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A copper-catalyzed aminotrifluoromethylation of alkenes using
amides as nucleophiles has been developed. It provides a rapid
and efficient access to a variety of CFs-containing lactams. The
reaction proceeds under mild conditions with a good scope and
functional group tolerance, offering a valuable method to prepare
CFs-containing lactams that are of great potential in
pharmaceuticals and agrochemicals.

The pharmacological profile of organic molecules can be
significantly improved through the introduction of fluorine. In
particular, the trifluoromethyl group has attracted substantial
attention in the fields of pharmacology and agrochemistry due
to its favorable influence on lipophilicity, hydrophobicity, and
metabolic stability.Z A variety of synthetic methods has been
developed towards the installation of the trifluoromethyl
group into organic molecules.”™ Over the past several years,
transition-metal-mediated alkene trifluoromethylation has
emerged as a powerful approach.3 For example, copper-
catalyzed allylic trifluoromethylation of terminal alkenes has
been reported by several groups (Scheme 1, a).5 In addition,
multiple alkene difunctionalization reactions incorporating
trifluoromethylation have been successfully established,®’
including carbotrifluoromethylation,8 oxytrifluoromethylation,9
and aminotrifluoromethylation10 of simple alkenes (Scheme 1,
b). The Buchwald group reported an elegant work on the
copper-catalyzed intramolecular oxytrifluoromethylation of
alkenes with Togni’s reagent, employing carboxylic acids,
phenols or alcohols as nucleophiles to form oxygen-containing

heterocycles.gd'963 Recently, aminotrifluoromethylation of

terminal alkenes with Togni’s reagent was reported by the
10c . 10d-e

Sodeoka and Liu

amines as nucleophiles to construct trifluoromethylated

groups using amines or protected

aziridines, pyrrolidines and indolines. Though a wide range of
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Scheme 1. Alkene trifluoromethylation

trifluoromethylated scaffolds are accessible through current

methods, there are no examples of the
aminotrifluoromethylation of unsaturated amides towards the
synthesis of CFs-containing lactams. In contrast to the
successful oxytrifluoromethylation of unsaturated carboxylic
acids, it remains challenging to employ amides as nucleophiles
in trifluoromethylation-incorporated olefin difunctionalization.
% With the ubiquitous presence of lactams in synthetic
building blocks, bioactive compounds, natural products and
pharmaceuticals,11 it would be of great value to synthesize CFs-
containing lactams. Herein, we report the first example of the
introduction of the trifluoromethyl group into lactams via

aminotrifluoromethalytion of simple alkenes.
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Table 1. Trifluoromethylation reactions of 2—vinylbenzamides[3]

Table 2. Condition optimization for alkene aminotrifluoromethylation[a]

o
R Cu(CH3CN)4PFg (20 mol%)
N~ 2 (1.5 equiv) (
H
MeOH, 80°C, 2h

R =H, Ph, Bn, OMe

1a-d
ammofrlfluoro- tnﬂuoro-
methylation methylation
pF
cu!
o s or
o
NH
3a', 54% 3b', 74% 3c', 61% 3d, 79%

[a] Reaction conditions: 1 (0.2 mmol, 1 equiv), 2 (0.3 mmol, 1.5 equiv),
Cu(CH3CN)4PFg (0.04 mmol, 20 mol%), MeOH (1 mL), 80 °C, 2 h.

Recently, our goup has reported a copper-catalyzed alkene
diamination reaction in which the protecting group on the
amide played a critical role in the formation of the lactam
products.12
amide would once again be critical

We postulated that the protecting group on the
in the proposed
aminotrifluoromethylation reaction. Thus, we examined the
copper-catalyzed reactions of 2-vinylbenzamides 1 containing
different protecting groups using Togni’s reagent 2 (Table 1).
Interestingly, two types of trifluoromethylation products were
observed depending on the protecting groups. In the case of
la—1c with H, Ph, or Bn groups, trifluoromethylated alkenes
3a’-3¢’ were formed."® However, in the reaction of 1d with an
OMe group,

successfully formed. These results suggested that the alkoxyl

aminotrifluoromethylated lactam 3d was
group on the nitrogen played an important role on the

trifluoromethylation reaction and facilitating the radical
cyclization via nitrogen trapping.

