RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cubic phase $ZrO₂$ can be synthesized with amorphous carbon as a phase transition promoter.

RSC Advances

ARTICLE

Preparation of t-ZrO² by sol-gel process with carbon as a phase transformation promoter

Yu Liu, Weidong Chi*, Hui Liu, Yueyang Su, Liang Zhao

The cubic and tetragonal ZrO₂ were synthesized by sol-gel method using ethanol and glycerol as solvents and ZrOCl₂•8H₂O as zirconium source. The effect of phase stabilization with amorphous carbon was observed and discussed. The structu evolution, phase transformation and morphological characteristic of powders were investigated by thermogravimetric analysis(TG), differential scanning calorimetric analysis (DSC), powder X-ray diffraction (XRD) X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Cubic and tetragonal phase could be generated in this system.

1. Introduction

Zirconia (ZrO₂) ceramic is one of the advanced ceramic materials. It has a series of outstanding properties, such as high melting point, high specific strength, excellent corrosion resistance, low thermal conductivity and low heat capacity.[1,2] Zirconia ceramics are used for production of catalysts, dielectric materials, chemical sensors, high-performance ceramic materials, solid oxide fuel cells and functional coatings.[3-5] Pure $ZrO₂$ presents three forms of crystal structure: monoclinic phase (m-ZrO₂), tetragonal phase (t-ZrO₂) and cubic phase (c-ZrO₂).[6,7] The m-ZrO₂ is stable at room temperature, while the t-ZrO₂ and c-ZrO₂ are commonly observed in high temperature environments. The transitions between them usually happen in particular circumstances. The m-ZrO₂ reversibly transforms to t-ZrO₂ and then to c-ZrO₂ at 1170℃ and 2370℃, respectively. However, the mechanical property of m-ZrO₂ is too poor for use. In most cases, t-ZrO₂ or c -ZrO₂ ceramics are more suitable for application. Therefore, the preparation of them has become a challenge in research now.

For obtaining t-ZrO₂ ceramics, various methods have been developed and investigated, including rare earth stabilization method, annealing method, low temperature calcination method and sol-gel method.[8] The homogeneous mixture of the components makes sol-gel method an outstanding synthesis, which allows obtaining the powder with wellcontrolled homogeneity, purity, reactivity, particle morphology and microstructure.[9-11] However, the $ZrO₂$ ceramics

Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, National Carbon Fiber Engineering Research Center, *State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China *Corresponding Author: wdchi@163.com*

synthesized by sol-gel method are commonly mixed with tetragonal and monoclinic phase in most cases. Storing energy in the system could be a way to stabilize t -ZrO₂ and c -ZrO₂, and to solve this problem.

This paper discusses the sol-gel system with alcohols as solvent and origin of phase transformation component in the synthesis of c-ZrO₂ and t-ZrO₂ from ZrOCl₂.8H₂O by thermal decomposition. Suitable alcohols could be able to change into amorphous carbon and provide the energy of c -ZrO₂ generation. The addition of Y_2O_3 would benefit the stability of t -ZrO₂.

2. Experimental

The zirconia ceramics were synthesized using the sol-gel process. 0.4mol/L zirconium oxychloride octahydrate(ZrOCl₂·8H₂O, 99.9%, Aladdin Industrial Corporation) was dissolved in the mixture of anhydrous ethanol and glycerol(C_2H_6O , $C_3H_8O_3$, 99%, Beijing Chemicals) with a volume ratio of 1:3 (sample Z1). For the comparative experiment, 3 weight. % of Nanometer yttrium oxide (Y_2O_3) 99.99%, Aladdin Industrial Corporation) was added to stabilize tetragonal or cubic phase (sample Z2). Sols fully transform into gels under 500W ultrasound and 50℃ water bath assisted for 20 minutes. Additionally, Nano carbon powder (99.5%, Aladdin Industrial Corporation) and m-ZrO₂ (99%, Aladdin Industrial Corporation) were mixed in 1:1 mass ratio (sample MS) check the role of amorphous carbon as phase transformation promoter.

