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ABSTRACT:  

Solubility of carbon dioxide in polymer has attracted great attention of scientists because 

it is an important application of green chemistry, and it is widely applied in extraction, 

separation and preparation of new materials. In this work, a new solubility prediction 

model with both good accuracy and efficiency, called CEAPSO KHM RBF ANN is 

developed. In the CEAPSO KHM RBF ANN model, accelerated particle swarm 

optimization (APSO) algorithm with chaotic disturbance is employed to trim the radial 

basis function artificial neural network (RBF ANN) connection weights and biases in 

order to reduce premature convergence problem, and K-harmonic means (KHM) 

clustering method is used to tune the hidden centers and spreads of radial basis 

function. The proposed model is employed to investigate the solubility of CO2 in 

polymers including Polypropylene, Polystyrene, Poly(vinyl acetate), Carboxylated 

polyesters and Poly(butylene succinate-co-adipate), respectively. The results indicate 

that the proposed model is an effective method for solubility prediction with better 

performance and higher efficiency compared with the other methods, and should 

contribute to understanding the phase behaviour of the gas/polymer system and for the 

design and optimization of processing techniques.  

Keyword: Computational chemistry, polymers, solubility model, hybrid method. 
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1. Introduction  

Carbon dioxide (CO2) has become the most popular green medium currently, and 

has been widely used as solute or solvent in many fields including the material 

modification, synthesis and processing because of its advantages like no toxicity, 

chemical inertness, nonflammable feature and easy access1-3. Solubility of CO2 in 

polymers has been a subject of interest for chemical engineers for several decades, it 

has also been applied in a wider application field, such as extraction, separation and 

preparation of new materials and so forth 4, 5. To describe gas solubility in polymer, the 

calculation models are often used 6.  For example, thermodynamic model and intelligent 

model have been extended to describe phase behavior of polymer solution. The 

thermodynamic methods consist of equation of state, empirical equation and semi-

empirical equation; while intelligent calculation methods consist of artificial neural 

network (ANN) and support vector machine 7-12. Bakhbakhi 13 applies the equation of 

state and ANN to conduct comparison of calculation of solubility, which turns out that the 

computational accuracy obtained through calculation by ANN is higher; 

Pahlavanzadeh14 proves that a better effect in calculation of solubility can be achieved 

by using ANN; Mehdizadeh15 and Gharagheizi16 also conclude that ANN has better 

performance in the prediction of solubility. Due to the good generalization ability, radial 

basis function (RBF) ANN has been widely used for prediction of solubility, but Khajeh17 

summaries through comparison that adaptive neuro-fuzzy inference system (ANFIS) has 

better performance in predicting of solubility than that of RBF ANN. In other words, the 

network parameters of RBF ANN have conclusive influence on the overall performance, 

and an optimization is necessary. As is known to all that the parameters optimization of 

the ANN is a classical optimization problem, so many intelligent optimization algorithms 
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have been used for optimization of network parameters 18, such as genetic algorithm 19-

21, simulated annealing 22, particle swarm optimization (PSO) 23, 24, tabu search 25, 26, 

cuckoo search algorithm 27, etc. 

PSO algorithm is a classical intelligence algorithm inspired by the birds seeking for 

food. It has many advantages, such as less adjustment parameter, convenient 

implementation, fast convergence speed, etc. And it has been broadly used for 

parameters optimization of ANN. Liu 28 has successfully obtained the prediction model of 

melt index of fuzzy ANN by PSO; Lazzus 29 also successfully establishes the hybrid 

prediction model based on PSO and ANN. However, PSO itself also has some defects, 

for example, poor search capability at later period of optimization and being easy to fall 

into local mininum. In order to improve the deficiencies, scientists have proposed many 

variants. Li 30-34 proposed several models applied the chaos theory and self-adaption 

strategy in the improvement of PSO. The results show the effects of prediction of the 

proposed models are pretty good.  

In the past two years, a new variant called accelerated PSO (APSO) has been the 

simplest and high-efficiency algorithm with free parameters among so many variants, to 

which has been paid close attention by researchers. It has successfully solved many 

practical problems. Specifically, it is suitable for optimization of RBF ANN parameters. 