With our preliminary success, we next used unactivated 2-
allyl-N-methyoxybenzamide 1e as the model substrate to
optimize the aminotrifluoromethylation conditions (Table 2).
In contrast with the successful formation of isoindolinone
product 3d, the
dihydroisoquinolinone 3e was formed in only 17% yield under
the initial conditions with Cu(CH3CN),PFs as the catalyst in
MeOH at 80 °C (Table 2, entry 1). Among the set of copper
catalysts examined, Cu(acac), was found to be the best,
providing 3e in 45% vyield (Table 2, entries 1-8). Methanol
proved to be the optimal solvent for the formation of the
desired product 3e (Table 2, entries 8-15).

temperatures resulted in a significant decrease in efficiency

aminotrifluoromethylated product 3,4-

Lowering reaction

(Table 2, entries 16-18). Finally, increasing the amount of
Togni’s reagent (2 equivalents) led to a much improved yield of
3e (72%), which was chosen as the standard conditions for
alkene aminotrifluoromethylation.

2| J. Name., 2012, 00, 1-3

o
O [Cu] N .OMe
Fa

3e

entry  catalyst solvent temp (°C) yield[b]
1 Cu(CH3CN)4,PFs  MeOH 80 17%
2 CuOTf MeOH 80 14%
3 CuOAc MeOH 80 33%
4 CuTc MeOH 80 32%
5 CuCN MeOH 80 17%
6 CucCl MeOH 80 28%
7 Cu(OAc), MeOH 80 30%
8 Cu(acac), MeOH 80 49%
9 Cu(acac), DMF 80 7%
10 Cu(acac), toluene 80 5%
11 Cu(acac), DCE 80 11%
12 Cu(acac), 1,4-dioxane 80 3%
13 Cu(acac), THF 80 3%
14 Cu(acac), MTBE 80 25%
15 Cu(acac), CH5CN 80 8%
16 Cu(acac), MeOH 60 45%
17 Cu(acac), MeOH 40 18%
18 Cu(acac), MeOH rt 3%
199 cu(acac), MeOH 80 72%

[a] Reaction conditions: 1 (0.2 mmol, 1 equiv), 2 (0.30 mmol, 1.5 equiv), Cu(acac),
(0.04 mmol, 20 mol%), MeOH (2 mL), 80 °C, 12 h, unless otherwise noted. [b]
Yields determined by F NMR with CFsPh as an internal standard. [c] 2 (0.4
mmol, 2 equiv), 12 h.

With these optimized conditions, we examined the scope of
this alkene aminotrifluoromethylation (Table 3). Both 5- and 6-
(isoindolione 3d and 3,4-
dihydroisoquinolione 3e) were readily formed in 82% and 89%

membered lactam products
yields, respectively. The reaction displayed compatibility with a
wide range of substitutions on the aryl group, including those
that were electron-donating (3f), electron-withdrawing (3g), or
located at a sterically obstructing ortho position (3h).

addition to N-methoxybenzamides 1d—1h, N-methoxyamides
1li-1n bearing different substituents on the alkenyl chain
underwent smooth 5-exo cyclization to afford y-lactam 3i—3n.

In the amide substrates that contained a stereocenter,
moderate to good diastereoselectivity was observed in the
formation of lactams 3I-3n. Finally, the formation of 6-
membered lactam 30 was also effective.