The precursor powders were produced by heating the sols above the fully weight loss point. The weight loss point has been determined by thermogravimetric analysis (TG, Netzsch TG-209F-3) in N₂ atmosphere with a heat rate of 10^{°C} /min. The powders were calcined at 1300°C in N₂ atmosphere for phase and structure evolution study. Thermal analyses of the phase variation were carried out by differential scanning calorimetric analysis (DSC, Netzsch DSC-404F-3) in N_2 atmosphere with a heat rate of 10℃/min. Morphological characteristic of powders were investigated by scanning electron microscopy (SEM, HITACHI S-4700). The crystalline phases of ZrO₂ powders calcined at different conditions (600 °C, 1300℃ and 1300℃ second sintering) and MS calcined at 1300℃ process. The only peak corresponded to the endothermic were identified by powder X-ray diffraction (XRD, Bruker D8 Advance). The scans were taken within the 2 θ between 20° and 90°, and operated at an accelerating voltage of 40 kV and an emission current of 40 mA. The powders of sample MS after calcination at 1300 ℃ were analyzed by X-ray photoelectron spectroscopy (XPS, ESCALAB 250) with Monochromated Al Kalph (150W). The spot size was focused to~500 μm.

3. Results and discussion

3.1. Generation of c-ZrO²

Sample MS (C: m-ZrO₂=1:1) was designed to investigate the generation process of c-ZrO₂. Fig. 2 shows the XRD patterns of sample MS calcined at 1300℃. After the heat treatment m-

Fig. 2 XRD patterns of sample MS calcined at 1300℃.

Fig. 3 DSC curves of (a) ZrO₂; (b) sample MS; (c) nano carbor powder.

 $ZrO₂$ partly transformed into c-ZrO₂ and remained stable in the cubic phase after natural cooling to room temperature. Fig. 3(a) shows the DSC curve of the process. Under normal condition m-ZrO₂ would first become t-ZrO₂ at around 1170°C, and change back in the cooling process. However, the crystal form transition process underwent in sample MS was completely different (Fig. 3(b)). The phase transformation from monoclinic to tetragonal phase was entirely prevented in the heating behavior of nano carbon powder (Fig. 3(c)) is observed in the heating process of sample MS. The steep curves in Fig. 3(b) &(c) indicate the great amount of heat absorbed by nano carbon powder. The following next heat release rapidly increase the internal energy of the m-ZrO₂ in sample MS and provide it transformation into c-ZrO₂. The energy stored in amorphous carbon increase the surface energy of $ZrO₂$ phase, the stabilizes the c -ZrO₂ and overlap the bulk energy difference of c -ZrO₂-m-ZrO₂ transformation. Thus, c -ZrO₂ is not able to transform back into t-ZrO₂ or m-ZrO₂ and keep stable. However, the nonuniform mixing of the two powders makes

Fig. 4 TG curves of (a) the Z1 ZrO₂ gels.; (b) the Z2 ZrO₂ gels.

the m-ZrO₂ presence possible.

3.2. Characterization of ZrO² precursor powders

The precursor powders are used to provide homogeneously mixed carbon and ZrO_2 . Sol-gel method could mix carbon and ZrO₂ in molecular level to make better use of the energy that carbon stored. Fig. 4 shows the TG curves of sample Z1 and Z2. The weight loss peaks at around 247℃ correspond to the evaporation of solvents and the reduction of the organic phase of the gels. The solid phase was generated at around 247℃ and had no more weight loss with the temperature increasing, indicating the molecular level mixed precursor powders of amorphous carbon and $ZrO₂$ were prepared. As it is shown in Fig. 5, no crystalline substance could be observed in the precursor powders.

3.3. Crystallization process of ZrO² ceramics

Fig. 6 shows the DSC curves of sample Z1 and Z2. There are two exothermic peaks and one endothermic peak in both of the two curves. The exothermic peaks at around 350℃ and 500 \degree C are associated with the structural variation of the ZrO₂ powders. These peaks might be attributed to the energy of chain scission or bond breaking. Organic substance of the

Fig. 6 DSC curves of (a) the Z1 ZrO₂ powders.; (b) the Z2 ZrO₂ powders.

system vanished completely after calcination at 300℃. The structure of the $ZrO₂$ powders might be the chain of -Zr-O-Zror the bulk of Zr and O. The morphology of these structures. amorphous as it can be seen in Fig. 5. These structures we destroyed in the heating process from 300℃ to 550℃ with energy release. The endothermic peaks at around 1000[℃] should be related to endothermic peak of carbon in Fig. 3(c). Affected by the energy stored in amorphous carbon, we could not detect the crystal form of sample Z1 and Z2 in the heating process.

