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Ammonia modified graphene nanosheets (AMGNSs)/epoxy nanocomposites were prepared by using a 
facile blend method. Graphene nanosheets (GNSs) were modified with aqueous ammonia (NH3•H2O) and 
hydrogen peroxide (H2O2), to obtain amine (–NH2) functionalized GNSs and enhance the bondings 
between the GNSs and epoxy resin matrix. The effects of AMGNSs on the static and dynamic mechanical 
properties of the nanocomposites were investigated. The results indicated that the tensile and flexural 10 

strength and modulus of the AMGNSs/epoxy nanocomposites increased firstly and then decreased with 
the increasing of AMGNS addition. The addition of 0.5 wt.% AMGNSs improved the tensile strength and 
flexural modulus of the pristine epoxy by 27.84% and 7.75%, respectively. Meanwhile, the addition of 
0.1 wt.% AMGNSs improved the tensile modulus and flexural strength of the pristine epoxy by 14.16% 
and 94.38%, respectively. The reinforcing effect of AMGNSs in enhancing the impact properties of 15 

epoxy nanocomposites was also be examined. It was demonstrated that the amine functionalized GNSs by 
ammonia had an obvious effect on the mechanical performances of epoxy matrix nanocomposites. 

1. Introduction 

Graphene, a single-layer carbon sheet of sp2-hybridized carbon 
atoms arranged in a hexagonal packed lattice structure, has shown 20 

many remarkable properties, such as excellent electronic 
transport properties, high specific surface area, high thermal 
conductivity and extraordinary mechanical properties.1-8 In fact, 
carbon-based fillers (carbon black, carbon nanotubes, etc.) have 
been extensively researched as reinforcements of polymer 25 

nanocomposites for the past decades.9 Carbon nanotubes, as the 
strongest contender of graphene in the nanocomposites field, are 
not ideal for toughening or reinforcing polymer composites, 
because of high viscosity, prohibitively high cost, and high 
anisotropic functionality.9,10 As a new allotrope of elemental 30 

carbon, graphene has been used as a new carbon-based filler for 
polymer nanocomposites to obtain remarkable physical and 
mechanical properties.11-17 
 Epoxy resin systems are important thermoset materials used as 
adhesives, coatings, structural materials, insulating materials, and 35 

many other industrial applications at present.9 Graphene-
reinforced epoxy resin nanocomposites have been investigated in 
view of their enhanced mechanical and thermal properties.6,9,18-26 

However, the bad dispersion homogeneousness due to the high 
specific surface area of graphene and the weak interfacial 40 

interactions between graphene and epoxy resin, which restricts 
the application of graphene in polymer nanocomposites.27-29 It is 
likely that the proper chemical modification of graphene can 
prevent the aggregation of graphene sheets as well as improve the 
interfacial interactions between graphene and epoxy resin and 45 

processability.16,30,31 

 In this study, we focused on the homogeneous dispersion of 
graphene and the changes of mechanical properties with its 
content increasing. As previously studied for carbon-based fillers, 
dispersion and interfacial interactions are two main issues 50 

governing the properties of nanocomposites.20 Graphene obtained 
from reduction of graphene oxide contains carboxylic functional 
groups at their edges, which could provide the active sites to react 
with aqueous ammonia. And the amine (–NH2) functionalization 
of graphene nanosheets (GNSs) could obviously enhance the 55 

interfacial adhesion between GNSs and the epoxy resin.19,32 
Herein, the GNSs were surface-treated with aqueous ammonia 
(NH3•H2O) and hydrogen peroxide (H2O2, 30%), to obtain amine 
functionalized GNSs and enhance the bonding between the GNSs 
and epoxy resin matrix. Meanwhile, the effects of ammonia 60 

modified GNSs (AMGNSs) on the static and dynamic mechanical 
properties and the freeze-fractured morphologies of 
AMGNSs/epoxy nanocomposites were investigated. 