But it also has problems like being easy to fall into local minimum. Given that, this article 

will discuss the integration of APSO and chaos theory to propose an improved algorithm, 

and apply the improved algorithm and K-harmonic means (KHM) clustering in the 

training of RBF ANN. Consequently, it attempts to get a hybrid network model with both 

good accuracy and efficiency, and use the model in the prediction of solubility of CO2 in 

polymer in this work.  
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2. Theory and Experimental Data 

2.1 Chaos-enhanced accelerated particle swarm optimization 

Recent years, APSO is a new simplified variant of PSO algorithm; it could accelerate 

the convergence using the global best only.  In the APSO, the velocity is abandoned in 

order to increase the convergence speed even further, thus there is no need to initialize 

the velocity 35. Therefore, it is much simpler to implement. The position vector of a 

particle is updated as follow: 

1

1 1 2(1 )t t

i i bestx c x c g c r+ = − + +              (1) 

where ix  is the position vector, bestg  is the global extremum. r  is random vector, 

1c and 2c  are often called acceleration coefficients. 

The APSO is very efficient, but it also has problems like being easy to fall into local 

minimum, and may miss some solutions sometime. In fact, there is no need to keep the 

acceleration coefficients as constant, and the varying acceleration coefficients are very 

advantageous, which may lead to the convergence speedup. Therefore, in this work, we 

employ the Lorenze equations to generate chaotic sequence for tuning the acceleration 

coefficients 1c and 2c  of APSO, and develop a new improved algorithm, called CEAPSO. 

Chaotic sequence is defined as follow 36 :  

= − −

= − −

= −










( )
dx

a x y
dt

dy
rx y xz

dt

dz
xy bz

dt

                   (2) 

where a, b, and c are the system parameters, and the Lorenze system can achieve 

chaotic state completely when a, b, and c are set as 10, 8/3 and 28, respectively 37. 
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Given the dynamic properties of ( )x t  and ( )y t ,  the acceleration coefficients 1c and 2c are 

defined as follows: 

1

2

=

=





( )

( )

c x t

c y t
                (3) 

The acceleration coefficients 1c and 2c  can enhance the ability to escape local 

minimum by tuning with chaotic sequence, at the same time increase the possibility of 

searching global extremum. 

2.2 KHM Cluster Method 

KHM cluster is an iterative process based on cluster center. The objective function 

adopts the harmonic mean of distance from all the sample points to each center of 

clustering, defined as: 

( , )
11

1 p

n k
KHM X C

i k
j

x c ji

= ∑
=
∑ =

−

                (4) 

In the formula, 1[ , , ]nX x x= L  is the sample data set; n is the number of sample; k is 

the number of cluster; 1[ , , ]nC c c= L  is vector quantity of center of clustering; 

The computational formulas of degree of membership ( / )
j i

m c x  and weight ( )
i

w x  

between each sample data and vector quantity of center of clustering are: 

2

2

1

( / )

p
x ci j

j i pk x ci jj

m c x

− −
−

− −
−∑ =

=                  (5) 

2

1

2( )
1

( )

pk x ci jj

i pk x ci jj

w x

− −
−∑ =

−
−∑ =

=                  (6) 

p is the input parameter, and it’s assumed as 2 in this article 38. 
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The updated formula of vector quantity of cluster center, cj, is: 

( / ) ( )
1

( / ) ( )
1

n m c x w x xj i i ii
j n m c x w xj i ii

c
∑ =

∑ =

=                 (7) 

KHM clustering algorithm will constantly iterate based on the vector quantity of center 

of clustering and according to the original value, so as to make the value of objective 

function gradually reduce until being stable. 

2.3 CEAPSO KHM RBF ANN 

RBF ANN is one of the classical forward neural networks, containing three layers, 

input layer, hidden layer and output layer. This article proposes a hybrid RBF ANN 

model based on the CEAPSO and KHM cluster algorithm, called CEAPSO KHM RBF 

ANN. The output of the network model is defined as: 

1

( ) ( )
c

k i i k
i

wO x g x
=

= ∑          (8) 

In the formula, iw  is the connection weight of the ith hidden node. (1 )kx k n≤ ≤  is the 

No. k input vector; c  is the amount of node at hidden layer; g is the activation function. 

