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How easy is CO2 fixation by M-C bond containing complexes (M = 
Cu, Ni, Co, Rh, Ir)?  
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 Luigi Cavallo*

,a
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A comparison between different M-C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density 

functional theory (DFT) calculations to explore the role of the metal in the fixtion or incorporation of CO2 into such 

complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(liPr)Ir-CCPh], with a 

ligand scaffold based on cod and liPr ligands (cod=1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). Results 

of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal/mol) < Rh(I) (30.0 kcal/mol) < 

Co(I) (31.3 kcal/mol) < Ir(I) (37.5 kcal/mol) < Ni(II) (45.4 kcal/mol), indicating that the Cu(I) based analogue is the best CO2 

fixer, while Ni(II) is the worst in the studied series.  

 

Development of catalysts capable of utilising CO2 as feedstock,
1-4

 

possibly in large volume transformations,
5-7

 is considered to be one 

of the key challenges in modern chemistry. However, the wide 

spread use of CO2 in chemical transformations is limited due to its 

chemical inertness.
8
 In recent past, despite some attempts with 

metal-free processes,
9,10

 even organocatalyzed trapping of CO2 

through C-C and C-O bond formation,
11

 progress has been made in 

exploring the CO2 reactivity with a large number of its reactions 

being insertion into transition metal-X bond (where X = C, O, N) 

supported with appropriate ligands.
12-17

 These reactions are 

believed to be one of the most challenging organometallic reactions 

as CO2 is thermodynamically stable and kinetically inert.
18-24

 To this 

end, a novel organometallic complex as well as chemical 

mechanism able to perform or explain the capture of CO2 would be 

extremely interesting and valuable in directing catalyst design 

efforts.
25-46 

Therefore, a thorough understanding of the mechanism 

of CO2 insertion into the M-X bonds is of fundamental importance 

and could guide advances in the development of this important 

reaction. 

Despite the very recent large number of experimental
47-52

 and 

theoretical
53-59

 studies focusing on CO2 insertion, reports on direct 

comparison between theoretical and experimental results remain 

very limited.
53,60,61

 To partially fill this gap, we have recently 

reported density functional theory based investigations of CO2 

fixation mechanism as proposed by Nolan et al for a new Ir(I) 

complex,
61-63 

[Ir(cod)I
i
Pr)(OH)] (1) (cod=1,5-cyclooctadiene; I

i
Pr = 

1,3-bis(isopropyl)imidazol-2-ylidene) and its derivatives containing 

Ir-O (complexes 3 and 4), Ir-N (complex 5), and Ir-C bonds 

(complexes 6, 7, 8 and 9; see Scheme 1).
64

 According to the 

experiments, complexes containing Ir-heteroatom bonds (1, 3-5) 

display high reactivity towards CO2, while complexes with Ir-C 

bonds (6-9) are completely unreactive towards the green house gas.  

 

 

 

Scheme 1.  
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Based on the experimental findings, a plausible mechanism 

for CO2 insertion into the M-X bonds (X = O or N) proposed by 

Nolan et al is outlined in Scheme 2. Considering complex A, the 

nucleophilic attack of the heteroatom X onto CO2 does not 

proceed via the oxygen atoms but through the carbon atom, 

involving a four-membered cyclic center, hypothetically 

structure B, i.e. most probably B is the transition state itself. 

The particular structural nature of 1 allows for a second 

molecule of 1 to react yielding a dimeric structural product 2; 

this occurs once a water molecule has been released from 

intermediate C. 

    
Scheme 2.  

