RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx000000x

www.rsc.org/

Controlled synthesis and luminescent properties of assembled spherical $YP_xV_{1-x}O_4$: $Ln^{3+}(Ln = Eu, Sm, Dy or Tm)$ phosphors with high quantum efficiency

Zhibin An, Xiuzhen Xiao, Xa Jun Yu, Dongsen Mao and Guanzhong Lu Lu

The $YP_xV_{1-x}O_4$ ($x=0.3\sim0.9$) assembled spheres with tetragonal phase were prepared hydrothermally under a simple and mild method by the assist of EDTA. The structures and shapes of the prepared samples were significantly affected by the reaction conditions (hydrothermal treatment time, organic additive, pH value and the amount of EDTA in the synthesis solution). The characteristic emission of the spherical $YP_xV_{1-x}O_4$: Ln^{3+} (Ln=Eu, Sm, Dy or Tm) phosphors were investigated in detail. The results showed that the light color of the $YP_{0.3}V_{0.7}O_4$ microspheres can be easily adjusted by doping different lanthanide activators; $Y_{0.93}Sm_{0.07}P_{0.3}V_{0.7}O_4$ and $Y_{0.95}Eu_{0.05}P_{0.3}V_{0.7}O_4$ exhibited strong orange-red and red emission, respectively, and $Y_{0.93}Sm_{0.07}P_{0.3}V_{0.7}O_4$ has a higher quantum efficiency of 76.8 %. For the $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ ($x=0.3\sim0.9$) samples, both emission intensities of Dy^{3+} and VO_4^{3-} increase as increasing the P amount, and the quantum efficiency of $Y_{0.97}Dy_{0.03}P_{0.9}V_{0.1}O_4$ can reach 92 %. It can also be found that the light color of the $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ samples can be tuned by changing the ratio of P/V, and $Y_{0.97}Dy_{0.03}P_{0.5}V_{0.5}O_4$ can emit the white light under UV excitation.

1 Introduction

Up to now, many efforts have been devoted to the design and preparation of inorganic nano- or micro-scale crystals with controllable morphologies and accurately tunable sizes in the modern materials chemistry, due to the close relationship between the physicochemical properties of inorganic functional materials and their architectures (e.g. shape, size, exposure facet and dimensionality, etc.) 1. Numerous micro/nanomaterials with different specific morphologies and sizes, including nanowires, 2 nanoplates, 3 nanotriangles, 4 mesoporous structures, 5 microspheres, 6 microflowers 7 etc., have been fabricated by various methods, especially the hydrothermal synthesis method. During the hydrothermal process, organic complex agents (i.e., trisodium citrate (Cit³-)⁸, ethylenediamine tetraacetic disodium salt (Na₂EDTA)⁹ and polyvinylpyrrolidone (PVP) 10) are often used to prepare the uniform inorganic compounds with special morphologies. The difference in chelating constant and molecular structure of these organic complex agents might lead to the formation of products with different morphologies and sizes by a change of growth orientation in the phase transformation processes. 11,12

Rare earth (RE) compounds have attracted extensive attentions

because of their technological applications in high-performance luminescent devices, magnets, catalysts, and other functional materials. 13,14 Among various rare earth compounds, rare earth phosphate and vanadate phosphors have been widely studied and applied as commercial luminescent materials, such as the utilization of the classic green and red phosphors LaPO₄:Tb³⁺ and YVO₄:Eu³⁺ in the cathode ray tubes and fluorescent lamps. The RE vanadates are isostructural as the RE phosphates, and they have monoclinic (monazite) or tetragonal (xenotime/zircon) crystal structures. 15 which stimulates the development of mixed phosphovanadate phosphors with a number of advantageous luminescent properties. For instance, the phosphate-vanadate phosphors are more stable and have better luminescent properties at high temperature. 16 Riwotzki and Haase have investigated the luminescent properties of YP_{0.95}V_{0.05}O₄:Eu nanoparticles in detail, and found out that there existed efficient energy transfer processes in YP0.95V0.05O4:Eu nanoparticles.¹⁷ Furthermore, doped different luminescent activators in YP_xV_{1-x}O₄, their emission colors can be tuned. 18,19

As is well-known, Eu³+, Sm³+ and Dy³+ are good luminescent activators, and YVO₄:Eu³+ is a commercial red (⁵D₀ → ¬F₂ of Eu³+ at 619 nm) phosphor and YVO₄:Sm³+ yields orange-red emission ascribing to the transitions of $^4G_{5/2} \to ^6H_{J/2}$ (J = 5, 7, 9 and 11). The characteristic emissions of Dy³+ originate from the typical blue transition (⁴F_{9/2} → $^6H_{15/2}$) and yellow one (⁴F_{9/2} → $^6H_{13/2}$), and the yellow to blue intensity ratio can be adjusted to obtain white light emission for Dy³+-doped luminescent materials. For example, YP₀.8V₀.2O₄:1at.%Dy³+ and 0.75at.%Sm³+ show the strong white

^{a.} Research Institute of Applied Catalysis, Shanghai Institute of Technology ^{b.} Key Laboratory for Advanced Materials and Research Institute of Industrial

catalysis, East China University of Science and Technology

^{c.} Address here.

ARTICLE Journal Name

light emission. 20 Besides, as a promising phosphor, the proper morphology and particle size are very important to improve their luminescence properties. The optimum morphology is spherical and assembled spheres with a narrow size distribution, and can provide another opportunity to achieve emission tailoring to significantly improve the optical performance, because of the high packing density and reduced light scattering of these spheres. 21 To the best of our knowledge, up till now there is no report on the preparation of the rare earth ions doped assembled spheres $\mathrm{YP_xV_{1-x}O_4}$ phosphors, which can achieve tunable colors with higher quantum efficiency as well as white light emission.

Herein, we report a mild complexing-agent assisted hydrothermal process to prepare YPxV1-xO4 assembled spheres and $YP_xV_{1-x}O_4$: Ln^{3+} (Ln = Eu, Sm, Dy or Tm) phosphors with high efficiency. Trisodium $(Cit^{3-}),$ ethylenediaminetetraacetic acid (EDTA), ammonium oxalate (AO), polyvinylpyrrolidone (PVP) and malonic acid (MA) were chosen as complex agents to manipulate the morphology and particle size of the prepared materials. The effect of the synthesis conditions, such as the synthesis time, organic additive, pH value and added EDTA amount of the synthesis solution, on the structures and shapes of the prepared materials were investigated in detail. Based on the experiment results, the possible crystalline growth mechanism of the YP_xV_{1-x}O₄ microspheres was discussed. Finally, we concentrated on the luminescence properties of YP_{0.3}V_{0.7}O₄ microsphere-doped with different Ln^{3+} (Ln = Eu, Sm, Dy and Tm) ions. The effect of P/V on the emission colors, the intensity of Dy-doped YP_xV_{1-x}O₄ and the effect of Ln loading on the emission intensity of spherical $YP_{0.3}V_{0.7}O_4$:Ln³⁺(Ln = Eu, Sm and Dy) phosphors were studied, and the materials which can emit the white light under UV excitation have been obtained.

2 Experimental

2.1 Chemicals and materials

All the chemicals were purchased from Shanghai Chemical Reagents Co. and used without further purification.

 Ln_2O_3 (Eu₂O₃, Sm₂O₃, Dy₂O₃ and Tm₂O₃) was dissolved into concentrated nitric acid, the excessive nitric acid was evaporated by heating, and then deionized water was added to form the 0.05 M Ln (NO₃)₃ solution.

