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An enantioselective iridium-catalyzed hydrogenation of triflu-

oromethyl substituted pyridinium hydrochlorides is described. 

Introduction of trifluoromethyl group increases the reactivity 

due to the electron-withdrawing effect. Three stereogenic 10 

centers could be generated in one operation. This 

methodology provides a convenient route to chiral poly-

substituted piperidines with up to 90% ee. 

Chiral piperidines are valuable and prevalent substructures in 

biologically active natural products, synthetic bioactive com-15 

pounds and medicines.1 Especially, the introduction of novel 

substituents on these frame syntheses of multiple stereocenters 

piperidines has been the focus of many chemists.2 Among them, 

selective introduction of trifluoromethyl groups can greatly 

modify the biological properties of the target molecules which are 20 

broadly present in plentiful important drugs, such as JAK 

inhibitorn (Figure 1).3 Although organofluorine chemists have 

made tireless efforts, stereoselective synthesis of trifluoromethyl 

piperidines with multiple stereogenic centers is still an area which 

has been rarely explored to date.4 
25 

 

Figure 1. Selected biologically active molecules containing the 
trifluoromethylpiperidine motif 

 And the piperidines with multiple stereogenic centers are of 

great significance, together with our ongoing efforts in the 30 

development of asymmetric hydrogenation of N-heteroaromatics, 

we envision that asymmetric hydrogenation of such poly-

substituted trifluoromethyl pyridines would provide a 

straightforward access to these compounds. However, due to the 

stabilizing aromaticity5 and strong coordination ability of 35 

pyridines and the corresponding products, which might poison 

catalysts, only a few homogeneous Rh and Ir catalysts6 and 

organocatalyst7 have been applied to synthesize chiral piperidines 

through asymmetric hydrogenation of special pyridines bearing 

strong electron-withdrawing group or pyridinium salts in the past 40 

15 years (Eq. 1 and Eq. 2). Notably, very recently, Mashima and 

co-workers reported an iridium-catalyzed asymmetric 

hydrogenation of pyridinium salts,6i giving the chiral piperidines 

with two or three stereogenic centers in 28-82% ee and moderate 

yields (Eq. 3). Herein, we report an efficient asymmetric 45 

hydrogenation of poly-substituted pyridinium salts with excellent 

enantio- and diastereo-selectivity (Eq. 4). Notably, introduction of 

trifluoromethyl group increases the reactivity due to the electron-

withdrawing effect. Three stereogenic centers could be generated 

in one operation.  50 

 

On the basis that the extraneous Brønsted acid could activate 

substrates and accelerate iminium/enamine isomerization to 

facilitate hydrogenation,8 we tried asymmetric hydrogenation of 

pyridinium hydrochloride. To our delight, 6-methyl-2-phenyl-3-55 

trifluoromethylpyridinium hydrochloride (1a•HCl) could be 

hydrogenated in full conversion with 67% ee and excellent 

diastereoselectivity (Table 1, entry 1). Subsequently, different 

solvents were examined (entries 2-7) and the mixture solvents of 

dichloromethane (DCM) and isopropanol with a ratio of 3/1 gave 60 

the best result in terms of both enantioselectivity and conversion 

(85% ee and >95% conversion; entry 6). Sequentially, various 

halogen source additives (TCCA: trichloroisocyanuric acid, 
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DCDMH: 1,3-dichloro-5,5-dimethylhydatoin and DBDMH: 1,3-

dibromo-5,5-dimethylhydatoin) were tested, and gave similar ee 

values between 81-85% (entries 8-10). Some commercially 

available chiral bisphosphine ligands were also evaluated (entries 

11-13), and the best result was achieved with (R)-DifluorPhos L3 5 

(88% ee and >95% conversion; entry 12). Finally, the 90% ee 

was achieved when the temperature was decreased to 25 oC, but 

the conversion reduced to 85%. Gratifyingly, full conversion with 

the identical enantioselectivity was obtained (entry 15, 90% ee) 

when the hydrogen pressure was raised to 800 psi with 2.5 mol% 10 

catalyst. Thus, the optimized conditions were established as: 

[Ir(COD)Cl]2/(R)-DifluorPhos/TCCA/(DCM/i-PrOH)/H2 (800 psi) 

/25 oC. 

Table 1. The evaluation of reaction parametersa  

 15 

Entry Solvent Additive    L 
Conv. 
(%) b 

Ee 
(%) c 

1 THF TCCA  L1 >95 67 

2 DCM (D) TCCA L1 91 82 

3 Benzene TCCA L1 89 79 

4 i-PrOH(P) TCCA L1 97 79 

5 D/P (1:1) TCCA L1 >95 82 

6 D/P (3:1) TCCA L1 >95 85 

7 D/P (4:1) TCCA L1 >95 83 

8 D/P (3:1) DCDMH  L1 >95 83 

9 D/P (3:1) DBDMH  L1 >95 81 

10 D/P (3:1) NCS L1 >95 82 

11 D/P (3:1) TCCA L2 96 78 

12 D/P (3:1) TCCA L3 >95 88 

13 D/P (3:1) TCCA L4 >95 79 

14d D/P (3:1) TCCA L3 85 90 

15e D/P (3:1) TCCA L3 >95 90 

 

a Reaction condition: 1a•HCl (0.125 mmol), [Ir(COD)Cl]2 (2.0 mol%), 
Ligand (4.4 mol%), H2 (600 psi), solvent (3.0 mL), additive (10 mol%), 

36 h, 50 oC. b.Reaction conversion and d.r. were determined by 1H NMR 

spectroscopy. In all cases, d.r. >20:1. c Determined by HPLC analysis of 
the corresponding N-benzoyl derivatives. d 25 oC. e [Ir(COD)Cl]2 (2.5 20 

mol%), (R)-DifluorPhos (5.5 mol%),  H2 (800 psi), 25 oC. 