The training process of RBF ANN can be regarded as a process of optimization of 

the center, spread and connection weight, that is, to optimize ic , iσ  and iw . In this 

article, we adopt KHM algorithm to optimize the center and spread of radial basis 

function, defined as: 

( , )
basis funtion cluster

KHM C C
−         (9) 

In that, 
cluster

C  is the center of clustering in KHM algorithm; 
basis funtion

C
−  is the 

center of radial basis function. The center of each radial basis function will update 

according to center of clustering. 
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In the meantime, the connection weight and bias of hidden layer and output layer in 

RBF ANN will be optimized by means of CEAPSO algorithm. For this, we define the 

structure of particle as: 

, ,( ) [ , ]h o h oparticle i W B=          (10) 

In the formula, ,h oW  and ,h oB (1 )h c≤ ≤ , (1 )o p≤ ≤  are respectively the weight matrix 

and bias matrix between the hidden node h and output node o; p  is the amount of 

output node. 

2.4 Experimental Data 

We collected 382 groups of experimental data, including 5 varieties of polymer, 

such as polypropylene(PP), Polystyrene(PS), Poly(vinyl acetate)(PVAc), Carboxylated 

polyesters(CPEs) and poly(butylene succinate-co-adipate)(PBSA). The experimental 

data have all obtained through literature collection. The data statistics are as shown in 

Table 1.  

Table 1. Experimental data in this work 

Polymer T (K) P(Mpa) S (g/g) 
Data 
points 

Reference 

PP  313.20-483.70 2.930-24.910 0.02050-0.26170 92 
39-42

 

PBSA  323.15-453.15 1.098-20.127 0.01184-0.17410 58 
39, 43

 

PS  170.00-473.15 2.068-44.410 0.00282-0.16056 104 
39, 44-46

 

PVAc 313.15-373.15 0.199-17.449 0.00551-0.34692 39 
39, 46

 

CPE55  306.00-343.00 0.140-31.020 0.00030-0.63660 30 
47
 

CPE60  306.00-344.00 0.140-29.910 0.00230-0.56840 30 
47
 

CPE67  309.00-343.00 0.130-31.000 0.00080-0.58950 29 
47
 

total 170.00-483.70 0.199-44.410 0.00282-0.43010 382  
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The sample of each polymer will be divided into 3 subsets, namely, training set, 

validation set and testing set; in order to completely train the model, about 70% of the 

data will be used for training, 15% used for validation of reliability of the model, and 15% 

used for testing the performance of model 48, 49.  

3. Results and Discussion 

In order to validate and test the performance of model, average relative deviation 

(ARD), root mean square error of prediction (RMSEP), and squared correlation 

coefficient (R2) are selected as the criteria for the accuracy of each model and can be 

defined as: 

1

1 N
ii

i i

y y
ARD

N y=

−
= ∑               (11) 

2( )i iyRMSEP y= −∑
N

i=1

1

N
              (12) 

2

2

2 2

( )( )

( ) ( )

i ave i ave

i ave i ave

y y y y

R

y y y y

 
− − 

 =

− −

∑

∑ ∑

N

i=1

N N

i=1 i=1

             (13) 

In these formulas, N is the amount of data sample; iy   is the predicted value of model; 

iy  is experiment value; avey  is the experimental average value and avey  is the predicted 

average value. 

3.1 Results of the proposed model 

The model has selected two variables, temperature and pressure, as the input 

variables; and it will output the solubility predicted by the model. The amount of node in 

hidden layer can be obtained by trial-and-error method. 8 models will be respectively 
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established assuming the number of node in hidden layer from 3 to 10. Figure 1 has 

drawn the variation of MSE of the model with the changing amount of node in hidden 

layer. It can be concluded that when there are 7 nodes in the hidden layer, the minimum 

model error appears. 

 

Figure 1. Results of topology studies for optimal ANN configuration 

Thus, the CEAPSO KHM RBF ANN model of CO2 solubility in polymer is developed, 

and the structure is 2-7-1. In Figures 2-3 the prediction of CO2 solubility in polymers by 

the CEAPSO KHM RBF ANN was plotted against the experimental values for the 

training and validation set, in which the straight line indicates the perfect state where 

predicted value equals to the experimental value, and the vertical dimension between 

the predicted data point and the straight line presents the absolute deviation between 

the predicted value and experimental value. As shown in these figures, the proposed 

model for the training set and validation set all have good predictive ability and the 

vertical dimension between the predicted data point and the straight line is relatively 
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short, that is, the deviation between the predicted value and the experimental value is 

small. 