 $Y_{0.95}Eu_{0.05}P_{0.3}V_{0.7}O_4$ phosphor was prepared as follows. 1.448 g EDTA was dissolved in 20 mL deionized water, then 1 mL 0.05 M Eu(NO₃)₃ and 4.75mL 0.2M Y(NO₃)₃ were added into the above solution. After vigorous stirring for 30 min, Ln³⁺-EDTA (Ln = Y and Eu) complex solution (1) was obtained. Subsequently, 1.4 mmol NH₄VO₃ was dissolved in 2 mL concentrated nitrate acid under stirring, and then 0.6 mmol (NH₄)₂HPO₄ was added to obtain the mixed solution (2) of NH₄VO₃ and nitrate acid. After stirring for 30 min, the Ln³⁺-EDTA (Ln = Y and Eu) mixed solution (1) was added dropwise into the solution (2) under stirring. The pH value of this synthesis solution was adjusted by adding ammonia. After stirring for 3 h, the synthesis solution was transferred into a 100 mL Teflonlined stainless steel autoclave. The autoclave was sealed and maintained at 180 °C for 24 h, and then cooled to room temperature in air. The solid product formed was collected by centrifugation,

washed with deionized water and absolute alcohol several times, and finally dried at 80 °C in air for further characterization.

Additionally, other organic additives, including ammonium oxalate (AO), polyvinylpyrrolidone (PVP), trisodium citrate (Cit³-) and malonic acid (MA) were also used to prepare $YP_{0.3}V_{0.7}O_4$ luminescent material (the organic additive/Y³+ of 2/1, and pH of 0.57), respectively. All the other samples were prepared using the required stoichiometric amounts under the same conditions. The similar processes were employed to prepare $Y_{1-y}Ln_yP_{0.3}V_{0.7}O_4$ (Ln = Eu³+, Sm³+ and Tm³+; y = 0.01, 0.03, 0.05, 0.07, 0.09) and $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4(x=0.3, 0.5, 0.7, 0.9)$ samples.

2.2 Characterization of samples

The X-ray diffraction (XRD) patterns of the samples were collected on a PANalytical X' Pert PRO X-ray diffractometer with CuKa radiation ($\lambda=1.5405$ nm; 40 kV, 40 mA). Scanning electron microscopy (SEM) images of the samples were taken on a Hitachi S-3400N scanning electron microscope. The photoluminescence (PL) excitation and emission spectra were recorded on a Hitachi F-4600 fluorescence spectrophotometer equipped with a 150 W xenon lamp as the excitation source. The luminescence life times (τ) were examined on an Edinburgh FLS920 phosphorimeter. The quantum yield can be defined as the integrated intensity of the luminescence signal divided by the integrated intensity of the absorption signal. The absorption intensity was calculated by subtracting the integrated intensity of the light source with the sample from the integrated intensity of the light source with a blank sample in the integrating sphere. All the measurements were performed at room temperature.

3 Results and Discussion

3.1 The XRD patterns of as-prepared samples

The XRD patterns of YVO₄, YPO₄ and YP_xV_{1-x}O₄ (x = 0.3-0.9) samples were given in Fig.1. All the diffraction peaks of prepared YVO₄ are in good agreement with the tetragonal YVO₄ (JCPDS 17-0341), and all the peaks of YPO₄ can be indexed to the tetragonal YPO₄ (JCPDS 11-0254). YVO₄ and YPO₄ exhibit the similar XRD patterns except for slight shift of diffraction peaks, because they have the same crystal structure with similar lattice constants (a = 7.1183 Å and c = 6.2893 Å for YVO₄; a = 6.8817 Å and c = 6.0177 Å for YPO₄), which favors the formation of single phase YP_xV_{1-x}O₄. All the diffraction peaks of YP_xV_{1-x}O₄ are similar to those of the tetragonal YVO₄ and YPO₄, and their corresponding XRD peaks shift gradually between those of the YVO4 and YPO4. As shown in the inset of Fig. 1, the diffraction peak (200) at $2\theta = 25.8^{\circ}$ for the YP_{0.7}V_{0.3}O₄ consists of a single peak rather than two respective peaks of YVO₄ and YPO₄, which is also found in other YP_xV_{1-x}O₄ (x = 0.3, 0.5, 0.9) samples. Furthermore, the lattice constants of YP_xV_1 $_{x}O_{4}$ (x = 0.3, 0.5, 0.7, 0.9) are calculated by $1/d_{hkl}^{2} = (h^{2} + k^{2})/a^{2} + 1^{2}/c_{s}^{2}$, where d_{hkl} is the Bragg diffraction spacing for the (h k l) facets and h, k, l are miller indices, a and c are cell parameters. And the results are shown in Table 1. It can be found that the lattice constants of samples decreased with an increase in the P amount, which may attribute to the smaller radius of P5+ compared with V5+. These results further prove that $YP_xV_{1-x}O_4$ (x = 0.3, 0.5, 0.7, 0.9) solid solutions with single phase can be obtained by the EDTA-assisted hydrothermal method.

Journal Name ARTICLE

Fig. 1 XRD patterns of $YP_xV_{1-x}O_4$ (x=0, 0.3, 0.5, 0.7, 0.9, 1.0) at pH=0.57.

Table 1 Lattice constants of the YP_xV_{1-x}O₄ phosphors

We selected $Y(P, V)O_4$ (P/V = 3/7) as the model sample to investigate the influence of pH value of the solution on its microstructure. The XRD patterns of $Y(P, V)O_4$ (P/V = 3/7) samples prepared at 180 °C for 24 h with the synthesis solution (EDTA/ Y^{3+} = 2/1, mol) at different pH values (0.23, 0.57, 1, 4, 7 and 10) were shown in Fig.2. When the pH value was 0.23, the diffraction peaks of sample belong to the tetragonal phase of YPO₄ (JCPDS 11-0254) and the tetragonal YVO₄ was not observed; as pH was 0.57 or 1, the samples exhibited mainly the tetragonal phase of YVO₄ (JCPDS 17-0341), which indicated the successful formation of tetragonal phase of YP_{0.3}V_{0.7}O₄. For the sample prepared at pH 4, the mixture phases were observed in the XRD pattern, which belongs to the hexagonal phase YPO₄·0.8H₂O (JCPDS 42-0082) and tetragonal phase YVO₄, respectively. For the sample prepared at pH = 7 or 10, the samples are indexed to the hexagonal phase of YPO₄·0.8H₂O₃ and tetragonal phase YVO₄ cannot be observed.

Fig. 2 XRD patterns of samples prepared at pH of (a) 0.23, (b) 0.57, (c) 1, (d) 4, (e) 7 and (f) 10. All samples (EDTA/Y $^{3+}$ = 2/1, mol) were hydrothermally synthesized at 180 °C for 24 h.

The results showed that the optimum pH values range from 0.57 to 1, in which condition the tetragonal phase of $YP_{0.3}V_{0.7}O_4$ can be successfully prepared by the hydrothermal method in the presence of EDTA. Note that the diffraction peaks of samples prepared at pH of 0.57-1 were broadened obviously, possibly due to the small size of the crystallites, which can be seen by SEM pictures.

3.2 The effects of synthesis conditions on the morphology of prepared samples

3.2.1 Effect of PO₄³⁻ on the morphology of YP_xV_{1-x}O₄

The morphologies of $YP_xV_{1.x}O_4$ (x=0.3, 0.5, 0.7, 0.9) prepared hydrothermally at 180 °C for 24 h with the synthesis solution (EDTA/Y³⁺ = 2/1, mol) at pH 0.57. As shown in Fig. 3, the $YP_xV_{1-x}O_4$ (x=0.3, 0.5, 0.7, 0.9) samples show spherical shape that are assembled by numerous smaller particles. With the variation of molar ratio of P/V, the particle size and surface stripe of the sample prepared are obviously different. Comparing with the morphologies of four samples, we selected $YP_{0.3}V_{0.7}O_4$ (P/V = 3/7) as the model sample to study the effect of the synthesis condition (i.e. pH value, the molar ratio of EDTA/Y³⁺, organic additives and the synthesis time) on its microstructure and morphology.

