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Copper-Catalyzed Oxidative Coupling Reaction of α, β-
Unsaturated Aldehydes with Amidines: Synthesis of 1, 2, 4-
Trisubstituted-1H-Imidazole-5-Carbaldehydes  

Yaxuan Li,
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 Yajie Fu,
ab

 Chaojie Ren,
ab 

Dong Tang,
ab

 Ping Wu,
ab

 Xu Meng
c
 and Baohua Chen*

ab 

A practical and highly functional group-compatible synthesis of 1, 2, 4-trisubstituted-1H-imidazole-5-carbaldehydes has 

been developed via copper-catalyzed oxidative coupling of amidines and α, β-unsaturated aldehydes, which features 

aldehyde reserved, cheap catalysts, as well as high atom economy and mild conditions.

Introduction 

The imidazole core is an important scaffold that could be 

found in a large number of natural products (Figure 1 a),
1
 

pharmaceuticals (Figure 1 b and c),
2
 and advanced materials

3
. 

Thus, the development of synthetic protocols for imidazole 

derivatives has always been an active area of research.
4
 The 

Bredereck synthesis,
5
 Van Leusen reaction,

6
 Debus-

Radziszewski reaction,
7
 and the reaction of R-haloketones with 

amidines
8
 are well documented as traditional methods to build 

imidazole rings. However, these procedures generally involve a 

strong base or relatively high temperature.  

With the rapid development of transition metal-catalysis in 

the past decades, using simple N-arylated substrates as 

precursors for the synthesis of various imidazole derivatives 

has stimulated great research efforts.
9
 Among these, Cu-

catalyzed oxidative synthesis of imidazole derivatives has 

become increasingly popular for their high efficiency.
10

 

Typically, the group of Chiba has developed a series of 

strategies to afford various azaheterocycles under Cu-

catalyzed oxidative conditions in the past few years.
10b-g 

Aldehyde is one of the most important groups in functional 

group transformation, such as Aldol reaction and Mannich 

reaction. As a potentially versatile synthetic intermediate, the 

aldehyde-substituted imidazoles contain an important reactive 

center for facile derivatization.
11

 For example, Qiao’s group  

 
Figure 1. Examples of compounds with imidazole skeleton 

synthesized novel functional materials, Schiff-base linked poly-

meric imidazoles (SLPI),
11i

 which are developed by aldehyde-

substituted imidazoles. Based on previous studies on other 

and our groups,
9j,9t,10j,12

 we report a copper-catalyzed oxidative 

coupling of α, β-unsaturated aldehydes with amidines to  

construct 1, 2, 4-trisubstituted-1H-imidazole-5-carbaldehydes 

under mild conditions with H2O as the sole byproduct. 

Results and discussion 

We initiated the investigation by using N-

phenylbenzamidine (1a) and cinnamaldehyde (2a) as model 

substrates for optimization of this process, and the effects of 

all reaction parameters were systematically examined (Table 

1). When the reaction was carried out in the presence of CuI 

(10 mol%), DABCO (1, 4-diazabicyclo-[2.2.2]octane) (20 mol%) 

and PhCl (chlorobenzene) (2 mL) at 100 
o
C for 36 h under air 

atmosphere, the desired product 3aa was isolated in 26% yield 

(entry 1). It was found that two equivalents of MnO2 under N2 

atmosphere increased the reactivity, producing the 

corresponding product 3aa in 75% yield (entry 3). Other 

oxidants were inefficient in the presence of N2 (entries 4-6). 

Among various copper catalysts that we screened, CuI gave the 

highest yield (entries 7-9). The replacement of DABCO with 

other ligands did not promote the efficiency of the reaction 

(entries 10–12). An evaluation of solvents revealed that PhCl  
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Table 1. Optimization of Reaction Conditionsa 

 

Entry Catalyst Ligand Oxidant Solvent Yield [%]b 

1 

2c 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16d 

17e 

18f 

19g 

20h 

21i 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

CuBr 

CuBr2 

CuCl2 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

CuI 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

  Bipy 

TMEDA 

  PPh3 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

DABCO 

   air 

MnO2 

MnO2 

K2S2O8 

TBHP 

AgCO3 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

MnO2 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

DCE 

DMF 

dioxane 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

PhCl 

26% 

48% 

75% 

27% 

20% 

15% 

20% 

32% 

54% 

53% 

25% 

21% 

24% 

trace 

36% 

30% 

68% 

55% 

45% 

59% 

63% 

aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), catalyst (10 mol%), ligand (20 

mol%), oxidant (2 equiv.), N2, solvent (2 mL), 100 oC, 36 h. bIsolated yield. cUnder 

air atmosphere. dThe ratio of 1a/2a = 1.5:1. eCuI (20 mol%), DABCO (40 mol%). 
f140 oC. g70 oC. hMnO2 (1 equiv.). iMnO2 (3 equiv.). 

was the optimal choice, while other solvents such as DCE (1, 2-

dichloroethane), DMF (N, N-dimethylformamide) and 1, 4-

dioxane showed inferior results (entries 13–15). In addition, 

lower yields of 3aa were obtained when we attempted to 

change the ratio of 1a/2a, catalyst loading and temperature 

(entries 16–19). When varying the amounts of MnO2, we found 

that the reaction with two equivalents of MnO2 offered the 

best yield (entry 4 vs. entries 20 and 21). The structure of 3aa 

was confirmed by X-ray crystallography (Figure 2).
13

 

With the optimized conditions in hand, we proceeded to 

examine the substrate scope (Scheme 1). First, we studied the 

R
1
-substituted arylamidines. Electron-rich-substituted arylami- 

dines such as p-Me and p-OMe gave reaction products in 

excellent yields (3ba, 80%; 3ca, 82%). When both aromatic 

rings were substituted with electron-rich groups, the product 

was isolated in optimal yield (3na, 88%). Electron-deficient 

arylamidines bearing halide (F-, Cl-, Br-) and trifluoromethyl 

groups reacted under the standard conditions to afford the 

desired products in moderate yields (3da-3ha, 38%-62%). 