 

Our detailed investigation of the proposed mechanism in 

Scheme 2 for complex 1 revealed that the CO2 insertion step is 

the rate determining step rather than the subsequent 

dimerization step, C→2, (15.8 kcal/mol vs 9.4 kcal/mol, 

respectively).
62

 This finding contradicts the recent study by 

Truscott et al.
61 

as they argued that dimerization is probably 

the rate-limiting step for complex 1. In fact, we pointed out 

that the facile dimerization step is due to the cooperative 

nature of the iridium centers. Additionally, in agreement with 

experiments, the calculated low CO2 insertion barriers for 

complex 1 and its derivatives 3-5 (3 (11.8 kcal/mol) < 4 (22.5 

kcal/mol) < 5 (17.7 kcal/mol)) indicated that the CO2 insertion 

into Ir-O and Ir-N bonds is kinetically facile. On the other hand, 

significantly higher barrier values were estimated for 

complexes 6-9 (ranges from 35.0-50.0 kcal/mol), suggesting 

that CO2 insertion into Ir-C bonds is kinetically more 

challenging and supports the experimental observation that 

the Ir-C bond are unreactive towards CO2.   

Having rationalized the behaviour of the systems proposed in the 

literature (1, 3-9), in the present study we turn our attention to the 

effect of changing the metal (but keeping the same ligand scaffold; 

cod and l
i
Pr ligands) with the aim of finding one metal that can 

induce CO2 insertion into M-C bonds. It is well documented in the 

literature that CO2 can be inserted into the M-C bonds of Rh and 

other transition metals such as Cu and Ni.
65-67

 To this end, we 

studied the CO2 insertion step for different metal (Cu(I), Rh(I) and 

Ni(II)) based congeners of 8 [(cod)(l
i
Pr)Rh-CCPh],

68
 which presented 

the lowest CO2 insertion barrier (37.5 kcal/mol) among the 

investigated Ir-C bond containing complex in the series 6-9. 

To clarify the role of the metal in the CO2 insertion DFT 

calculations were carried out. All DFT static calculations have been 

performed at the GGA level with the Gaussian09 set of programs,
69 

using the BP86 functional of Becke and Perdew.
70,71

 The electronic 

configuration of the molecular systems was described with the 

standard split-valence basis set with a polarization function of 

Ahlrichs and co-workers for H, C, N, and O (TZVP keyword in 

Gaussian).
72 

For Cu, Ni, Rh and Ir, the quasi-relativistic 

Stuttgart/Dresden effective core potential was used, with the 

associated valence basis set (standard SDD keywords in 

Gaussian09).
73-75

 The geometry optimizations were carried out 

without symmetry constraints, and the characterization of the 

stationary points was performed by analytical frequency 

calculations. Single point calculations on the BP86 optimized 

geometries were performed using the M06 functional
76 

with the 

triple-ζ basis set of Ahlrichs for main-group atoms (TZVP keyword in 

Gaussian),
77

 while for Ir the SDD basis set has been employed. 

These single point calculations also used the polarizable continuous 

model PCM to address solvent effects, using benzene as a 

solvent.78,79 The reported free energies in this work include energies 

obtained at the M06/TZVP level corrected with zero-point energies, 

thermal corrections and entropy effects evaluated at 298 K with the 

BP86/SVP method in the gas phase.
80,81

 

Figure 1 presents the computed energy profile for the CO2 

insertion into M-C bond of different metal analogues of 8. The 

reference point is the energy of complex 8 analogues plus free 

CO2. For the selected metals, the calculated CO2 insertion 

barriers (for simplicity named TS8, in analogy with our Ir(I)-

complexes of Scheme 1) follows the trend: Cu(I) (20.8 

kcal/mol) < Rh(I) (30.0 kcal/mol) < Co(I) (31.3 kcal/mol) < Ir(I) 

(37.5 kcal/mol) < Ni(II) (45.4 kcal/mol), indicating that the Cu(I) 

based analogue is the best CO2 fixer, while Ni(II) is the worst of 

the studied metal series. However, from a thermodynamic 

stand point, the overall CO2 insertion reaction is endergonic in 

nature for all examined metals (see the energy values for II8 in 

Figure 1), being less endergonic in the case of Cu(I) (5.0 

kcal/mol) than Ni(II) (22.3 kcal/mol). It is worth mentioning 

here that we calculated the CO2 insertion barrier for high spin 

Co(II) complex and is predicted to be 32.9 kcal/mol, which is 

slightly higher in energy (by 1.6 kcal/mol) than the calculated 

barrier for low spin Co complex (31.3 kcal/mol).  
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Figure 1. Computed free energy profile for the CO2 insertion into 