Fig. 3 SEM images of $YP_xV_{1-x}O_4$ at x = (a) 0.3, (b) 0.5, (c) 0.7 and (d) 0.9. All samples were hydrothermally synthesized at 180 °C for 24 h with the synthesis solution (EDTA/Y³⁺ = 2/1, mol) at pH of 0.57.

3.2.2 Effect of pH value on the morphology of YP_{0.3}V_{0.7}O₄

The SEM images of samples prepared at different pH values (0.23, 0.57, 1, 4, 7 and 10) were shown in Fig. 4. The other synthesis conditions were kept unchanged: EDTA/Y³+=2/1 (mol), the synthesis temperature and time were 180 °C and 24 h. When the pH value of the synthesis solution was 0.23, the prepared sample was tetragonal phase YPO₄ (Fig. 1a) with large-scale microsheets-assembled architecture (Fig. 4a). This is because when the pH value is too low, V⁵+ could be reduced to V⁴+, thus the precipitates of YVO₄ could not form.²² When the pH value reached 0.57 or 1, the prepared samples belonged to tetragonal YP_{0.3}V_{0.7}O₄ (Fig. 1b,c), and they showed sphere-like morphology (Fig. 4b,c). The overall hydrothermal reaction for the tetragonal YP_{0.3}V_{0.7}O₄ can be described as follows: V₁₀O₂₈⁶⁻ + Y³+ + PO₄³- + EDTA²- \rightarrow YP_{0.3}V_{0.7}O₄ (tetragonal phase)

Fig. 4 SEM images of Y(P, V)O₄ (P/V = 3/7) samples prepared at pH of (a) 0.23, (b) 0.57, (c) 1, (d) 4, (e) 7 and (f) 10. All samples were hydrothermally synthesized at 180 °C for 24 h with the synthesis solution (EDTA/Y³⁺ = 2/1, mol).

When the pH value of the solution increased to 4, 7 and 10, the morphologies of obtained samples were quite different from the sample synthesized at pH = 1 or 0.57, and exhibited the flower-like structures composed of prism-like microrods (Fig. 4d-f). These kinds of morphologies were similar to the results repeated by Lin *et al*, and they used trisodium citrate (Cit³⁻) as additive to fabricate hexagonal prism-like nanoparticles.¹⁸ It is possible when the pH value is higher than 4, hexagonal phase of YPO₄ could easily form and be stable in the solution containing EDTA, resulting in no formation of the tetragonal phase Y(P,V)O₄. The results above show that the pH value of the synthesis solution strongly affects the microstructure of the prepared samples, and the appropriate pH value for the preparation of single tetragonal phase YP_{0.3}V_{0.7}O₄ with sphere-like morphology are 0.57–1.

3.2.3 Effect of EDTA amount on the morphology of $YP_{0.3}V_{0.7}O_4$

In the synthesis of inorganic nano/microcrystals, the organic additives could be employed to modify certain crystallographic surfaces of samples.²³ Herein, we adopted the EDTA-assisted method to hydrothermally synthesize the YP_xV_{1-x}O₄ samples, and the influence of EDTA amount on the morphologies and the particle sizes of $YP_{0.3}V_{0.7}O_4$ were investigated. The results show that with the increase in the EDTA amount, the diffraction peaks of the sample shifted to lower angles (Fig. 5f), which indicates that the as-prepared samples remain the tetragonal phase YP_{0.3}V_{0.7}O₄. However, the morphologies of the samples have a drastic change. As shown in Fig. 5a, without adding EDTA, the sample was only composed of numerous irregular aggregated microparticles with a broad size distribution. When the molar ratio of EDTA/Y³⁺ was controlled to 1:1 or 2:1, as-prepared YP_{0.3}V_{0.7}O samples present quasisphere microparticles with numerous nanosheets or pine needle-like (Fig. 5b, c). Further increasing the EDTA/Y³⁺ molar ratio to 3/1 or 4/1, the obtained samples still remain the sphereARTICLE Journal Name

like morphology with smooth surface (Fig. 5d, e). The above results show that EDTA added in the synthesis solution plays an important role on the formation of $Y(P,V)O_4$ with sphere-like morphologies.

Fig. 5 (a-e) SEM images and (f) XRD patterns of $YP_{0.3}V_{0.7}O_4$ samples prepared at EDTA/ Y^{3+} of (a) 0, (b) 1/1, (c) 2/1, (d) 3/1 and (e) 4/1. All samples were hydrothermally synthesized at 180 °C for 24 h and pH=0.57 of the synthesis solution.

In addition, other organic additives, such as ammonium oxalate (AO), polyvinylpyrrolidone (PVP), trisodium citrate (Cit³⁻) and malonic acid (MA) were also used to test their effects on the morphologies of prepared samples. With the synthesis solution (the organic additive/Y3+ of 2/1, and pH of 0.57), the $YP_{0.3}V_{0.7}O_4$ samples were prepared hydrothermally at 180 °C for 24 h. The SEM images of the YP_{0.3}V_{0.7}O₄ samples prepared with different organic additives (AO, PVP, Cit³⁻ and MA) are given in Fig. 6. As shown, when the AO was used as organic additive, the prepared sample exhibited mainly irregular nanosized flower-like particles (Fig. 6a); using the PVP or Cit³⁻ additive, the samples showed the sphere-like microparticles with some crystal ridges (Fig. 6b-c); as malonic acid was employed as an organic additive, the obtained sample was almost entirely monodispersed microflowers composed of numerous blades (Fig. 6d).

As shown in the above results, when the PVP, EDTA and Cit^{3-} were employed as the organic additives, the prepared samples present the similar sphere-like morphologies. This is because that PVP, EDTA and Cit^{3-} are excellent chelating agents that can slow down the nucleation rate, and change the shape of the final products. ²⁴

Fig. 6 SEM images of the $YP_{0.3}V_{0.7}O_4$ samples prepared in the presence of (a) AO, (b) PVP, (c) Cit³⁻ and (d) MA. All samples were hydrothermally prepared at 180 °C for 24 h in the synthesis solution (the organic additive/ Y^{3+} of 2/1, and pH of 0.57).

3.2.4 Effect of synthesis time on the morphology of $YP_{0.3}V_{0.7}O_4$

The influence of the hydrothermal treatment time on the morphology of YP_{0.3}V_{0.7}O₄ sample was investigated, and SEM images and XRD patterns of samples are shown in Fig. 7. As shown in Fig. 7a, for the sample prepared for 0.5 h some sheets have been formed. As the synthesis time prolonged to 1 h, more sheets were obtained and aggregated together to form quasisphere microstructures, which acted as the bases for the subsequent development of microsphere (Fig. 7b). With further increase of hydrothermal treatment time to 2 h, microspheres with irregular size were observed (Fig. 7c), indicating that monosphere 3D YP_{0.3}V_{0.7}O₄ phosphors were soon fabricated by this EDTA-assisted hydrothermal method, in which EDTA/Y³⁺ of 3, pH of 0.57 and the reaction temperature of 180 °C were used. Further increasing the synthesis time from 2 to 18 h, the size of formed samples gradually became uniform and were about 2-4 µm, and their crystallines were also improved somewhat (Fig. $7c \sim f$). After this synthesis solution was kept at 180 °C for 18 h, the uniform and monodisperse sphere particles (~4 µm) have been successfully prepared.

Fig. 7 (a-f) SEM images and (g) XRD patterns of the $YP_{0.3}V_{0.7}O_4$ samples synthesized at 180 °C for (a) 0.5h, (b)1h, (c) 2 h, (d) 6 h, (e) 12 h, (f) 18 h with the synthesis solution (EDTA/Y³⁺ of 3/1, and pH of 0.57).