2. Experimental 

2.1 Materials 65 

Natural flake graphite (320 mesh) was purchased from Dongxin 
Electrical Carbon Co. Ltd., China. Concentrated sulfuric acid 
(H2SO4, 95-98%), potassium permanganate (KMnO4) and 
concentrated hydrochloric acid (HCl, 36-38%) were all obtained 
from Beijing Yili Fine Chemical Co. Ltd. Hydrogen peroxide 70 

(H2O2, 30%), ammonia water (NH3·H2O) and sodium nitrate 
(NaNO3) were obtained from Beijing Chemical Works. Epoxy 
resin (E-51, WSR618) based on bisphenol-A with an epoxy value 
of 0.50-0.56 was obtained from Wuxi Resin Factory, China. The 
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and epoxy matrix and the dispersion of AMGNSs in the samples, 
the freeze-fractured surfaces of AMGNSs/epoxy nanocomposites 
were further investigated by SEM. Fig. 6 shows that the pristine 
epoxy has smooth and featureless fracture surface (Fig. 6a), and 
the freeze-fractured surface of the 0.1 wt.% AMGNSs-filled 5 

epoxy nanocomposites shows some cracks and AMGNSs can be 
observed to be pulled out (Fig. 6b). Then, as the further increase 
of AMGNS content, most AMGNSs disperse well and have a 
good crosslinking state in the epoxy resin (Fig. 6c and d). 
Moreover, a linear stripe morphology of the AMGNSs in epoxy 10 

resin is also observed in Fig. 6c and d. The fracture surface of 
neat epoxy is comparatively smooth, indicating a lower ductility. 
By adding AMGNSs into the epoxy resin, the toughness 
increased with AMGNS content, making the fracture surface 
much rougher. These results indicate that the AMGNSs may 15 

inhibit the propagation of cracks and thus increase the strain 
energy required for fracture. 

 

 

 20 

 

 
 

Fig. 6 SEM images of the freeze-fractured surfaces of 
AMGNSs/epoxy nanocomposites for AMGNS contents of (a) 0 wt.%, 25 

(b) 0.1 wt.%, (c) and (d) 0.5 wt.%. 

3.3 Tensile properties of AMGNSs/epoxy nanocomposites 

The effect of AMGNS content on the tensile properties of 
AMGNSs/epoxy nanocomposites are shown in Fig. 7. From Fig. 
7a and b, both the tensile strength and elongation at break of 30 

AMGNSs/Epoxy nanocomposites increase steadily with 
increasing the weight fractions of AMGNSs up to 0.5 wt.% and 
dropped slightly at 1 wt.%. The 0.5 wt.% AMGNSs-filled epoxy 
matrix increases the tensile strength and elongation at break of 
pristine epoxy to 67.28 MPa and 4.29%, 27.84% and 63.74% 35 

increments, respectively. From Fig. 7c, it can be seen that the 
most significant improvement of the tensile modulus was 
obtained at 0.1 wt.% AMGNSs reaching 2.81 GPa which was an 
increase of 14.16% compared to pristine epoxy. 
 Representative tensile stress versus strain curves are shown in 40 

Fig. 8. It can be seen that, both the tensile strength and the area 
under the stress-strain curve reach the maximum value at 
AMGNS loading of 0.5 wt.%. Combining Figs. 7 and 8, we can 
conclude that the proper surface-modification of AMGNSs can 
result in a significant increase in tensile properties due to the 45 

homogeneous dispersion for AMGNSs in epoxy resin and the 
strong interfacial interactions between filler and epoxy resin, 
resulting in effective load transfer from epoxy resin to AMGNS 
filler. However, the lower strength at higher AMGNS 
concentration (≥1.0 wt.%) can be attributed to the inevitable 50 

aggregation of AMGNSs at high concentration.18,35 
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Fig. 7 The effects of AMGNS loading content (wt.%) on the tensile 
properties of AMGNSs/epoxy nanocomposites: tensile strength (a), 

elongation at break (b) and tensile modulus (c). 5 
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Fig. 8 Stress-strain curves for AMGNSs/epoxy nanocomposites under 

tensile loading. 

3.4 Flexural properties of AMGNSs/epoxy nanocomposites 

Fig. 9 shows the results of three-point bending test of 10 

AMGNSs/epoxy nanocomposites. It is found that all samples 
filled with AMGNSs show significant improvement in flexural 
properties compared to pristine epoxy. As can be seen, the 0.1 wt.% 
AMGNSs-filled epoxy nanocomposites shows the maximum 
flexural strength as high as 135.58 MPa, which is an increase of 15 

94.38% compared to pristine epoxy and almost an increase of 
37.32% compared to 0.5 wt.% AMGNSs-filled epoxy 
nanocomposites. Meanwhile, the 0.5 wt.% AMGNSs-filled epoxy 
nanocomposites shows the maximum flexural modulus as high as 
3.48 GPa, which is an increase of 7.75% compared to pristine 20 

epoxy. Then, it is found that when the loading of AMGNSs 
reaches 1.0 wt.% the flexural properties of AMGNSs/epoxy 

nanocomposites begin to descend due to the agglomeration of 
AMGNSs at high content. Above studies agree with the previous 
work that addition of graphene nanoplatelet result in an increase 25 

of mechanical properties for nanocomposites even at small 
amount of filler.18 
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Fig. 9 The effects of AMGNS loading content (wt.%) on the flexural 30 

properties of AMGNSs/epoxy nanocomposites: flexural strength (a) 
and flexural modulus (b). 