Shown in Fig. 7 is the XRD patterns of $ZrO₂$ powders calcined at 1300℃. The ZrO₂ sample of Z1 was in a fully stabilized tetragonal state, while the sample of Z2 was in a heterogeneous state formed by tetragonal and cubic phase. As it has been mentioned above (see in 3.1), cubic phase should be generated in the cooling process, and the energy source is amorphous carbon. In sample Z1, the energy that amorphous carbon provides was able to form cubic phase, but not high enough to stabilize the c-ZrO₂ at low temperature, which caused by the low ratio of C:ZrO₂. In normal cases, t-ZrO₂ would transform back into m-ZrO₂ in cooling procedure. However, no evidence of monoclinic phase could be observed in these samples, because the transformation from c -ZrO₂ to t- $ZrO₂$ would release energy and slow down or inhibit the transition from t-ZrO₂ to m-ZrO₂. For sample Z2, the Y₂O₃ as a stabilizer could form liquid phase in the sample. During the heat treatment, the Y_2O_3 doping could diffuse into the ZrO₂ crystal lattice. [12,13] In the process of temperature reduction, the Y_2O_3 could slow down the crystal structure transformation which cause the stabilization of the cubic phase of sample Z2 in room temperature. **RSCREED**
 RSCREED

Fig. 8 SEM images of (a) Z1 ZrO₂ powders (b) Z2 ZrO₂ powders calcined at 1300℃.

This journal is © The Royal Society of Chemistry 20xx *J. Name*., 2013, **00**, 1-3 | **3**

Fig. 9 XRD patterns of the ZrO₂ powders calcined at 1300℃ \times 2h as $_$ Fig. 11 XRD patterns of the ZrO₂ powders calcined at 600℃ a second sintering.

Furthermore, the surface morphology of the samples has been investigated. The SEM images of these two samples are shown in Fig. 8. It is observed that the fine structure was affected by whether adding yttria or not. For sample Z1, the SEM reveals a flat and loose morphology of $ZrO₂$ surface (see Fig. 8 (a)). And the morphology of sample Z2 is rough and uneven (see Fig. 8 (b)). It is affected by the volume differences of t-ZrO₂ and c-ZrO₂.

3.4. Stabilization process of tetragonal phase

To investigate the principle of stabilization of tetragonal phase, the crystalline structure under other thermal conditions was taken into consideration. The XRD patterns of $ZrO₂$ samples went through second sintering are shown in Fig. 9. No cubic peaks but trace amount of monoclinic peaks could be observed in these XRD patterns. Tetragonal and cubic phases were still unstable during additional heat treatment without the addition of Y_2O_3 . Amorphous carbon could largely prevent the change to m-ZrO₂, but the trace of the variation still could be found. And yet, the ratio of monoclinic in sample Z2 was obviously lower than Z1. It would be attributed to the effect of Y_2O_3 , and the energy released by the transformation from c - ZrO_2 to t-Zr O_2 .

In former studies, amorphous carbon was found to have the ability to diffuse into the $ZrO₂$ crystal lattice and stabilize

tetragonal phase. The XPS peaks at around 282.9eV which were assigned to C 1s binding energy from Zr-C bonds could be a proof of it.[14] However, this phenomenon could not be detected in all cases.[15] For sample MS after calcined 1300℃, as it can be seen in Fig. 10, no Zr-C bindings, which would be respected by a C 1s binding energy at 281.1eV or 282.1eV, was detected. There are no chemical reactions between $ZrO₂$ and C. It proves that the stored energy of amorphous carbon played an important role in stabilizing tetragonal and cubic phases in sample Z1 and Z2. **RSCRIPT RESP. Property RSCRIPT RESP. Advances to the head of a property of manuscript and a property of a p**

The XRD patterns of ZrO₂ powders calcined at 600°C are displayed in Fig. 11. Clearly, there is no evidence of monoclinic phase in the samples. The broadening of diffraction peaks was attributed to the amorphous component of the $ZrO₂$ samples. It was clear that for the $ZrO₂$ powders prepared by Z1 and Z2 system, calcination of 600℃ would transform part of the ZrO₂ powders from amorphous phase to tetragonal phase. Amorphous carbon could also store and release energy to make $ZrO₂$ crystal. But the energy value would be much lower than it was in 1300℃.