3.3 The formation mechanism of Y(P,V)O₄

In the solution-phase synthesis, as surfactants or capping agents the organic additives can tune the surface free energies of different facets by their interaction with metal surface, which may significantly affect the relative growth rates of different facets.23 Li et al. used Cit3- as the organic additive to prepare spherical YVO₄ and also discussed the role of Cit³⁻ on controlling the shape of YVO₄ in detail.²⁵ Herein, EDTA also plays an important role on promoting the growth of assembled spheres Y(PV)O₄. In the synthetic process, EDTA can form the intermediate Y³⁺-EDTA complexes with Y³⁺ ions by stronger coordination interaction, which can control the concentration of free Y³⁺ ions and thus help control the nucleation and growth of the crystals in the view of the dynamic process.²⁵ Then under the hydrothermal conditions (high temperature and pressure), the chelating of Ln3+-EDTA complexes was attacked by (P,V)O₄³⁻ and an anion-exchange reaction between (P,V)O₄³⁻ and EDTA took place to form Y(P,V)O4 nuclei. During the subsequent crystal growth stage, the released EDTA may selectively bind to certain specific crystallographic facets. Such the preferential adsorption can effectively restrict or promote the growth along specific directions, resulting in the formation of 2D microsheets. As the EDTA/Y3+ molar ratio could be adjusted in the synthesis solution, the growth environment of crystals could be controlled, thus the selective adsorption of EDTA on the different facets on the grew Y(P,V)O₄ nuclei would results in the wealth of shapes of structures, such as, nanorods and nanoparticles. And then microsheets/nanorods /nanoparticles were finally self-assembled to 3D hierarchical spheres, as shown in Scheme 1. All in all, with the increase of EDTA content, the growth of crystalline has been restricted, resulting in the decrease of the particle size of the crystals which are finally assembled into the 3D microspheres. Besides, the self-assembly would also be influenced by other factors, such as crystal face attraction, electrostatic and dipolar fields associated with the aggregate, van der Waals forces, hydrophobic interactions, hydrogen bonds and so on, which make the prepared products showing multiform morphologies.⁸

Scheme 1 Schematic illustration for the possible formation mechanism of $Y(P,V)O_4$ with various morphologies under different synthesis conditions.

3.4 Photoluminescence properties of $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ microarchitecture

The emission and excitation spectra of $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ were measured at the room temperature. In the excitation spectra of $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ at the emission wavelength of 575 nm (Fig. 8A), there was a strong absorption at 275 nm due to the charge transfer

Journal Name ARTICLE

from the oxygen ligands to the central vanadium atom inside the VO₄³⁻ group, and some weak lines in the longer wavelength region due to the f –f transitions of Dy³⁺ with its 4f⁹ configuration. Under excitation at 275 nm, the emission spectra of Y_{0.97}Dy_{0.03}P_xV_{1-x}O₄ were obtained. As shown in Fig. 8B, a broad emission band at 430 nm was corresponding to the VO₄³⁻ emission, and its emission intensity increased with an increase in the P content, possibly due to the reduction in the non-radiative energy transfer to lanthanide ions. It was reported, when the V lattice sites were replaced by P in the crystal, the separation between -V-V- was increased, resulting in the reduce for the energy transfer to the randomly distributed activators and the enhancement of the radiative recombination within $VO_4^{3-.19}$ Besides, the shark peaks are the characteristic emission of Dy³⁺, ascribing to f-f transition, the magnetic dipole transition (${}^4F_{9/2} \rightarrow$ $^{6}H_{15/2}$) at 486 nm and the hypersensitive electric dipole transition $(^4F_{9/2} \rightarrow ^6H_{13/2})$ at 575 nm. A weak emission band located at 662 nm could also be observed, attributing to the transition of ${}^4F_{9/2} \rightarrow {}^6H_{11/2}$ of Dy³⁺. Note that with the increase of the P amount, the emission intensity of Dy³⁺ increased too. As shown in Fig. 8, the $Y_{0.97}Dy_{0.03}P_{0.9}V_{0.1}O_4$ sample exhibited the strongest emission intensity of Dy³⁺ and VO₄³⁻.

Fig. 8 Excitation (A) and emission (B) spectra of the $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ (x = 0.3, 0.5, 0.7, 0.9) samples, (C) emission spectra of $YP_xV_{1-x}O_4$ (x = 0.3, 0.5, 0.7, 0.9).

To understand the role of YPxV1-xO4 host emission on the emission spectra of Y_{0.97}Dy_{0.03}P_xV_{1-x}O₄, the emission spectra of YP_xV_{1-x}O₄ host under the excitation wavelength of 275 nm were measured and shown in Fig. 8C. It can be found that a broad emission peak at 430 nm appeared from the emission of VO₄³- group, and the emission intensity of VO₄³⁻ were varied with the P content, which was agreement with that of Y_{0.97}Dy_{0.03}P_xV_{1-x}O₄. Note that the emission intensity of VO₄³⁻ group in Y_{0.97}Dy_{0.03}P_xV_{1-x}O₄ was lower than that of $YP_xV_{1-x}O_4$ without the Dy^{3+} dopant, indicating that there exists an efficient energy transfer between VO₄³⁻ and Dy³⁺. The excitation and emission processes of VO₄³⁻ and the energy transfer and emission processes of Ln³⁺ ions are schematically shown in Fig. 9, which is similar to that reported.8 In the Y_{1-v}Ln_vP_xV_{1-x}O₄ phosphors, as the excitation energy cannot be transferred by PO₄³ groups, and VO₄3- groups can act as a bridge between the host absorption and the Ln3+ luminescent center. Under UV excitation, the energy transfer process can be described as follows: firstly, the UV radiation was adsorbed by VO₄³⁻ group, and then part of energy was transferred to Ln³⁺ luminescence center after a thermally activated energy migration through the vanadate sublattice, finally relaxed as the characteristic emissions of Ln3+. Part of energy may be relaxed directly to the ground state of the VO₄³⁻ groups, producing the broad band emission of VO₄³. Therefore, we can observe the emission of Ln3+ and VO43- together in the emission spectra $Y_{0.97}Dy_{0.03}P_{0.9}V_{0.1}O_4$ and $Y_{0.97}Dy_{0.03}P_{0.7}V_{0.3}O_4$, of respectively.

Fig. 9 The proposed energy transfer processes in $Y(P,V)O_4$: $Ln^{3+}(Ln = Eu, Sm, Dy, Tm)$ samples.

The quantum yield of $Y_{0.97}Dy_{0.03}P_{0.9}V_{0.1}O_4$ sample was measured to be 92 %, which is higher than that reported. For example, the quantum yield of YVO_4 :5mol % Dy^{3+} prepared in the presence of Cit^{3-} was 62 %, 8 and the quantum efficiency of $YP_{0.8}V_{0.2}O_4$:1 at.% Dy^{3+} -0.75 at.% Sm^{3+} was 25%. In order to better understand the influence of the P content on the color of light emission for these samples, the CIE coordinates of these samples were calculated on the basis of the luminescence spectra and listed in Table 2. It can be found that, with an increase in the P content, the coordinate positions gradually shifted towards blue color position. When the molar ratio of P/V is 0.5/0.5, $Y_{0.97}Dy_{0.03}P_{0.5}V_{0.5}O_4$ sample has generated white light emission with the CIE (Commission International de l'Eclairage) chromaticity coordinate of (0.31, 0.33), which is close to ideal white light (0.33, 0.33).

Table 2 CIE chromaticity coordinates of the $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ (x = 0.3, 0.5, 0.7, 0.9) samples.

