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A novel and efficient procedure for direct difunctionalization
of alkenes with I2O5 and P(O)–H compounds has been
developed under metal-free conditions. The present
methodology produces a series of substituted β-
iodophosphates in moderate to good yields with high10
regioselectivity and favorable functional group tolerance.

Alkenes are inexpensive and readily available chemical
feedstocks and organic reactants, which difunctionalization
represents a class of reactions with significant synthetic potential
accessing to many useful and fascinating compounds.1 In recent15
years, many transition-metal-catalyzed difunctionalizations of
alkenes have been developed, such as diamination,2
dioxygenation,3 aminooxygenation,4 oxyphosphorylation,5 and
aminohalogenation.6 Nevertheless, the cost, toxicity and
environmental impact of these metal-catalysts might thereby limit20
their applications on a large scale in the field of organic synthesis
and pharmaceutical chemistry. The development of a convenient
and efficient strategy for difunctionalization of alkenes via metal-
free process has become a challenging but highly attractive target.
Despite great efforts have been made in this field over past25
several years, successful metal-free strategies are considerably
less than their transition metal-based counterparts.7 As our
continuous interest in metal-free difunctionalization of alkenes,8
here, we seek to develop a novel and convenient procedure for
direct iodophosphorylation of alkenes with I2O5 and P(O)–H30
compounds leading to β-iodophosphates under metal-free
conditions.

Organophosphates have attracted great interest of chemists and
physiologists due to they play significant roles in drug discovery9

and many major physiological processes such as energy transfer35
and regulation of ions release.10 They have also been extensively
studied in various organic transformations11 and many
agrochemicals such as insecticides and herbicides.12 Due to the
prominent importance of these compounds in synthetic chemistry
and molecular biology, various synthesis methods have been40
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developed,13-21 most known as the methods using the nucleophilic50
substitution reactions of alcohols with highly air-sensitive and
hazardous P(O)−Cl compounds in the presence of a base14 or
transesterification of phosphate esters15 or phosphorylation of
alcohol with N-phosphoryloxazolidinones16 (eqn (1)). Alternative
preparation methods such as the reactions of phosphoramidites55
with the requisite alcohol followed by subsequent oxidation,17
base mediated ephospha-Brook rearrangement,18 I2/H2O2

mediated phosphorylation of alcohols with P(O)–H compounds
(eqn (2)),19 and copper-catalyzed aerobic oxidative esterification
of P(O)−OH compounds with alcohols or diaryliodonium60
triflates20 (eqn (3)) have also been developed. However, most of
them could suffer from some limitations such as inaccessible
starting materials, relatively harsh reaction conditions, poor
substrate scope, and use of a large amount of promoters or
transition-metal catalysts. Recently, Tang and co-workers65
described a metal-free Bu4NI-catalyzed phosphorylation of
benzyl C-H bonds leading to phosphate esters using TBHP as
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Table 1 Optimization of the reaction conditionsa

Entry Iodine
reagent

Oxidant Solvent Yield (%)b

1 KI TBHP 1,4-dioxane 0
2 NaI TBHP 1,4-dioxane 0
3 I2 TBHP 1,4-dioxane 0
4 TBAI TBHP 1,4-dioxane 0
5 I2O5 TBHP 1,4-dioxane 80
6 I2O5 DTBP 1,4-dioxane 68
7 I2O5 K2S2O8 1,4-dioxane 23
8 I2O5 (NH4)S2O8 1,4-dioxane trace
9 I2O5 Na2S2O8 1,4-dioxane trace
10 I2O5 Oxone 1,4-dioxane 43
11 I2O5 TBHP THF (reflux) 58
12 I2O5 TBHP DME 40
13 I2O5 TBHP DCE 26
14 I2O5 TBHP CH3CN 42
15 I2O5 TBHP Toluene 0
16 I2O5 TBHP DMF 0
17 I2O5 TBHP DMSO 0
18 - TBHP 1,4-dioxane 0
19 I2O5 TBHP 1,4-dioxane 61c
20 I2O5 TBHP 1,4-dioxane 79d
21 I2O5 TBHP 1,4-dioxane 0e
22 I2O5 TBHP 1,4-dioxane 71f

a Reaction conditions: 1a (0.25 mmol), 2a (0.5 mmol), iodine reagent
(0.25 mmol), oxidant (0.3 mmol), solvent (2 mL), 80°C, 16 h. TBAI=(n-
Bu)4NI; DME: 1,2-Dimethoxyethane, DCE: 1,2-dichloroethane; TBHP:5
tert-Butyl hydroperoxide, 5.5 M in decane, DTBP: Di-tert-butyl peroxide,
Oxone: (2KHSO5.KHSO4.K2SO4); b Isolated yields based on 1a. c I2O5

( 0.5 equiv), d I2O5 ( 1.5 equiv), e 25oC, f 60oC.

an oxidant (eqn (4)).21 Nevertheless, the substrate scope of this
well developed reaction could be limited to toluene derivatives10
only. In the present work, a convenient and metal-free procedure
has been developed for the synthesis of various β-iodophosphates
from diverse and readily-available alkenes and P(O)–H
compounds with high regioselectivity and favorable functional
group tolerance (eqn (5)).15

