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 12 

Terahertz (THz) imaging was employed to develop a novel method for discriminating wheat of 13 

varying states of moldiness. Spectral data, in the range of 0.2–1.6 THz, were extracted from 14 

regions of interest (ROIs) in the THz images. Principal component analysis (PCA) was used to 15 

evaluate the spectral data and determine the cluster trend. Six optimal frequencies were selected 16 

by implementing PCA directly for each image’s ROI. Classification models for moldy wheat 17 

identification were established using the support vector machine (SVM) method, a partial 18 

least-squares regression analysis, and the back propagation neural network method. The models 19 

developed from these methods were based on the full and optimal frequencies, using the top 20 

three principal components as input variables. The PCA-SVM method achieved a prediction 21 

accuracy of over 95%, and was implemented at every pixel in the images to visually 22 

demonstrate the moldy wheat classification method. Our results indicate that THz imaging 23 

combined with chemometric algorithms is efficient and practical for the discrimination of 24 

moldy wheat. 25 
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1. Introduction 29 

 Wheat is a primary food crop worldwide, and contains high amounts of carbohydrates, 30 

proteins, fat, and vitamins (Oladunmoye, Akinoso, & Olapade, 2010). Mildew such as 31 

Aflatoxinand and Aspergillusniger are prevalent throughout all stages of wheat growth and 32 

production. When improperly stored and processed, these mildews pose a potential threat to 33 

humans and fowls (Neethirajan, Karunakaran, Jayas, & White, 2007). Recently, food quality 34 

and safety assessment have increased within the food industry. Conventional moldy grain 35 

detection methods, such as naked-eye observations, microscope inspection, liquid 36 

chromatography, and enzyme-linked immunosorbent assays, are time-consuming and 37 

labor-intensive (Turner, Subrahmanyam, & Piletsky, 2009). 38 

 To satisfy the demand for high-quality consumer products, extensive studies into grain 39 

quality via nondestructive rapid evaluations have been performed. Wang et al. (Wang, Liu, 40 

Yu, Wu & He, 2011) presented a new approach for non-invasive classification of raisins by 41 

using computer vision techniques. Eifler et al. (Eifler, Martinelli, Santonico, Capuano, Schild, 42 

& Di Natale, 2011) used an electronic nose to differentiate between infected and non-infected 43 

wheat grains. Arngren et al. (Arngren, Hansen, Eriksen, Larsen, &Larsen, 2011) used 44 

near-infrared hyperspectral imaging combined with nonlinear neural networks to identify 45 

early-stage pregermination in barley grains. ElMasry et al. (ElMasry, Wang, ElSayed, Ngadi, 46 

2007) proposed a novel tool for nondestructive determination of moisture content, total soluble 47 

solids, and acidity in strawberry using NIR spectroscopy. However, these measurement 48 

techniques do not probe the far-infrared spectral region, which contains a wealth of physical 49 
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and chemical information. 50 

Terahertz (THz) radiation (with frequencies from 0.3 to 10 THz and wavelengths from 3.3 51 

to 333 cm
-1

 ) occupies the region between the microwave and infrared bands; it can be used for 52 

non-destructive and non-invasive analyses, and possesses attractive features such as extremely 53 

low-energy levels, broad spectral bandwidth, transparency, and good penetration through 54 

various materials (Ferguson, & Zhang, 2002; Tonouchi, 2007). THz spectroscopy and imaging 55 

are rapidly becoming novel techniques in the field of optics research. The new techniques are 56 

widely used as solutions in art conservation (Fukunaga, & Hosako, 2010), security problems 57 

(Melinger, Laman, & Grischkowsky, 2008), biomedical applications (Oh. et. al., 2014; Siegel, 58 

2004), agricultural quality control (Gowen, O'Sullivan, & O'Donnell, 2012; Ge, Jiang, Xu, Lian, 59 