Through the above analysis, there are ways to generate better crystalized and more stable t-ZrO₂ or c-ZrO₂ by increase the ratio of $C/ZrO₂$. Choosing the higher carbon content solvents or just adding some carbon powder would be useful.

4. Conclusions

 $ZrO₂$ ceramics were synthesized by sol-gel method using ethanol and glycerol as solvent and $ZrOCl_2·8H_2O$ as zirconium source. It could synthesize and stabilize t-ZrO₂ and c-ZrO₂ at a low temperature. The energy source is the amorphous carbon in the system. The energy release from carbon and the transformation from c-ZrO₂ to t-ZrO₂ could slow down inhabit the transformation from t-ZrO₂ to m-ZrO₂. Y₂O₃ in the sample as a stabilizer would also stabilize the tetragonal phase.

Notes and references

- 1 Xiaoxuan Pian, Bingbing Fan, Hao Chen, Preparation of re- $ZrO₂$ compacts by microwave sintering, Ceramics International, 2014, **40**, 10483-10488
- 2 Lingqian Kong, Shengyu Zhu, Qinling Bi, Friction and we behavior of self-lubricating $ZrO_2(Y_2O_3)$ -CaF₂-Mo-graphite

4 | *J. Name*., 2012, **00**, 1-3 This journal is © The Royal Society of Chemistry 20xx

composite from 20℃ to 1000℃, Ceramics International, 2014, **40**, 10787-10792

- 3 Thammanoon Sreethawong, Supachai Ngamsinlapasathian, Susumu Yoshikawa, Synthesis of crystalline mesoporousassembled $ZrO₂$ nanoparticles via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity, Chemical Engineering Journal, 2013, **228**, 256-262
- 4 S. Jaenicke, G. K. Chuah, V. Raju, Structural and Morphological Control in the Preparation of High Surface Area Zirconia, Catalysis Surveys from Asia, 2008, **12**, 153-169
- 5 Qibing Chang, Jian-er Zhou, Yongqing Wang, Formation mechanism of zirconia nano-particles containing pores prepared via sol-gel-hydrothermal method, Advanced Powder Technology, 2010, **21**, 425-430
- 6 Wenzhi Huang, Jili Yang, Xiangsheng Meng, Effect of the organic additions on crystal growth behavior of $ZrO₂$ nanocrystals prepared via sol-gel process, Chemical Engineering Journal, 2011, **168**, 1360-1368
- 7 Rongjun Zhang, Huimin Liu, Dehua He, Pure monoclinic ZrO₂ prepared by hydrothermal method for isosynthesis, Catalysis Communications, 2012, **26**, 244-247
- 8 Vishwanath G, Deshmane, Yusuf G, Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO₂): Effects of different process parameters, Microporous and Mesoporous Materials, 2012, **148**, 88-100
- 9 Huiming Ji, Ming Yang, Minmin Li, Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol–gel processing route, Advanced Powder Technology, 2014, **25**, 910-915
- 10 H. Bensouyad, H. Sedrati, H. Dehdouh, Structural, thermal and optical characterization of TiO₂:ZrO₂ thin films prepared by sol-gel method, Thin Solid Films, 2010, **519**, 96-100
- 11 Ricardo Caruso, Oscar de Sanctis, Antonio Macias-Garcia, Influence of pH value and solvent utilized in the sol-gel synthesis on properties of derived $ZrO₂$ powders, Journal of Materials Processing Technology, 2004, **152**, 299-303
- 12 Nadia Mamana, Antonio Díaz-Parralejo, Angel L. Ortiz, Influence of the synthesis process on the features of Y_2O_3 stabilized $ZrO₂$ powders obtained by the sol-gel method, Ceramics International, 2014, **40**, 6421-6426
- 13 A. L. Ortiz, A. Díaz-Parralejo, O. Borrero-López, Effect of ion nitriding on the crystal structure of 3 mol% Y_2O_3 -doped ZrO₂ thin-films prepared by the sol–gel method, Applied Surface Science, 2006, **252**, 6018-6021
- 14 Huiming Xiang, Xinpo Lu, Jingjing Li, Influence of carbon on phase stability of tetragonal ZrO₂, Ceramics International, 2014, **40**, 5645-5651
- 15 N. Laidani, V. Micheli, M. Anderle, Carbon effect on the phase structure and the hardness of RF sputtered zirconia films, Thin Solid Films, 2001, **382**, 23-29