3.5 Photoluminescence properties of Ln-doped YP0.3V0.7O4 samples

We used YP_{0.3}V_{0.7}O₄ as a host and doped with Ln-luminescent activators to adjust the color of light emission. Fig. 10 shows the room-temperature excitation and emission spectra of the Y₁₋ $_{v}Ln_{v}P_{0.3}V_{0.7}O_{4}$ (y = 0.01, 0.03, 0.05, 0.07 and 0.09; Ln = Eu³⁺, Sm³⁺ and Tm³⁺) samples. In the excitation spectra of the Y_{1-y}Ln_yP_{0.3}V_{0.7}O₄ $(Ln = Eu^{3+}, Sm^{3+} and Tm^{3+})$ samples, the most strongest emission peaks of Eu³⁺, Sm³⁺ and Tm³⁺ are located at 619, 603 and 476 nm, corresponding to the transitions of ${}^5D_0 \rightarrow {}^7F_2$ from Eu³⁺, ${}^4G_{5/2} \rightarrow$ $^6H_{7/2}$ from Sm³⁺, $^1G_4 \rightarrow ^3H_6$ of Tm³⁺ respectively, and a strong and broad band at 270~275 nm is ascribed to the charge transfer within the VO₄³⁻ groups, which confirms that the emission of Ln³⁺ produced by an energy transfers from the excited VO₄³⁻. As their shapes were nearly identical, their peak positions were hardly changed with the y value. While some weak lines can be also observed in the longer wavelength region due to the f-f transitions of Ln³⁺ with its 4f⁹ configuration. Under excitation at 270, 275 and 274 nm, the emission spectra of Eu³⁺, Sm³⁺ and Tm³⁺-doped YP_{0.3}V_{0.7}O₄ were obtained, respectively (Fig. 10).

In the emission spectra of Y_{1-y}Eu_yP_{0.3}V_{0.7}O₄ excited at 270 nm, there were the multiple transitions of ${}^5D_1 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_1$ (J = 1, 2, 3, 4) of Eu³⁺ ions at 538, 593, 619, 651 and 700 nm, respectively. Among these emission peaks, the red emission at 619 nm from the transition of ${}^5D_0 \rightarrow {}^7F_2$) was the most prominent and strong. When the Eu³⁺ amount (y) was 5 mol % in Y_{1-y}Eu_yP_{0.3}V_{0.7}O₄, the strongest emission spectrum was obtained, and upon excitation at 254 nm with a UV lamp its strong red emission can be seen clearly (inset of Fig. 10A). In general, the Eu³⁺ is an excellent structure probe for investigating the local environment in a host matrix in terms of Judd-Ofelt theory.²⁶ If the Eu³⁺ ions are located in the sites with an inversion center, the ${}^5D_0 \rightarrow {}^7F_1$ magnetic dipole transition should be dominant, and in the sites without an inversion center, the ${}^5D_0 \rightarrow {}^7F_2$ electric dipole transition would be preponderant.²⁷ As shown in Fig. 10A, the intensity of electric-dipole transitions from ${}^5D_0 \rightarrow {}^7F_{2.4}$ was much stronger than that of magnetic-dipole transitions from ${}^5D_0 \rightarrow$ $^{7}F_{1.3}$, which indicates that the Eu³⁺ lattice site is not inversion symmetry. Fig. 10B shows the emission spectra of Y_{1-v}Sm_v $P_{0.3}V_{0.7}O_4$ (y = 0.01~0.09), which exhibits the typical red-orange

ARTICLE Journal Name

emissions at 565, 603, 647 and 707 nm ascribing to the transitions from ${}^4G_{5/2} \rightarrow {}^6H_{\rm J}$ (J = 5/2, 7/2, 9/2 and 11/2), respectively. When the Sm³+ amount (y) was 7 mol % in Y_{1-y}Sm_yP_{0.3}V_{0.7}O₄, the strongest PL emission intensity was obtained.

Fig. 10 Excitation and emission spectra for $Y_{1-y}Ln_yP_{0.3}V_{0.7}O_4$ (Ln= (A) Eu, (B) Sm and (C) Tm; y = (0.01, 0.03, 0.05, 0.07 and 0.09). Insets are the direct view photos when being excited at 254 nm.

Fig. 10 C displays the emission spectra of $Y_{1-y}Tm_yP_{0.3}V_{0.7}O_4$ ($y = 0.01 \sim 0.09$), and a typical blue emission band at 476 nm could be detected, corresponding to the transition of ${}^1G_4 \rightarrow {}^3H_6$. Other weak bands in infrared region were located at 652, 804 and 828 nm, assigned to the transitions of ${}^1G_4 \rightarrow {}^3F_4$, ${}^1G_4 \rightarrow {}^3H_5$ and ${}^3H_4 \rightarrow {}^3H_6$, respectively²⁸ (inset of Fig. 9C). When the Tm³⁺ amount (y) was 3 mol % in $Y_{1-y}Tm_yP_{0.3}V_{0.7}O_4$, the strongest PL emission intensity could be obtained.

The above results indicate that an efficient energy transfer also occurred from VO_4^{3-} to Eu^{3+} , Sm^{3+} and Tm^{3+} in Ln-doped $YP_{0.3}V_{0.7}O_4$ samples, respectively. The energy transfer processes for $YP_{0.3}V_{0.7}O_4$: Ln^{3+} ($Ln = Eu^{3+}$, Sm^{3+} , Tm^{3+}) are similar to that of the $YP_{0.3}V_{0.7}O_4$: Dy^{3+} , and are also presented in Fig. 9. Among these phosphors, the energy transfer between Tm^{3+} and VO_4^{3-} is the lowest efficient, resulting in the weak blue emission of Tm^{3+} . $YP_xV_{1-x}O_4$: Ln^{3+} phosphors can exhibit the efficient and characteristic emission under UV excitation, which is very important for the solid state lighting.

Furthermore, we found that the optimum concentration of Sm^{3+} is higher than that of Eu^{3+} in the spherical Ln-doped $YP_{0.3}V_{0.7}O_4$ sample. In most cases, the optimum concentration of Sm^{3+} is much lower than that of Eu^{3+} in the same host lattice due to the active cross-relaxation process in close Sm^{3+} - Sm^{3+} pairs which will quench the luminescence. 29 Hence, we speculate that the cross-relaxation process in close Sm^{3+} - Sm^{3+} pairs is inactive in the assembled spherical $YP_{0.3}V_{0.7}O_4$ host matrix, so its quenching concentration would be high.

The fact that the emission color of $YP_{0.3}V_{0.7}O_4$ can be tuned by doping different lanthanide activators can be confirmed by the CIE chromaticity coordinates. The chromaticity coordinates of the $YP_{0.3}V_{0.7}O_4$: 5 mol% Eu³⁺ sample are x = 0.615 and y = 0.3792, and emits red light, which agrees well with the luminescence photograph (inset in Fig. 10A). For the samples doped with Sm (7 mol%) or Tm (3 mol%), its chromaticity coordinates are (0.5864, 0.4094) or (0.2004, 0.22), which represents red-orange or light blue color.