Zhang, & Xia, 2014), and other fields (Guillet. et. al., 2014). THz imaging is performed both by 60 

the transmission and reflection of THz waves. In reflectance imaging, THz waves reflect not 61 

only from the surface of samples, but also from interfaces present in the samples within the 62 

penetration depth of the radiation (Safrai, Ben Ishai, Polsman, Einav, & Feldman, 2014). Thus, 63 

both surface and depth information can be obtained from the timing and amplitude of the 64 

reflected waves. Time- and frequency-domain structural images can be acquired from detected 65 

THz waves associated with various parameters at each pixel in the measured sample area (Reid, 66 

Pickwell-MacPherson, Laufer, Gibson, Hebden, & Wallace, 2010). Owing to the absorption, 67 

reflection, scattering, and phase-shifting of the imaged material, measured parameters can 68 

change due to differing wave delay and attenuation.  69 

The aim of this study was to evaluate the validity and feasibility of identifying different 70 
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moldy states of wheat using THz imaging and multivariate data analysis methods. THz spectra 71 

of wheat grains with different moldy statuses were extracted in the range of 0.2–1.6 THz from 72 

regions of interest (ROIs) in each THz image. Principal component analysis (PCA) was used to 73 

explore features of the spectral data and select the optimal frequencies. Support vector machine 74 

(SVM), partial least-squares regression (PLSR), and back propagation neural network (BPNN) 75 

models were established based on the full frequencies and optimal frequencies for 76 

discriminating between the four stages of moldy wheat. Finally, THz images of wheat with 77 

different moldy states were investigated using the optimal classification method (i.e., 78 

PCA-SVM). 79 

2. Materials and methods 80 

2.1 Experimental setup 81 

 A standard THz-TDS laboratory setup, using reflection geometry as developed by Zomega 82 

Terahertz Corporation in USA, was used in our experiment. A schematic of the THz-TDS 83 

reflection imaging system is shown in Fig. 1. The THz imaging system employed an externally 84 

pulsed femtosecond laser Ti-sapphire with a pulse width, central wavelength, and repetition 85 

frequency of 100 fs, 800 nm, and 80 MHz, respectively. The beam produced by the laser was 86 

split into a pump and a probe using a polarizing beam splitter. The pump beam was irradiated 87 

on a photoconductive dipole antenna fabricated on a LT-GaAs wafer for generation of the THz 88 

waves, and the probe beam was focused onto an electro-optic ZnTe crystal for detection of the 89 

THz waves (Taylor. et. al., 2008). The THz pulses emitted by the generator were focused on the 90 
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sample via two metal parabolic mirrors, and the THz pulses reflected by the sample via two 91 

additional parabolic mirrors were guided to the detection antenna. The system measures 92 

far-infrared spectra between 0.1 THz and 3.0 THz. The sample was scanned by moving the 93 

two-dimensional motorized stage, and the obtained image data were saved and analyzed using a 94 

computer. Details about the principles of the system are explained elsewhere (Kim. et. al., 95 

2012). The experiment was performed at room temperature, and the humidity was maintained at 96 

approximately zero by purging the system with dry nitrogen to avoid absorption of vapor. 97 

2.2 Sample preparation 98 

 Wheat used in the experiment was collected from the School of Food Science and 99 

Technology, Henan University of Technology, Zhengzhou, China. The wheat was of the same 100 

variety and produced in 2013. Wheat grains were moistened at a humidity of 28% and were 101 

evenly distributed in a circular Petri dish. The Petri dish was put into an incubator box that was 102 

maintained at a constant temperature of 25°C, where it remained for eight days. Wheat with 103 

different stages of mold growth (none, slight, moderate, and serious) where then selected (as 104 

shown in Fig.2) and individually imaged by the THz imaging system with a spatial resolution of 105 