In an initial experiment, styrene 1a and diphenylphosphine
oxide 2a were chosen as model substrates to optimize the reaction
conditions under air. To our delight, among various iodine
reagents tested, I2O5was found to be the optimal iodine source for
the formation of the desired 3a (80% yield) in the presence of20
TBHP (Table 1, entries 1-5), which was further demonstrated to
be the best oxidant (Table 1, entries 5-10). Moreover, the
screening of solvents showed that 1,4-dioxane was more effective
than the others such as THF, DME, DCE, and CH3CN (Table 1,
entries 5, 11-14). Interestingly, no conversion was observed when25
the reaction was performed in Toluene, DMF, and DMSO (Table
1, entries 15-17). Also, the reaction efficiency was obviously low
with the decreasing of I2O5 loading and reaction temperature
(Table 1, entries 18-20). In addition, no product was detected
when the reaction was conducted in the absence of I2O5 or at30
room temperature (Table 1, entries 18 and 21). After an extensive
screening of the reaction parameters, the best yield of 3aa (80%)
was obtained by employing 1.0 equiv of I2O5 and 1.2 equiv of
TBHP in 1,4-dioxane at 80oC (Table 1, entry 5).

Table 2 Results for metal-free difunctionalization of alkenes with I2O535
and P(O)–H compoundsab

a Reaction conditions: 1 (0.25 mmol), 2 (0.5 mmol), I2O5 (0.25 mmol),
TBHP (0.3 mmol), 1,4-dioxane (2 mL), 80°C, 16-24 h. b Isolated yields40
based on 1.

With the optimized conditions in hand, the scope and
generality of this reaction was investigated. As shown in Table 2,
both electron-rich and electron-deficient aromatic alkenes were
suitable for this reaction, of which the corresponding products45
were obtained in moderate to good yields (3aa-3la). The reaction
was not significantly affected by the steric effect. Ortho-, meta-
or para-position of the phenyl moieties were compatible with this
reaction (3ba-3ga). Moreover, various functionalities including
halogen, chloromethyl, nitro, and cyano groups were also50
tolerated in this reaction leading to the products 3ea-3la, which
could be employed for further transformations. 2-
Vinylnaphthalene was also used to give the desired product 3ma
in 71% yield. Notably, internal aromatic alkene such as (E)-prop-
1-enylbenzene and aliphatic alkenes such as 1-octene,55
cyclehexene, ethyl acrylate and N,N-diallyl-4-
methylbenzenesulfonamide were also suitable for this protocol to
generate the corresponding products (3na-3ra) in moderate to
good yields. In addition to diphenylphosphine oxide, substituted
diphenylphosphine oxide, diethyl phosphonates, and dibutyl60
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phosphonates were all suitable substrates, with the corresponding
products 3ab-3ad in moderate to good yields.

In order to obtain further insights into this reaction, several
control experiments were conducted as demonstrated in eqns. 6-9.
When the reaction of diethyl phosphonate 2d with I2O5 was5
conducted in the absence of styrene, the corresponding diethyl
hydrogen phosphate 4d was obtained in 68% yield (eqn (6)).
Meanwhile, the formation of molecular iodine was confirmed by
observation of an obvious color change from gray to deep blue
when starch was added into the above reaction system.22 When10
the reaction of styrene 1a with 2d was conducted in I2/TBHP
system, none of desired product 3ad was detected (eqn (7)).
Furthermore, the desired product 3ad was isolated in 62% yield,
when the reaction of styrene 1a with 4d was performed in the
presence of I2/TBHP system (eqn (8)). The above results15
indicated I2O5 palyed a key role in the formation of diethyl
hydrogen phosphate 4d, which was the key intermediate in this
difunctionalization reaction. Moreover, the iodophosphorylation
reaction was completely inhibited when 2,2,6,6-tetramethyl-1-
piperidinyloxy (TEMPO, a well-known radical scavenger) was20
added in this reaction system, and TEMPO-trapped complex
(Ph2P(O)-O-Tempo) was detected by LC-MS analysis (see ESI.†).
This result suggested that P(O)-O radical might exist in this
reaction system and the present reaction should proceed through a
radical pathway (eqn (9)).25

According to the aforementioned information and based on
some previous reports,22-24 a possible reaction pathway for this
transformation is outlined in Scheme 1. Initially, the oxidation of
R2P(O)–H compound 2 with I2O5 would produce the30
corresponding R2P(O)–OH 4 and I2. Subsequently, radical
intermediate 5 was formed by the interaction of R2P(O)–OH 4
with an alkoxyl radical and a hydroxyl radical, which were
generated from a homolytic cleavage of tert-butyl
hydroperoxide.23,24 Next, selective addition of radical 5 to35

Scheme 1. Tentative reaction pathway.

alkene 1 afforded alkyl radical 6, which further interacted with
molecular iodine leading to the formation of the desired product 3.

In conclusion, we have developed a novel and efficient metal-40
free synthesis method for the construction of β-iodophosphates
via the direct difunctionalization of alkenes with I2O5 and P(O)–H
compounds. A variety of biologically important phosphate esters
could be obtained in moderate to good yields from readily-
available starting materials of alkenes with high regioselectivity45
and excellent functional group tolerance. This simple and metal-
free reaction system is expected to extend the potential
applications of functionalized organophosphates in the synthetic
and pharmaceutical chemistry.
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