Fig. 11(A, B) shows the luminescent decay curves of the $Y_{0.97}Dy_{0.03}P_{0.9}V_{0.1}O_4$ and $Y_{0.97}Tm_{0.03}P_{0.3}V_{0.7}O_4$ samples, which can be fitted into a double-exponential function as $I=A_1\exp(-t/\tau_1)+A_2\exp(-t/\tau_2)$, where τ_I and τ_2 are the fast and slow components of the luminescence lifetimes, and A_1 and A_2 are the fitting parameters, respectively. For Dy^{3+} , two lifetimes, the faster one $\tau_I=114~\mu s$, and the slow one $\tau_2=354~\mu s$, have been obtained for the emission of Dy^{3+} at 575 nm. The average lifetime is defined as $[\tau]=(A_1\tau_1^{2+}+A_2\tau_2^2)/(A_1\tau_1+A_2\tau_2)$, which is 279 μs . For Tm^{3+} , two lifetimes, the faster one $\tau_1=5.70~\mu s$, and the slow one $\tau_2=30.98~\mu s$, have been obtained for the emission of Tm^{3+} at 476 nm. The average lifetime for Tm^{3+} was calculated to be 19.15 μs . Recently, the double exponential decay behavior of the activator is frequently observed

when the excitation energy is transferred from the donor (matrix) to the activator.³⁰ This is because that the luminescent centers in these hosts lay in the unhomogeneous environment, which would raise the structure disordering, surface defects and impurities.

Fig. 11 Decay curves of (A) $Y_{0.97}Dy_{0.03}P_{0.9}V_{0.1}O_4$ and $YP_{0.3}V_{0.7}O_4$: Ln ³⁺ (Ln = (B)Tm, (C)Eu, (D)Sm) samples.

As shown in Fig. 11(C, D), the luminescence decay curves of both Eu³+ (5 mol %) and Sm³+ (7 mol %) samples can be fitted into a mono-exponential function as $I = I_0 \exp(-t/\tau_1)$. The lifetime for Eu³+ or Sm³+ in YP_{0.3}V_{0.7}O₄ materials are 431 or 687 μ s respectively. Among these Y_{1-y}Ln_yP_{0.3}V_{0.7}O₄ (Ln = Eu³+, Sm³+ and Tm³+) luminescence materials, the Y_{0.93}Sm_{0.07}P_{0.3}V_{0.7}O₄ shows the longest life time. Its quantum yield was measured to be 76.8% by using an integrated sphere, which is higher than the value (50%) of YVO₄: 5 mol% Sm³+.8

4 Conclusions

In summary, the $YP_xV_{1-x}O_4$ assembled spheres with tetragonal phase were prepared successfully by a simple and mild hydrothermal method, and the microstructures of the samples would vary remarkably with varying reaction conditions, including the reaction time, different organic additives, pH value and the EDTA amount in the synthesis solution. In the presence of EDTA, tetragonal $YP_{0.3}V_{0.7}O_4$ microsphere can be successfully fabricated at pH 0.57~1 of the synthesis solution.

Under ultraviolet excitation, the characteristic emission of Eu³⁺, Sm³⁺ and Tm³⁺ can be observed in the luminescent spectra of the spherical $Y_{1-v}Ln_vP_{0.3}V_{0.7}O_4$ phosphors (Ln = Eu, Sm, and Tm). $Y_{0.93}Sm_{0.07}P_{0.3}V_{0.7}O_4$ and $Y_{0.95}Eu_{0.05}P_{0.3}V_{0.7}O_4$ exhibit the strong orange-red and red emission, respectively, which indicates that the light colors of the YP_{0.3}V_{0.7}O₄ microspheres can be easily adjusted by doping different lanthanide activators. The studies on the luminescent properties of $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ (x = 0.3~0.9) show that the emission intensities of Dy³⁺ and VO₄³⁻ increase with the increase in the P amount, and the white light can also be obtained in Y_{0.97}Dy_{0.03}P_{0.5}V_{0.5}O₄ under UV excitation. The spherical $Y_{0.97}Dy_{0.03}P_{0.9}V_{0.1}O_4 \quad and \quad Y_{0.93}Sm_{0.07}P_{0.3}V_{0.7}O_4 \quad phosphors \quad have$ possessed the strong emission ability, and their quantum efficiency could reach to 92 % and ~77 %, respectively. The merits of multicolor emissions and higher quantum efficiency of these Lndoped YP_xV_{1-x}O₄ assembled spheres in the visible region endow this approach and luminescent materials to be an alternative towards the development of pcLED for solid state lighting application.

Acknowledgements

We would like to acknowledge the financial support from the National Basic Research Program of China (2010CB732300).

Notes and references

- (a) A. P. Alivisatos, *Science*, 1996, 271, 933–937; (b) J. Hu, T. W. Odom and C. M. Lieber, *Acc. Chem. Res.*, 1999, 32, 435–445; (c) C. M. Burda, C. R. Narayanan and M. A. El-Sayed, *Chem. Rev.*, 2005, 105, 1025–1102; (d) Z. L. Wang, J. H. Hao and H. L. W. Chan, *J. Mater. Chem.*, 2010, 20, 3178–3185.
- 2 C. Mu and J. He, Mater. Res. Bull. 2012, 47, 491–496.

Journal Name ARTICLE

- 3 X. C. Jiang, L. D. Sun, W. Feng and C. H. Yan, Cryst. Growth Des., 2004, 4, 517–520.
- 4 R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, *Science*, 2001, **294**, 1901–1903.
- 5 Q. L. Luo, S. D. Shen, G. Z. Lu, X. Z. Xiao, D. S. Mao and Y. Q. Wang, RSC Adv., 2012, 2, 616–621.
- 6 W. Xu, Y. Wang, X. Bai, B. Dong, Q. Liu, J. S. Chen and H. W. Song, J. Phys. Chem. C, 2010, 114, 14018–14024.
- 7 J. Yang, C. X. Li, Z. W. Quan, C. M. Zhang, P. P. Yang, Y. Y. Li and J. Lin, J. Phys. Chem. C, 2008, 112, 12777–12785.
- 8 Z. H. Xu, X. J. Kang, C. X. Li, Z. Y. Hou, C. M. Zhang, D. M.
- Yang, G. G. Li and J. Lin, *Inorg. Chem.*, 2010, 49, 6706–6715.
 L. Xu, X. Y. Yang, Z. Zhai, X. Chao, Z. H. Zhang and W. H.
- Hou, CrystEngComm, 2011, 13, 4921–4929. 10 G. Jia, C. Zhang, S. Ding, L. Wang, L. Li and H. You,
- 10 G. Jia, C. Zhang, S. Ding, L. Wang, L. Li and H. You CrystEngComm, 2012, 14, 573–578.
- 11 L. Xu, J. M. Shen, C. L. Lu, Y. P. Chen and W. H. Hou, Cryst. Growth Des., 2009, 9, 3129–3136.
- 12 L. Xu, X. Y. Yang, Z. Zhai, D. X. Gu, H. Pang and W. H. Hou, CrystEngComm, 2012, 14, 7330–7737.
- 13 J. P. Cotter, J. C. Fitzmaurice and I. P. Parkin, J. Mater. Chem., 1994, 4, 1603–1609.
- 14 M. S. Palmer, M. Neurock and M. M. Olken, J. Am. Chem. Soc., 2002, 124, 8452–8461.
- 15 L. Niinistö and M. Leskelä, in *Handbook on the Physics and Chemistry of Rare Earths*, ed. K. A. Gschneidner Jr. and L. Eyring, *Elsevier*, Amsterdam, 1987, Ch. 59.
- 16 G. Blasse and B. C. Grabmaier, *Luminescent Materials*; Springer: Berlin, 1994.
- 17 K. Riwotzki and M. Haase, J. Phys. Chem. B, 2001, 105, 12709–12713.
- 18 C. Li, Z. Hou, C. Zhang, P. Yang, G. Li, Z. Xu, Y. Fan and J. Lin, Chem. Mater., 2009, 21, 4598–4607.
- 19 Z. Y. Hou, P. P. Yang, C. X. Li, L. L. Wang, H. Z. Lian, Z. W. Oven and I. Lin, Cham. Mater. 2008. 20, 6686, 6696.
- W. Quan and J. Lin, *Chem. Mater.*, 2008, **20**, 6686–6696.N. S. Singh, N. K. Sahu and D. Bahadur, *J. Mater. Chem. C*,
- 2014, **2**, 548–555. 21 M. L. Zhao, G. S. Li, J. Zheng, L. P. Li and L. S. Yang,
- CrystEngComm, 2012, 14, 2062–2070.
 G.C.Li, K.Chao, H.R.Peng, K.Z.Chen, J.Phys.Chem.C, 2008,112,6228–6231.
- 23 A. R. Tao, S. Habas and P. D. Yang, Small, 2008, 4, 310-325.
- 24 B. Lim, Y. J. Xiong and Y. N. Xia, Angew. Chem., Int. Ed., 2007, 46, 9279–9282.
- 25 X. Bai, H. W. Song, L. X. Yu, L. M. Yang, Z. X. Liu and G. H. Pan, J. Phys. Chem. B, 2005, 109, 15236–15242.
- 26 (a) B. R. Judd, *Phys. Rev.*, 1962, **127**, 750–761. (b) G. S. Ofelt, *J. Chem.Phys.*, 1962, **37**, 511–520.
- 27 G. H. Jia, P. A. Tanner and B. M. Cheng, *Chem. Phys. Lett.*, 2009, 474, 97–100.
- 28 H. W. Zhang, X. Y. Fu, S. Y. Niu, G. Q. Sun and Q. Xin, Solid State Commun., 2004, 132, 527–531.
- 29 B. Yan and X.Q. Su, *J. Alloys Cmpds.*, 2007, **431**, 342–347.
- 30 Z. Q. Li and Y. Zhang, Angew. Chem., Int. Ed., 2006, 45, 7732–7735.