0.25 mm. For each degree of mold contamination, 50 samples were used without further 106 

processing. 107 

2.3 Multivariate Analysis Methods 108 

2.3.1 Principal component analysis 109 

 PCA (Lin, Zhao, Sun, Chen, & Zhou, 2011; Noori, Sabahi, Karbassi, Baghvand, & Zadeh, 110 
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2010) is a multivariate statistical and dimensional reduction method that can be used to reduce 111 

the complexity of input variables when dealing with large datasets. In this method, a large 112 

volume of data is transformed into a small number of principal components (PCs). PCs can be 113 

expressed as: 114 

                        1 1 2 2i i i in nZ a X a X a X= + + +L
         

            (1) 115 

where iZ represents the PCs, ia represents the related eigenvectors, and iX represents the input 116 

variables. This information can be acquired by solving following equation. 117 

0R Iλ− =                                 (2) 118 

where R is the variance-covariance matrix, I is the unit matrix, and λ is the eigenvector.  119 

2.3.2 Support vector machines 120 

 SVM is a widely used, supervised statistical learning method for analyzing data and 121 

recognizing patterns (He, Yang, & Xie, 2013; He, Wu, & Sun, 2014). SVM demonstrates 122 

advantage over other methods when dealing with small samples, and high-dimensional and 123 

non-linear data. In the multi-class SVM method, ( 1) / 2k k − classifiers are constructed, where 124 

k  is the class number of the data. The following two-class classification problem was 125 

implemented by training the ith  and  jth data classes: 126 
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where w  and b define the optimal hyperplane, ξ represents the slack variable, c is the 129 

penalty factor, and ( )xφ is the sample set. Selection of the kernel function in SVM models 130 

significantly affects model performance. In this paper, the commonly used radial bias function 131 

(RBF) 

2

2
( , ) exp( )

i i

i i

x y
k x y

γ

−
= − was used. The adjustable kernel function parameter C controls 132 

the trade-off between the minimum model complexity and minimum training error, while γ133 

represents the degree of generalization and the width of the kernel function. A grid-search 134 

procedure was employed to find the optimal parameters of the model (Maali, & Al-Jumaily, 135 

2013). 136 

 The root mean square error (RMSE) was used to evaluate the performance of the 137 

established model (Zhang. et. al., 2008). The RMSE is calculated as 138 

2

1

( )
N

pre

i i

iRMSE

y y

N

==

−∑

                             (5)
 139 

where iy represents actual value of the ith sample in the data set, 
pre

iy is the predicted weight 140 

ratio value of the ith sample in the developed model, and N is the sample size. 141 

2.3.3 Partial least squares regression 142 

 PLSR is one of most robust and reliable multivariate-data analysis methods, and is 143 

particularly suitable for use in situations where there is a linear relation between the spectra and 144 

properties of the considered objects (Brereton, 2000). A PLSR analysis was performed to 145 

establish a regression model for the prediction of target chemical concentrations (variable 146 

matrix Y) based on the corresponding spectra data (variable matrix X). The underlying PLSR 147 
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model is expressed as: 148 

                          

T

T

X TP E

Y UQ F

= +

= +
     

                             (6) 149 

where T  and U are the feature matrices of the variable matrix of X  and Y respectively, P  150 

and Q  represent the orthogonal loading matrices, and E and F are the error terms. 151 

2.3.4 Back propagation neural network 152 

 BPNN is a type of nonlinear multi-layer network, and it has been used extensively to solve a 153 

variety of classification and regression problems (Dubey, Bhagwat, Shouche, & Sainis, 2006). 154 

A BPNN is based on an algorithm that rectifies the weights within each layer in proportion to 155 

the error obtained from the previous layer. In this study, an input layer, a hidden layer, and an 156 

output layer were used. By optimizing the hidden nodes from the input variables by “trial and 157 

error,” BPNN was used to classify samples into predefined varieties, and a new output layer 158 

that provided a more precise discrimination of a sample’s variety was obtained. Details of the 159 

BPNN method are discussed extensively elsewhere (Marengo, Bobba, Robotti, & Lenti, 2004). 160 

The whole experiment procedure by using THz imaging technique, as illustrated in Fig. 3, is 161 

made from three steps to prepare the data structure for mold statuses wheat identification. 162 

