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Fabrication and properties of high-performance 
chlorine doped graphene quantum dots based 
photovoltaic detector† 

Jianhong Zhao,a Libin Tang,*b Jinzhong Xiang,*a Rongbin Ji,*b Yanbo Hu,b Jun Yuan,b 
Jun Zhao,b Yunjian Tai,b and Yuhua Caia 

The functionalized graphene quantum dots (GQDs) based materials play important role in 
developing high-performance, low-cost, large-area optoelectronic devices. The progress, 
however, is impeded by the good understanding of physical mechanism for GQDs in these 
devices. In this paper, chlorine doped GQDs (Cl-GQDs) based photovoltaic photodetectors have 
been fabricated using solution process, it is found that the presence of Cl-GQDs can obviously 
enhance the performance of the device. The improved performance by Cl-GQDs based devices 
have been disclosed by systematical studying the structural, morphological, optical, electrical, 
electrochemical and photoelectrical properties. The important photovoltaic detectors parameters 
such as saturation current densities (J0), barrier heights (Φb), built-in potentials (Vbi), carrier 
concentrations (N) and depletion layer widths (Wd) have been calculated and discussed by 
studying I-V and C-V characteristics under different illuminations. The frequency dependent 
capacitance and conductance have also been discussed. The results provide guidance to 
developing high-performance graphene based optoelectronic devices. 
 
 

1 Introduction 

Graphene quantum dots (GQDs) has been regarded as a kind of 
new multifunctional materials due to its unique optical, 
electrical and photoelectric properties. GQDs shows obvious 
advantages over graphene as far as the modulation of energy-
level related properties is concerned. Recently GQDs has been 
investigated in photovoltaic devices.1,2 It has been widely 
reported that graphene plays the carrier transport layer role in 
the devices because of the outstanding conductivity and shows 
ultrafast photoresponse and broadband absorption.3-6 For 
example, Zhang et al fabricated a graphene-polymer 
nanocomposite membrane, they firstly used it to fabricate mode 
lock fiber laser. A 700 fs pulse width at 1590 nm wavelength 
has been directly generated from the laser.7 Zheng et al 
reported the saturable absorption of graphene at microwave 
frequency band.8 Compared with graphene, GQDs has more 
attractive features such as photoluminescence and non-zero 
bandgap,9-11 which is tunable by controlling the size and surface 
modification. Their facile solution processing, quantum 
confinement effect, bandgap tunability, and multiexciton 
generation make them particularly attractive as the charge 
generation layer in photodetectors.12-14 
 GQDs preparation methods include chemical synthesis,10,15 
graphene oxide (GO) reduction,9,16 carbon nanotubes (CNTs) 

disintegration transformation,17 etc. The properties of GQDs 
have been modified by different elements doping, Li et al 
prepared sulphur doped GQDs (S-GQDs) and Cl-GQDs 
through a facile hydrothermal method, the electronic structures 
of the GQDs have been tuned by introducing S-related (or Cl-
related) energy levels between π and π* of C, leading to 
efficient and multiple emissions.18,19 Qu et al using urea 
prepared nitrogen doped GQDs (N-GQDs), resulting in a great 
improvement in photoluminescence (PL) quantum yield (QY) 
of GQDs.20 Vertical heterostructures made with multilayer 
GQDs sandwiched between graphene sheets by Kim et al, 
achieved high detectivity (>1011 cm·Hz1/2·W-1) and big 
responsivity (0.2~0.5 A·W-1) in the broad spectral ranging from 
ultraviolet (UV) to near infrared (NIR).12 Tang et al reported 
layered structure N-GQDs possess broadband emission ranging 
from 300 to >1000 nm, the responsivity of the photodetector is 
as high as 325 V·W-1 under 405 nm laser irradiation.14  
 Compared with graphene photodetector, the response 
wavelength of GQDs based photodetector is adjustable due to 
its size dependent energy bandgap. Nowadays, many 
researchers focus their attention on preparation of GQDs based 
heterojunction photovoltaic detectors. However, the charge 
transport properties of GQD-based photoelectric device was 
rarely reported. Carrier transport mechanism and 
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4 Conclusions 

The Cl-GQDs based photovoltaic photodetectors were 
fabricated, the presence of Cl-GQDs in the photoactive layer 
may obviously enhance the photoresponse of the device. The 
device is stable, the J-V curve remains unchanged after several 
measurements, the device remains no damage under the light 
power density up to 165 mW cm-2. The distribution and 
morphology of Cl-GQDs in P3HT matrix have been 
investigated by AFM and SEM. The physical mechanism for 
the function of Cl-GQDs has been disclosed. The improved 
performance by Cl-GQDs has been uncovered after systematic 
studying the optical, electrical, electrochemical, photoelectrical 
properties of the devices. The important device parameters such 
as saturation current densities, barrier heights, built-in 
potentials, carrier concentrations and depletion layers widths 
have been discussed after detailedly studying I-V, C-V and C-f 
characteristics. The obtained results shown that the carrier 
concentrations increase by 30% in the presence of Cl-GQDs (~ 
10% weight ratio), the depletion layer width decreases 
compared to Cl-GQDs free devices. The present study may help 
us to design and fabricate high-performance graphene based 
optoelectronic devices. 
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