3.5 Impact strength of AMGNSs/epoxy nanocomposites 

The impact strength of AMGNSs/epoxy nanocomposites are 
shown in Fig. 10. From Fig. 10, the impact strength of 35 

AMGNSs/epoxy nanocomposites improves with increasing the 
weight fractions of AMGNSs in epoxy matrix and increases by 
34.3% from 15.65 to 21.02 MPa at AMGNS loading of 0.1 wt.%. 
The remarkable influence on the impact strength of 
nanocomposites at low AMGNS loading can be attributed to a 40 

good dispersion and a strong interfacial interaction, which can 
effectively hinder the formation and propagation of cracks in the 
samples.36,37 As a result, the surfaces of the nanocomposites 
shown in Fig. 6b are rougher than those of the pure epoxy matrix 
shown in Fig. 6a. Then, the impact strength of AMGNSs/epoxy 45 

nanocomposites gradually decreases with further increasing the 
AMGNS content due to the weak dispersion and bad 
processability of the nanocomposites. Since the negative 
deteriorating effect of the AMGNS aggregation would 
overwhelm the toughening effect of the AMGNSs indicated by 50 

the rough fracture surfaces for the high AMGNS contents of 0.5 
wt.% (Fig. 6d). Thus, a decrease in the composite impact strength 
is observed by the addition of the graphene at a relatively high 
content. 
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Fig. 10 The effects of AMGNS loading content (wt.%) on the impact 
strength of AMGNSs/epoxy nanocomposites. 

3.6 DMA of AMGNSs/epoxy nanocomposites 

DMA provides information on storage modulus and loss angle 5 

tangent curves of AMGNSs/epoxy nanocomposites as a function 
of temperature.9 As shown in Fig. 11a, the storage modulus of 
AMGNSs/epoxy nanocomposites improve continuously with 
increasing the AMGNS content in epoxy matrix. The storage 
modulus have obviously increased from 0.83 GPa for pristine 10 

epoxy to 1.31 GPa for 1.0 wt.% AMGNSs-filled epoxy 
nanocomposites at the initial temperature (50 oC), which is a 
57.83% increase. The storage modulus of all samples fall with 
temperature due to the transition of the glassy plateau to the 
rubbery plateau. The Tg values were taken as the maximum of 15 

the tan δ curves. As shown in Fig. 11b, the glass transition 
temperature (Tg) began at about 133 oC for pristine epoxy. The 
Tg of AMGNSs/epoxy nanocomposites containing low content of 
AMGNSs (≤0.5 wt.%) shift to higher temperatures of about 137-
141 oC and have a narrower temperature range due to the strong 20 

interfacial interaction between AMGNSs and epoxy matrix. From 
Fig. 11a and b, the mechanical improvement could be attributed 
to the high specific surface area of AMGNSs with the wrinkled 
structure and the enhanced interfacial interaction of filler-
matrix.38 25 
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Fig. 11 The effects of AMGNS loading content (wt.%) on DMA of the 
AMGNSs/epoxy nanocomposites: (a) Storage modulus spectra and (b) 

Tan δ spectra. 30 

4. Conclusions 

GNSs were amine functionalized by NH3•H2O and H2O2 to 
achieve better affinity to the epoxy matrix. The presence of the 
functional groups was verified by FT-IR spectroscopy. The 
effective modification of GNSs with ammonia was confirmed to 35 

improve the interfacial interaction between AMGNSs and epoxy 
resin, resulting in an increase of mechanical properties. Thus, 
AMGNSs could play a reinforcement role in the epoxy matrix. 
 The mechanical results showed that the addition of AMGNSs 
at 0.1 wt.% loading into the pristine epoxy could reach the most 40 

significant improvements of tensile modulus (+14.16%), flexural 
strength (+94.38%) and impact strength (34.3%). Moreover, the 
most significant improvements of tensile strength (+27.84%) and 
flexural modulus (+7.75%) were attained with AMGNSs at a 0.5 
wt.% content. The glass transition temperature (Tg) of pristine 45 

epoxy was increased from 133 to 137 oC at 0.1 wt.% AMGNSs 
and 141 oC at 0.5wt.% AMGNSs, respectively. 
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