3 Results and Discussion 163 

3.1 Spectral Analysis 164 

3.1.1 Moldy wheat spectra 165 

 After THz images of wheat with different stages of mold growth were acquired, the only 166 

wheat grain areas are segmented as the ROIs to exclude the interfering information origin from 167 
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the background in each image. The spectra of each pixel within the ROI were extracted and 168 

averaged at each frequency to generate a mean value, which is then expressed as the ROI 169 

spectrum. The average frequency domain spectra of each degree of mold growth, in the range 170 

of 0.1–2.0 THz, are shown in Fig. 4. It is seen that an intense trough is present at around 1.67 171 

THz, which is related to the absorption of water within the grain. And the spectral curves of 172 

these four mold statuses wheat are quite similar at the beginning. Hence, spectral frequency 173 

range from 0.2-1.6 THz is employed for further identification study. Meanwhile, the general 174 

trends of the four spectral curves show no obvious differences, which indicated that mold 175 

statuses of the wheat could not be identified from spectral curves directly.  176 

To solve this problem, more sophisticated computational analysis methods were employed 177 

to differentiate between the mold statuses of the wheat. Therefore, a dataset with 512 spectral 178 

features and 200 wheat samples was selected in order to construct a classification model to 179 

discriminate between the different degrees of moldiness. A dataset consisting of 200 samples 180 

was randomly split into a calibration set (120 samples) and a prediction set (80 samples). The 181 

classification errors would clearly decrease when training more samples. Hence each wheat 182 

sample leaves fewer samples to analyze and obtains higher prediction accuracy. But when more 183 

training number, redundant information (existed in the large number of input variable) would 184 

affect the robust and ability of the classification models. Meanwhile, the less input simplify the 185 

classification models and accelerate the calculated speed.   186 
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3.1.2 PCA Analysis 187 

 PCA was performed on all of the spectral data (with a frequency range of 0.2–1.6 THz) 188 

obtained from the normal, slightly moldy, moderately moldy, and seriously moldy wheat 189 

samples to reduce the high dimensionality of the problem and qualitatively identify the samples. 190 

The explained variance rate for the top four PCs extracted from the original THz spectra data 191 

are 93.22%, 3.61%, 1.24%, and 0.21%, respectively. The top four PCs explain 98.25% of the 192 

total contribution to the original data. It is shown that the cumulative reliabilities of the top four 193 

PCs represent 98% of the total information to the original data. Thus, they contain the 194 

maximum information across all the wheat samples and reduce the dimensions from 512 195 

spectral measurements for classification of different mold statuses of wheat to only three 196 

components. Figure 5 shows the three-dimensional scores plotted for the first three PCs for all 197 

of the samples. As we can see, the different mold statuses are distributed separately in the 198 

three-dimensional area. However, some sample points near the boundaries of normal and 199 

slightly moldy wheat are mixed although their sample points are clustered. Therefore, it is 200 

necessary to employ an adequate classification model based on the PCA process for further 201 

discrimination. 202 

3.1.3Optimal Frequency Selection 203 

 A PCA was used for each ROI image to select the optimal frequencies. PC loadings were 204 

employed to identify sensitive frequencies that were highly correlated with each PC. The 205 

x-loading weights of the first four PCs were used to select each frequency in the full spectral 206 
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range. Strong peaks and troughs for the top four PCs were selected as the optimum frequencies. 207 

As seen in Fig. 6, six frequencies with the values of 0.32 THz, 0.59 THz, 0.87 THz, 1.0 THz, 208 

1.29 THz, and 1.58 THz were selected as discriminators of different moldy statuses. The 209 

reduced number of frequencies decreased the time to acquire and process each image.   210 

3.2 Multivariate Data Analysis  211 

3.2.1 Multivariate Data Analysis Based on Full spectra 212 

 SVM, PLSR, and BPNN classification models were used to predict the degree of moldiness 213 

using the entire spectral dataset. Within the SVM models, the optimization values for the 214 

regularization parameter γ and the RBF kernel function parameterC  were selected when the 215 

smallest RMSE was obtained. The optimal parameters γ and C were set at 3.6 and 1.8, 216 

respectively, which were determined by using the grid search algorithm. For the BPNN model, 217 

after several attempts to optimize the parameters, the learning rate factor, momentum factor, 218 

initial weight, permitted training error, and maximal training times were set at 0.1, 0.1, 0.6, 219 