 

Figure 2. Predicted data versus experimental data in training set. 

 

Figure 3. Predicted data versus experimental data in validation set. 

Figures 4-5 plot the correlations between the predicted value and experimental 

value for the testing set. It can be seen from the figures that the difference between 
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calculated data and experimental data is very low and it is showing that the CEAPSO 

KHM RBF ANN model is a powerful tool for predicting of CO2 solubility in polymers. 

Especially, the model performs much better on PP, CPEs and PVAc, the predicated 

values are almost equal to experimental values.  

 

Figure 4. Predicted data versus experimental data in testing set (1). 

 

Figure 5. Predicted data versus experimental data in testing set (2). 
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Table 2 gives the statistical data of prediction on various polymers in the testing set. 

The results show that the model can accurately predict the solubility of CO2 in polymers, 

and the output of the model is relatively identical with the expectation. Table 2 also 

indicates that both the prediction accuracy and correlation of model have performed 

good combination property. 

Table 2. Values of ARD, R2 and RMSEP in the testing set 

Polymer ARD R
2
 RMSEP 

PVAc 0.1035 0.9959 0.0104 

PS 0.1028 0.9978 0.0106 

PP 0.1013 0.9987 0.0105 

PBSA 0.1029 0.9984 0.0106 

CPE55 0.0956 0.9991 0.0102 

CPE60 0.0962 0.9987 0.0101 

CPE67 0.0987 0.9985 0.0102 

Average 0.1001 0.9982 0.0104 

3.2 Comparative results 

Firstly, two models of the same variety, PSO RBF ANN and CEAPSO RBF ANN, 

are selected as comparative models in order to validate the combination property of 

these models. Comparison among these models is not an easy task because all of 

these models are based on same data. In fact, a fair comparison is only achieved when 

all the models are constructed on the same data set. Thereupon, we randomly selected 

10 data points from each polymer to get a database with 70 data points for the 

comparison. Figure 6 shows the convergence curves of each model. It can be 

concluded from the figure that the convergence rate of each model is normal. The 

CEAPSO KHM RBF ANN model achieves stable convergence upon the 100th iteration 
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approximately, and the CEAPSO RBF ANN model is also gradually become stable upon 

the 180th iteration. However, in terms of the convergence precision, the model proposed 

in this work is better than the other models. 

 

Figure 6. Curve of MSE VS. Epoch 

Figure 7 shows the comparison between predicted solubility and experimental 

values of each model. As we can see from this figure, the distance between the 

predicated data point and the straight line of the model proposed in this work is small. It 

means that the predicated data points are mostly falling near the straight line, the 

predicated values are nearly identical with the experimental values, and the prediction 

error is relatively small. The figure shows that good agreement is obtained with the 

CEAPSO KHM RBF ANN model while the performance of the CEAPSO RBF ANN and 

PSO RBF ANN are less satisfactory.  
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Figure 7. Predicted data VS. experimental data in the testing database 

Moreover, several solubility prediction models proposed in recent years are 

selected as comparative models in order to show the advances and significance of the 

model in the current work, such as CSPSO-C RBF ANN 34, CSPSO-FC RBF ANN 33, 

CSPSO-KHM RBF ANN 31.  Table 3 indicates the statistical data of these models. 

Table 3. Statistical parameters of the comparison models 

Model ARD R
2
 RMSEP 

Best 
Fitness 

Time (S) 

Model proposed in Ref.
 34
 0.1282 0.9970 / 5.96 E-07 / 

Model proposed in Ref. 
33
 0.1071 0.9973 / 4.78 E-07 16.79 

Model proposed in Ref. 
31
 0.1051 0.9975 0.0107 4.52 E-07 21.76 

Model proposed in this work 0.1001 0.9982 0.0103 3.67 E-07 6.78 

In terms of the accuracy and corrections, the CEAPSO KHM RBF ANN model 

proposed in this article is slightly better and has the lowest deviations than the other 

models. In terms of the convergence speed, the CEAPSO KHM RBF ANN model is 

faster, it achieves stable convergence upon the 100th iteration approximately, while the 
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CSPSO-C  RBF ANN 34, CSPSO-FC  RBF ANN 33 and CSPSO KHM RBF ANN 31 need 

approximately 500, 380 and 300, respectively. Importantly, the calculation time is much 

shorter, about one third of the others. It attributes the shorter calculation time to the 

training algorithm of the model adopts APSO with rapid convergence speed.  

