O O

MeO

OMe

Br

Br

Cl

Cl

6 82Br

N

N
2p

O O

7 70b (94)cBr

N

N
2q

O O

8 74b (82)c

EtO
Br

N

N

OEt

2r

O O

2; yielda (%)

from Al

97b

75

--

--

73

--

(89)c

--

   
aConditions: indazole (1.0 mmol), ArCOCH2Br (2.0 mmol), Ga/Al (1.0 mmol, each) or 

Al (2.0 mmol) in DMF/H2O (2.0 mL) at 55 oC. bConditions: indazole (1.0 mmol), 

PhCOCH2Br (2.0 mmol), Ga/Al (1.0 mmol, each) or Al (2.0 mmol) in DMF/H2O (2.0 mL) at 

rt. cConditions: indazole (1.0 mmol), RCOCH2Br (3.0 mmol), Ga/Al (1.5 mmol, each) and Al 

(3.0 mmol) in DMF/H2O (1.0 mL) at 55 oC. 
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Table 5. Scope of indazoles 

DMF/H2O (3:1)

Ga/Al or Al

N
H

N +
N

N

3 4

BrY

entry

1

4, yield (%)a

from Ga/Al

55

substrate product

2 50

N
H

N

3a

O2N

N

N

4a

O2N

N
H

N

3b

N

N

4b

O2N O2N

3 78

N
H

N

3c

N

N

4c

Br Br

4b 80

N
H

N

3d

N

N

4d

H2N N

Y

4, yield (%)a

from Al

32

38

74

--

 
aConditions: indazole (1.0 mmol), allyl bromide (3.0 mmol), Ga/Al (1.5 mmol, each) or 

Al (3.0 mmol) in DMF (0.75 mL)/water (0.25 mL) at 55 oC. bConditions: indazole (1.0 

mmol), allyl bromide (6.0 mmol), Ga/Al (3.0 mmol, each) in DMF/H2O (1.0 mL) at 55 oC. 

A plausible mechanism is proposed in Scheme 1 (taking allyl bromide as an example). 

Reaction of gallium (aluminium) metal and allyl bromide generates an allylgallium 

(allylaluminium) cation complex. Highly regioselective synthesis of 2-alkyl 2H-indazoles via 

reaction of indazole with a carbocation intermediate has been reported. 9,11 Generation of the 

allylic cation would give two possible pathways (a: η1-allyl complex, b: η3 π-allyl cation). 

Results of Table 3 show that the -bond stereochemistry of allylic bromides is retained in N-2 

substituted 2H-indazole forming reactions (Table 3, entries 4-7). Moreover, in each case, C-N 

bond forming reaction occurs at the least substituted carbon of the allylic framework. These 

observations might suggest the reaction not through -allyl chemistry. Meanwhile, it has been 

reported that indazole serves as a chelating ligand for aluminum and gallium cations through 

coordination utilizing its N-2 lone pair.12 Therefore, reaction of indazole with η1-allyl 
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complex could go through chelation or non-chelation pathway, which enables the kinetically 

controlled reaction that leads to 2-allyl-2H-indazole. 

Scheme 1. Plausible mechanism. 

 

Conclusions 

In the studies described above, we have developed a simple and efficient method for the 

regioselective synthesis of 2-substituted alkyl 2H-indazole that utilizes Ga/Al- and 

Al-mediated reactions of allyl and benzyl and -bromo-carbonyl compounds with indazoles. 

This method has been found to be generally useful for the preparation of a wide variety of 

2-alkyl 2H-indazoles and some of which are difficult to make in such high overall yields via 

the conventionally reported approaches. 
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