M-C bond of different metal analogues of Ir(I)-complex 8 (where 

R1 = CCPh). Free energies are given in kcal/mol. Ni(II) is a 

cationic complex (overall charge +1). 

 

 
 

 
Figure 2. Calculated transition states of CO2 fixation mechanism 

promoted by different metals analogues of Ir(I)-complex 8: (a) Cu(I); 

(b) Rh(I); (c) Co(I); (d) Ir(I); and (e) Ni(II). The most notable distances 

are given in Å.  

 

A plausible explanation for the remarkable metal effect on 

the calculated CO2 insertion barriers can be drawn from the 

geometries of the TS structures (see Figure 2) and by 

considering the Hammond postulate. In detail, the calculated 

high energy TS for Ni(II) can be considered as a textbook 

example of a “late TS” closer to product (r(Ni-O) = 2.269 Å; see 

Figure 2e). By changing the metal from Ni(II) to Cu(I), the 

transition state moves towards the reactants as the reaction 

becomes less endothermic. Thus, the calculated low energy TS 

for Cu(I) can be considered as an “early TS” closer to the 

reactants (r(Cu-O) = 3.053 Å; see Figure 2a). Intermediate 

situations are reported for Rh and Ir (r(Rh-O) = 2.891 Å and 

r(Ir-O) = 2.716 Å; Figure 2b and c, respectively).  

Having these results at hand, we then calculated the CO2 

insertion barrier for the experimentally known Cu(I) complex, 

[Cu(IPr)(CCPh)],
82 

and further, to be compared with other 

group 11 metals Ag(I) and Au(I). The calculated CO2 insertion 

barrier follows the trend: Ag(I) (30.9 kcal/mol) < Cu(I) (34.6 

kcal/mol) < Au(I) (37.0 kcal/mol), indicating that the Ag(I) 

based analogue is the best CO2 fixer, followed by Cu(I) and 

Au(I) based analogues. However, the calculated CO2 insertion 

barriers are still above 30.0  kcal/mol, suggesting that the CO2 

fixation is kinetically challenging in the considered group 11 

metal series. Calculations attempting to screen a longer series 

of ligands to characterize in detail how the CO2 insertion 

barrier is affected by the nature of the ligand are ongoing.
82,83

 
 

Last but not least, eventhough the energy data include the 

correction for dispersion implicitly, the geometry optimization 

is not included, as previously reported,
62,79,80

 however new 

tests performed on the transition states for Ni and Cu 

displayed in Figure 2 reveal an increase in the energy barrier of 

+0.4 kcal/mol for Ni and a decrease of 0.8 kcal/mol for Cu, 

which suggest that in absolute value the difference is small to 

negligeable and that there is no obvious trend concerning the 

effect of dispersion on the CO2 insertion barriers. 

Conclusions 

We have explored the role of metal in the CO2 insertion into M-C 

bond by considering various metal (M = Cu(I), Co(I), Rh(I) and Ni(II)) 

analogues of Ir(I)-complex 8. Results show that among the 

considered metals, Cu(I) was the best CO2 fixer with an estimated 

barrier of 20.8 kcal/mol, while Ni(II) was found to be the least 

reactive with a barrier of 45.4 kcal/mol. As a final note, the large 

spread in the activation energies estimated by changing the metal 

but with the same ligand scaffold (cod and l
i
Pr ligands) strongly 

suggests that there is a large space to explore for a suitable 

combination of ligand and metal to add important components to 

improve/affect the thermodynamics of this fascinating reaction. 
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