Overall, we can see that both the convergence speed and corrections of the 

CEAPSO KHM RBF ANN model are superior to the others; the performance of the 

model in the current work is better and has obvious advantages in predication accuracy 

and correlation compared with that in their recently published article. 

3.3 Discussion and analysis 

The results presented in this work show that the proposed model is reliable in 

predicted the solubility of gas in polymer, has presented its good performance of 

solubility prediction, and achieves satisfying effect in accuracy, execution time and 

correlation. It can be known from the comparison with other models that the combination 

property of the model in this article has significant advantages. The reasons for its 

excellent performance mainly contain two aspects. On the one hand, the training 

algorithm of the model adopts APSO with rapid convergence speed, and it also 

improves the problem of prematurity through chaotic disturbance; on the other hand, the 

KHM clustering method has made the model training more targeted and purposeful, the 

center and spread of radial basis function are more reasonable. 

In many gas/polymer system, the solubility increases almost linearly with pressure. 

Take 4 polymers as an example, consisting of PBSA, PP, PVAc and CPEs. Figures 8-11 

show the correlations between predicted solubility and experimental data for 

CO2/polymer systems at various pressures and temperatures.  
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Figure 8. Corrections between predicted values and experimental data (1) 

 

Figure 9. Corrections between predicted values and experimental data (2) 
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Figure 10. Corrections between predicted values and experimental data (3) 

 

Figure 11. Corrections between predicted values and experimental data (4) 

These figures show that the solubility of CO2 in most polymers increases with 

increasing pressure and decreasing temperature, it is consistent with the tendency of 

the solubility experiment. This tendency can be explained by the plasticizing effect. The 

mobility increases with the increasing pressure because the molecules are forced 
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between the polymers chains lead to expanding the space between molecules. Once 

the pressure is further raised, more gas molecules will be absorbed with the increased 

mobility of the chains. At the same time, the gas density descends with the increasing 

temperature, which can be correlated with the lower solubility. 

4. Conclusion  

In order to show the applicability of the proposed model for solubility prediction of 

carbon dioxide in polymers, a hybrid model called CEAPSO KHM RBF ANN was 

developed in this work. Through test and comparison, the model’s advancement has 

been proved, and a reliable prediction technique has been provided for research on 

solubility. The model in this article not only can be used in field of prediction, but can 

also be expanded to wider application and research field, such as thermodynamics, self-

assembly of high polymer materials, kinetic analysis and so forth, so as to analyze 

chemical characteristics, physical characteristics, mechanical property, rheological 

properties and other features of various materials. These results in this work should 

contribute to the enlargement of the database necessary for understanding the phase 

behaviour of the gas/polymer system, and for the design and optimization of processing 

techniques.  

ABBREVIATIONS 

RBF  Radial Basis Function 

ANN  Artificial Neural Network 

PSO  Particle Swarm Optimization 

APSO  Accelerated particle swarm optimization 

CEAPSO  Chaos-enhanced accelerated particle swarm optimization 

KHM   K-harmonic means 
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PP  Polypropylene. 

PS  Polystyrene. 

PVAc   Poly(vinyl acetate) 

CPEs   Carboxylated polyesters 

PBSA   Poly(butylene succinate-co-adipate) 

ARD   Average Relative Deviation 

R2  Squared Correlation Coefficient 

MSE  Mean Square Error 

RMSEP  Root Mean Square Error of Prediction 
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Figure and table Caption 

Figure 1. Results of topology studies for optimal ANN configuration 

Figure 2. Predicted data versus experimental data in training set.  

Figure 3. Predicted data versus experimental data in validation set. 

Figure 4. Predicted data versus experimental data in testing set (1). 

Figure 5. Predicted data versus experimental data in testing set (2). 

Figure 6. Curve of MSE VS. Epoch 

Figure 7. Predicted data VS. experimental data in the testing database 

Figure 8. Corrections between predicted values and experimental data (1) 

Figure 9. Corrections between predicted values and experimental data (2) 

Figure 10. Corrections between predicted values and experimental data (3) 

Figure 11. Corrections between predicted values and experimental data (4) 

Table 1. Experimental data in this work 

Table 2. Values of ARD, R2 and RMSEP in the testing set 

Table 3. Statistical parameters of the comparison models 
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