 $\textbf{Table 1} \ \text{Lattice constants of the } YP_xV_{1-x}O_4 \ phosphors$

P/V	3/7	5/5	7/3	9/1
a(Å)	7.1134	7.008	6.9216	6.9118
c(Å)	6.2880	6.1494	6.0403	6.0387

Table 2 CIE chromaticity coordinates of the $Y_{0.97}Dy_{0.03}P_xV_{1-x}O_4$ (x = 0.3, 0.5, 0.7, 0.9) samples.

Sample	Excitation	CIE chromaticity coordinate		Emission
(x value)	(nm)	X	Y	color
0.3	275	0.34	0.37	White
0.5	275	0.31	0.33	White
0.7	275	0.28	0.29	Bluish White
0.9	275	0.23	0.22	Blue

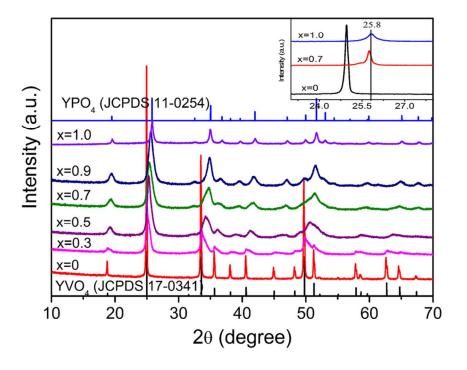


Fig. 1 XRD patterns of YPxV1-xO4 (x=0, 0.3, 0.5, 0.7, 0.9, 1.0) at pH=0.57. $80x61mm\ (300\ x\ 300\ DPI)$

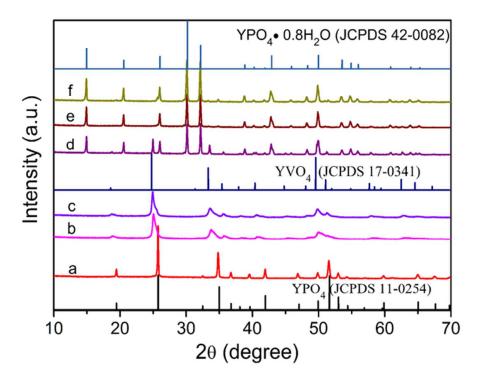


Fig. 2 XRD patterns of samples prepared at pH of (a) 0.23, (b) 0.57, (c) 1, (d) 4, (e) 7 and (f) 10. All samples (EDTA/Y3+= 2/1, mol) were hydrothermally synthesized at 180 °C for 24 h. 59x45mm (300 x 300 DPI)

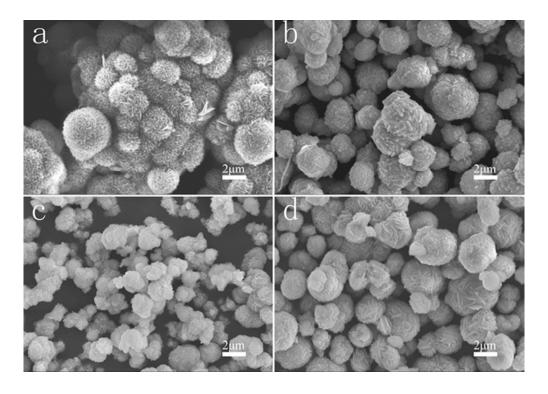


Fig. 3 SEM images of YPxV1-xO4 at x = (a) 0.3, (b) 0.5, (c) 0.7 and (d) 0.9. All samples were hydrothermally synthesized at 180 °C for 24 h with the synthesis solution (EDTA/Y3+ = 2/1, mol) at pH of 0.57. $52x36mm (300 \times 300 \text{ DPI})$

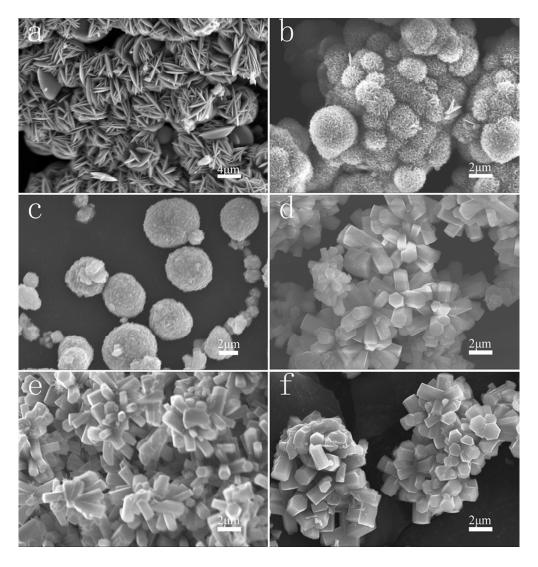


Fig. 4 SEM images of Y(P, V)O4 (P/V = 3/7) samples prepared at pH of (a) 0.23, (b) 0.57, (c) 1, (d) 4, (e) 7 and (f) 10. All samples were hydrothermally synthesized at 180 °C for 24 h with the synthesis solution (EDTA/Y3+ = 2/1, mol). 79x83mm (300 x 300 DPI)

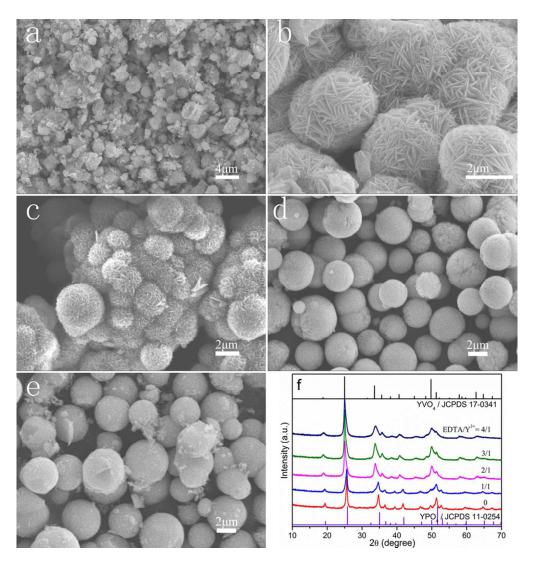


Fig. 5 (a-e) SEM images and (f) XRD patterns of YP0.3V0.7O4 samples prepared at EDTA/Y3+ of (a) 0, (b) 1/1, (c) 2/1, (d) 3/1 and (e) 4/1. All samples were hydrothermally synthesized at 180 °C for 24 h and pH=0.57 of the synthesis solution. 79x83mm (300×300 DPI)