When 1,1-disubstituted terminal alkenes 1p and 1q were
examined under standard conditions, interestingly, the desired
products observed;
rather the oxytrifluoromethylation products 3p and 3q were

aminotrifluoromethylation were not

formed upon the subsequent acid-catalyzed hydrolysis. These

results suggest that O-trapping is favored over the N-trapping
upon the increased steric hindrance (Scheme 2).14

This journal is © The Royal Society of Chemistry 20xx
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2
3 Table 3. Aminotrifluoromethylation of Unactivated Alkenes™
4 1
5 o o £
Cu(acac), (20 mol%) '
6 R}HOMG 2 (2.6 equiv) R}N'OMG ; o
7 (\}W MeOH, 80 °C % 1
8 Fa : o
1 3 ; 2
9
10 o 2
12 Fs Fs
13 3d, 82% 3e 89% 3f, 32%
14 0 (0]
15 N -OMe N -OMe Me N -OMe
16 Me
17 cl Fa Fs Fa
18 3g, 49% 3h 74% 3i, 82%
19 0 o)
20 Ph— "~y -OMe N -OMe N -OMe
21 /
22 F3 Me "—CFS
23 3j, 73%, d.r. = 1:1 48% 31, 63%, d.r. = 4.5:1"
.OMe -OMe e
25 N d/ Me N,OMe
26 P’ —cF “—CF Fo
27 3 3
28 3m, 50%, d.r.=6.3:1”  3n,41%, d.r. = 5.3:1" 30, 44%
29 [a] Reaction conditions: 1 (0.3 mmol, 1 equiv), 2 (0.6 mmol, 2 equiv), Cu(acac),
30 (0.06 mmol, 20 mol%), MeOH (3 mL), 80 °C, 2-5 h. Isolation yields. [b] d.r =
iastereomeric ratio, determine y ~F NMR of the crude reaction mixture.
31 d d d by *° f th d
32 Isolation yield includes both isomers. [c] d.r. determined by GC-MS of the crude
reaction mixture, only one diastereomer isolated.
33
34
35 o 1) Cu(acac); (20 mol%) o r N,OMe 7
36 )k OMe 2 (2.0 equiv) o |
37 u MeOH, 80 °C, 12 h via ¢}
A 2 . HCI, MeOH/H,0
38 Ph ) cone i, 12 h z Ph Fa Ph Fs
39 1p 3p, 49% - -
40 o} 1) Cu(acac), (20 mol%) [ -OMe 1]
41 Me OMe 2 (2.0 equiv) Me Me
42 Me N MeOH, 80°C,12h _ Me 0 via Me o]
43 Me N 2) conc. I;E):,ZI\/LeOH/HQO Me Fs Me Fs
44 1q 3q, 52%
45 Scheme 2. Oxytrifluoromethylation of 1,1-disubstituted alkenes
46
47
48 Me _ Mo(CO)s _ LiAH, NH
49 ( Fa CHacN/HQO Fs THF reflux F3
50 4e, 82% 5e, 98%
51 Scheme 3. Deprotection of N-methoxyamide 3e
52
53 While the mechanistic details of this copper-catalyzed
54 aminotrifluoromethylation reaction remain unclear at present,
55 the current results suggest it would be analagous to the
56 copper-catalyzed oxytriﬂuoromethylation.Bd'9e Furthermore,
57 the addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO),
58 a known radical scavenger, was found to largely inhibit the
59 aminotrifluoromethylation reaction.”
60

This journal is © The Royal Society of Chemistry 20xx

To demonstrate synthetic utility of the products derived from
this reaction, 3,4-dihydroisoquinolinone 3e was treated with
Mo(CO)e, readily providing free lactam 4e in 82% vyield
(Scheme 3). Furthermore, reduction using LiAlH, afforded the
tetrahydroisoquinoline 5e, providing an
effective access to trifluoromethylated piperidine derivatives.

CF3-containing

Conclusions

In summary, an efficient copper-catalyzed aminotrifluoro-
methylation of alkenes has been achieved using amides as
nucleophiles under mild conditions. These reactions provide
CF3-containing lactams in good yields. It offers a useful method
to access a variety of CFz-containing lactams, which are
valuable building blocks in organic synthesis and drug
Further

mechanism are currently underway.

development. investigations of the reaction
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(0] 0]
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without TEMPO:  3e (89%) isolation yield
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