We next examined the substrate scope of this reaction using 

R
2
-substituted arylamidines. The p-Me-substituted arylamidine 

delivered 3ja in good yield (81%), while the p-Cl-substituted 

arylamidine afforded 3ia in lower yield (50%). O-substituted 

arylamidines showed slightly lower reactivity than p-

substituted arylamidine (3ja, 81%; 3ka, 62%), indicating that  

 
Figure 2. X-ray structure of 3aa. 

 

 
 

 
Scheme 1. The scope of amidines. Isolated yields are given. Reaction conditions: 1 (0.2 

mmol), 2a (0.4 mmol), CuI (10 mol%), DABCO (20 mol%), MnO2 (2 equiv.), N2 , PhCl (2 

mL), 100 
o
C, 36 h. 

steric factors had a negative influence on this conversion. 

Furthermore, N-(naphthalen-2-yl)benzimidamide, N-(tert-

butyl)benzimidamide and N-butylbenzimidamide were 

tolerated, affording the corresponding products in low yields 

(3pa, 50%; 3qa, 31%; 3ra, 28%). 
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Scheme 2. The scope of α, β-unsaturated aldehydes. Isolated yields are given. Reaction 

conditions: 1a (0.2 mmol), 2 (0.4 mmol), CuI (10 mol%), DABCO (20 mol%), MnO2 (2 

equiv.), N2, PhCl (2 mL), 100 oC, 36 h. 

 
Scheme  3. Controlled Experiments 

The scope of α, β-unsaturated aldehydes was also examined 

(Scheme 2). Substrates bearing electron-donating groups 

(methyl and methoxyl) at the aromatic ring produced the 

corresponding products in good yields (3ab−3ad, 75−87%). The 

presence of electron-withdrawing substituents (F-, Cl-, Br-) at 

para position reduce the efficiency of the reaction, as the 

corresponding products could be isolated in slightly lower 

yields (3ae−3ag, 57−65%). Additionally, substrates bearing a 

furan and an n-propyl were also compatible, albeit providing 

lower yields (3ai, 36%; 3aj, 34%). Unfortunately, the reaction 

with p-nitro-substituted α, β- unsaturated aldehyde did not 

afford the desired product 3ah under the standard reaction 

conditions. Futhermore, we also tried chalcone with 1a under 

 
Scheme 4. Proposed mechanism 

the standard reaction conditions, which afforded the 

corresponding product (3ak) in 70%  yield. 

To understand the possible mechanism of this reaction, 

several control experiments were investigated (Scheme 3). 

Firstly, the reaction between 1a and 2a without using catalyst 

or oxidant was carried out, but no desired product was 

detected (Scheme 3 Eq. 1 and 2). Moreover, when 2 equiv. 2, 

2, 6, 6-tetramethyl-1-piperidinyloxl (TEMPO) was added into 

the standard reaction, the isolated yield of 3aa reduced from 

75% to 51% (Scheme 3 Eq. 3 A), in which it may be the weak 

oxidizing effect of TEMPO affected the reaction. We also tried 

other radical traps such as BHT (2, 6-di-tert-butyl-4-

methylphenol) (Scheme 3 Eq. 3 B) and PBN (N-benzylidene-

tert-butylamine N-oxid) (Scheme 3 Eq. 3 C), which produced 

3aa in 60% and 63% respectively, indicating that this 

transformation might not proceed via a radical pathway. 

Based on previous studies and control experiments, a 

plausible reaction mechanism is proposed as shown in Scheme 

4.
14

 Initially, a Michael addition of N-arylbenzamidines (1a) to 

the cinnamaldehyde (2a) took place to form the corresponding 

Michael adduct A.
14a-d

 Subsequently, the nitrogen atom that 

connected to the benzene ring bound with Cu(II) salts to 

produce the intermediate B which simultaneously reacted with 

the enol to form the cyclic Cu(II) intermediate C.
14e 

Then 

intermediate C on oxidation by the oxidant formed the 

intermediate D in which copper was in the +III oxidation 

state.
14f

 Finally, the intermediate D through reductive 

elimination to afford intermediate E, which on rapid oxidative 

aromatization under oxidizing conditions leads to the tandem 

product 3aa.Reoxidation of the Cu
I
 to the Cu

II
 by MnO2 

completed the catalytic cycle. 

Conclusions 

In summary, an efficient copper-catalyzed oxidative coupling 

of α, β-unsaturated aldehydes with amidines for the synthesis 

of 1, 2, 4-trisubstituted-1H-imidazole-5-carbaldehydes was 

developed, which shows a high atom economy, cheap catalysts 
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and mild conditions. Further studies on the application of this 

transformation are underway. 

Experimental 

Typical Procedure for the Preparation of 3: 1 (0.20 mmol), 2 

(0.40 mmol), CuI (3.8 mg, 10 mol%), DABCO (4.5 mg, 20 mol%), 

MnO2 (34.8 mg, 2.0 equiv.), and PhCl (2 mL) were added to a 

flask with a magnetic stirring bar under N2 atmosphere. The 

mixture was stirred at 100 
o
C for 36 h. After cooling to room 

temperature, the mixture was diluted with ethyl acetate and 

filtered. The filtrate was removed under reduced pressure to 

get the crude product, which was further purified by silica gel 

chromatography to give product 3. The identity and purity of 

the products was confirmed by 
1
H NMR and 

13
C NMR 

spectroscopic analysis. 
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