With the optimized reaction conditions in hand, exploration of 

substrate scope was carried out (Table 2). As expected, various 

substrates performed very well under the standard reaction 

conditions. The electronic properties and position of substituents 25 

on the aromatic ring had marginal effect on the reactivity and 

enantioselectivity (entries 1-8). Subsequently, the 6-ethyl-2-

phenyl-3-(trifluoromethyl)pyridinium hydrochloride (1i•HCl) was 

also tested, 87% ee and 82% yield were obtained (entry 9). The 

absolute configuration of hydrogenation product 2f was assigned 30 

to be cis-(2R,3S,6R) based on single crystal X-ray diffraction 

analysis (Figure 2).9 

Table 2. Asymmetric hydrogenation of 3-(trifluoromethyl) pyridinium 

hydrochloride (1·HCl)a  

 35 

Entry R/Ar Yield (%)b Ee (%)c 

1 Me/C6H5 95 (2a) 90 

2 Me/4-MeC6H4 84 (2b) 89 

3 Me/3-MeC6H4 84 (2c) 88  

4 Me/4-MeOC6H4 94 (2b) 88  

5 Me/2-Naphthyl 93 (2e) 89  

6d Me/4-C6H5C6H4 90 (2f) 87 (2R,3S,6R) 

7 Me/4-CF3C6H4 85 (2g) 86 

8 Me/3,5-F2C6H3 72 (2h) 84 

9 Et/C6H5 82 (2i) 87 
a Reaction condition: 1•HCl (0.125 mmol), (R)-DifluorPhos (5.5 mol%), 
[Ir(COD)Cl]2 (2.5 mol%), H2 (800 psi), DCM/i-PrOH (3:1, 3.0 mL), 
TCCA (10 mol%), 36 h, 25 oC. b Isolated yields and in all cases d.r. 
>20:1. c Determined by HPLC analysis of the corresponding benzamide. 
d The absolute configuration was determined by single crystal X-ray 40 

diffraction analysis of 2f. 

 

 

Figure 2. X-ray crystal structure of compound 2f 

In order to further estimate the application possibility, we 

applied this attractive protocol to the hydrogenation of the simple 45 

2,6-disubstituent pyridinium hydrochloride. Gratifyingly, the 

reaction proceeded with moderate enantioselectivity and 

moderate to good reactivity (Scheme 1). In contrast to the 

asymmetric reduction of 3-(trifluoromethyl) pyridinium 

hydrochloride 1, in these cases the reactions were carried out 50 

under relatively harsh conditions (1200 psi hydrogen pressure and 

80 oC). The reactivity discrepancy of these two type substrates 

might be ascribed to the electron-withdrawing ability of 

trifluoromethyl group that activates pyridine to facilitate 

hydrogenation. 55 

Scheme 1. Asymmetric hydrogenation of 2,6-disubstituent pyridinium 

hydrochloride (3•HCl) a 
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a Reaction condition: 3•HCl (0.125 mmol), (Rax,S,S)-C3*-TunePhos (2.2 

mol%), [Ir(COD)Cl]2 (1.0 mol%), H2 (1200 psi), THF (3.0 mL), TCCA 
(10 mol%), 24 h, 80 oC. Reaction conversion and d.r. were determined by 
1H NMR spectroscopy. In all cases, d.r. >20:1. 5 

In conclusion, an efficient and direct approach to chiral trifluo-

romethyl substituted piperidines with multiple stereogenic centers 

has been successfully developed via iridium-catalyzed asymme-

tric hydrogenation of the corresponding pyridinium 

hydrochlorides with up to 90% ee. Three stereogenic centers 10 

could be generated in one operation. Introduction of 

trifluoromethyl group increases the reactivity of pyridine 

hydrogenation due to strong electron-withdrawing effect. 

Meanwhile, this attractive protocol can also be applied to the 

asymmetric hydrogenation of the simple 2,6-disubstitued 15 

pyridinium hydrochlorides with moderate reactivity and 

enantioselectivity. Further investigations on asymmetric 

hydrogenation of poly-substituted heteroaromatics are currently 

ongoing in our laboratory. 

Experimental Section 20 

A typical procedure for asymmetric hydrogenation of 1a 

In a nitrogen-filled glove box, a mixture of [Ir(cod)Cl]2 (2.1 

mg, 0.0031 mmol) and (R)-DifluorPhos (4.7 mg, 0.0069 mmol) in 

dichloromethane/isopropanol (3:1, 1.0 mL) was stirred at room 

temperature for 15-20 min, the mixture was transferred by a 25 

syringe to a stainless steel autoclave, in which substrate 1a•HCl 

(34.0 mg, 0.20 mmol) and TCCA (2.9 mg, 0.0125 mmol) had 

been placed beforehand. Then, dichloromethane/isopropanol (3:1, 

2.0 mL) was added. The hydrogenation was performed at 25 oC 

under 800 psi of hydrogen for 36 h. After carefully releasing the 30 

hydrogen, triethylamine (56 µL, 0.40 mmol) was added and the 

mixture was stirred for 30 min. The organic layer was separated 

and extracted with dichloromethane twice, and the combined 

organic extracts were dried over sodium sulfate and concentrated 

in vacuo. The resulting residue was purified by silica gel column 35 

chromatography using petroleum ether/ethyl acetate to give the 

desired product 2a as pale oil (29 mg, 95% yield). Enantiomeric 

excess was determined by HPLC for the corresponding benza-

mide (OJ-H, elute: Hexanes/i-PrOH = 90/10, detector: 220 nm, 

flow rate: 1.0 mL/min), 30 oC, t1 = 10.6 min (maj), t2 = 15.3 min 40 

(90% ee). 
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