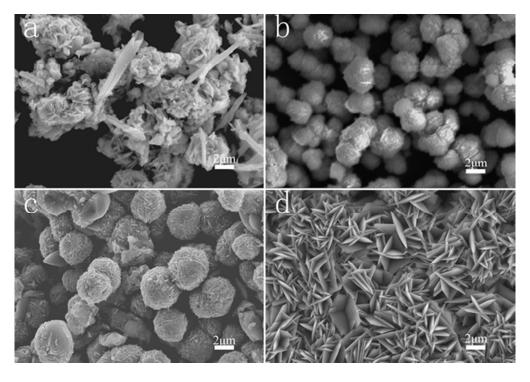


Fig. 6 SEM images of the YP0.3V0.7O4 samples prepared in the presence of (a) AO, (b) PVP, (c) Cit3- and (d) MA. All samples were hydrothermally prepared at 180 °C for 24 h in the synthesis solution (the organic additive/Y3+ of 2/1, and pH of 0.57).

52x36mm (300 x 300 DPI)

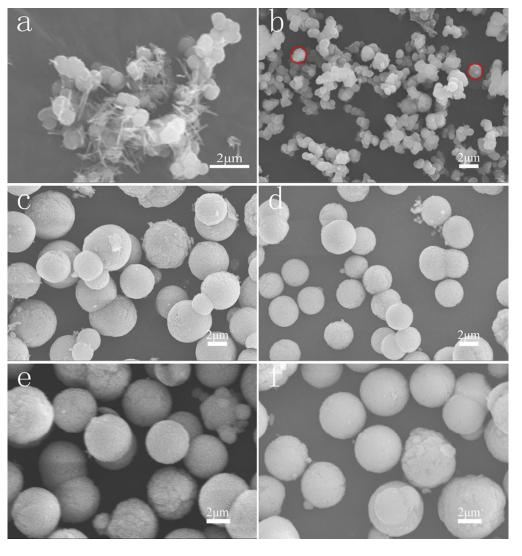


Fig. 7 (a-f) SEM images of the YP0.3V0.7O4 samples synthesized at 180 °C for (a) 0.5h, (b)1h, (c) 2 h, (d) 6 h, (e) 12 h, (f) 18 h with the synthesis solution (EDTA/Y3+ of 3/1, and pH of 0.57). 79x84mm (300 x 300 DPI)

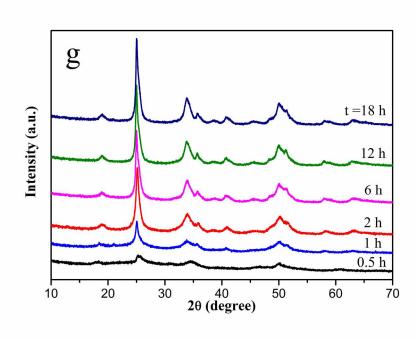
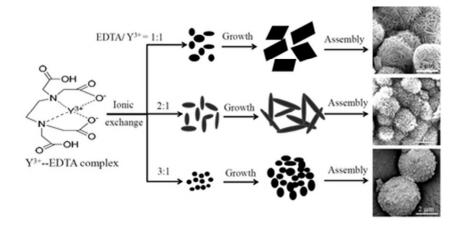



Fig. 7 (g) XRD patterns of the YP0.3V0.7O4 samples synthesized at 180 $^{\circ}$ C for (a) 0.5h, (b)1h, (c) 2 h, (d) 6 h, (e) 12 h, (f) 18 h with the synthesis solution (EDTA/Y3+ of 3/1, and pH of 0.57). 200x139mm (300 x 300 DPI)

Scheme 1 Schematic illustration for the possible formation mechanism of Y(P,V)O4 with various morphologies under different synthesis conditions. 36x17mm~(300~x~300~DPI)

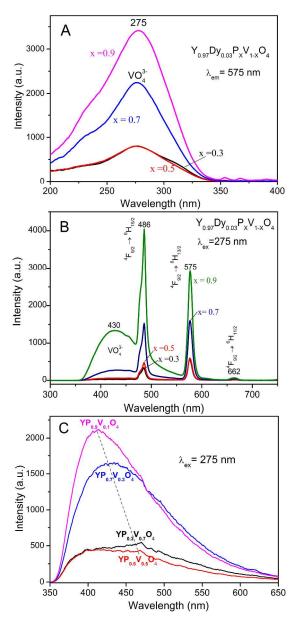


Fig. 8 Excitation (A) and emission (B) spectra of the Y0.97Dy0.03PxV1-xO4 (x = 0.3, 0.5, 0.7, 0.9) samples, (C) emission spectra of YPxV1-xO4 (x = 0.3, 0.5, 0.7, 0.9). 338x679mm (300 x 300 DPI)

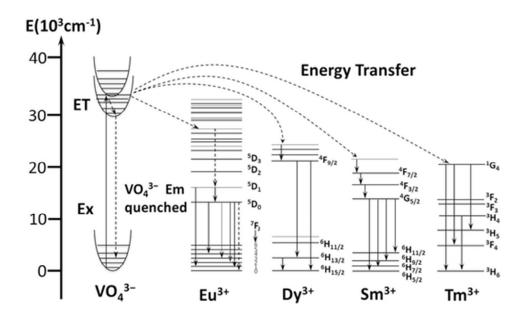


Fig. 9 The proposed energy transfer processes in Y(P,V)O4: Ln3+ (Ln = Eu, Sm, Dy, Tm) samples. $46x28mm (300 \times 300 \text{ DPI})$

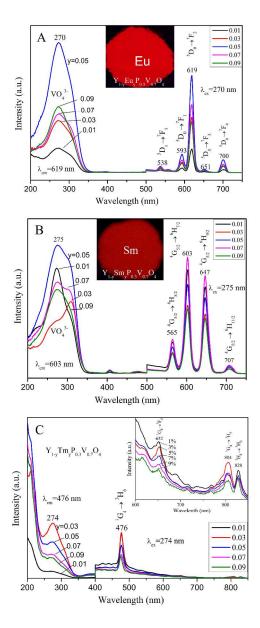


Fig. 10 Excitation and emission spectra for Y1-yLnyP0.3V0.7O4 (Ln= (A) Eu, (B) Sm and (C) Tm; y = (0.01, 0.03, 0.05, 0.07 and 0.09). Insets are the direct view photos when being excited at 254 nm. 381x882mm (300 x 300 DPI)

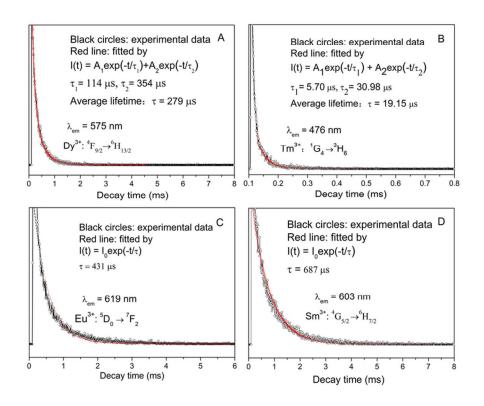


Fig. 11 Decay curves of (A) Y0.97Dy0.03P0.9V0.1O4 and YP0.3V0.7O4:Ln3+ (Ln = (B)Tm, (C)Eu, (D)Sm) samples. 80x64mm (300 x 300 DPI)