0.00001, and 1,000, respectively. 220 

 The SVM, PLSR, and BPNN models were constructed using the top four PCs as inputs. 221 

The discrimination results of normal, slightly moldy, moderately moldy, and seriously moldy 222 

wheat in the calibration set and prediction set using these models are presented in Table 1.  223 

Table 1 Results of the classification models based on full spectra (Cal. represents the calibration 224 

set of the samples and Pre. represents the prediction set of the samples.) 225 

Model 

Accuracy per type (%) Overall 

prediction               Normal Slightly moldy Moderately Seriously 
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moldy moldy accuracy 

(%) Cal. Pre. Cal. Pre. Cal. Pre. Cal. Pre. 

PCA-SVM 100% 100% 100% 86.67% 100% 84% 100% 100% 96.5% 

PCA-PLSR 100% 95% 91.43% 86.67% 88% 84% 100% 95% 93% 

PCA-BPNN 93.33% 90% 88.57% 80% 84% 76% 93.33% 90% 87% 

 As the table shows, the performance of the SVM model was, in general, better than those of 226 

the PLSR and BPNN models, and achieved a prediction accuracy of 96.5%. The SVM model 227 

achieved a classification rate of the normal and serious moldy statuses of 100% in both the 228 

calibration and prediction sets; however, the classification rates of the prediction sets of slightly 229 

moldy and seriously moldy wheat were relatively lower. Moreover, the PLSR and BPNN 230 

models misclassified some statuses, with an overall prediction accuracy of 93% and 87%, 231 

respectively. The results indicate that PLSR and SVM models can be used as effective methods 232 

for moldy wheat identification, with the SVM model considered the optimum method. 233 

3.2.2 Multivariate Data Analysis Based on Optimal frequencies  234 

 Although the classification models have good moldy wheat prediction performances, the 235 

large number of frequency variables resulted in complicated and time-consuming data 236 

processing. Instead, the use of optimal-frequency selection can reduce the complexity and time 237 

required for model establishment. As a consequence of optimal frequency selection, the top four 238 

PCs and the selected six frequencies (0.32 THz, 0.59 THz, 0.87 THz, 1.0 THz, 1.29 THz, and 239 

1.58 THz) were used as inputs to the SVM, PLSR, and BPNN models. The performance of the 240 
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optimized models based only on the optimal frequencies is presented in Table 2. 241 

Table 2 Results of the classification models based on their optimal spectra (Cal. represents the 242 

calibration set of the samples and Pre. represents the prediction set of the samples.) 243 

Model 

Accuracy per type (%) Overall 

prediction               

accuracy 

(%) 

Normal Slightly moldy 

Moderately 

moldy 

Seriously 

moldy 

Cal. Pre. Cal. Pre. Cal. Pre. Cal. Pre. 

PCA-SVM 100% 100% 97.14% 86.67% 92% 84% 100% 95% 95% 

PCA-PLSR 100% 95% 91.43% 80% 92% 84% 96.67% 95% 92.5% 

PCA-BPNN 93.33% 85% 88.57% 73.33% 84% 76% 93.33% 90% 86% 

 As shown in Table 2, the BPNN model had the worst prediction result, with a classification 244 

accuracy of 86%. The classification rates of the SVM and PLSR models in both the calibration 245 

and the prediction sets were all over 80%. The SVM model obtained the highest overall 246 

prediction accuracy, 95%, and a classification accuracy of 100% for normal and seriously 247 

moldy wheat in the calibration set. The slightly moldy and moderately moldy wheat showed 248 

poorer prediction accuracy in all models, compare with the normal wheat and seriously moldy 249 

wheat. 250 

 The plots of the actual values compared to the predicted values using the PCA-SVM 251 

models based on the full spectra and selected optimal frequencies are shown Fig. 7. A threshold 252 

value (dummy variable ±0.5) was set to define the class limits. Subintervals from 0.5–1.5, 1.5–253 

2.5, 2.5–3.5, and 3.5–4.5 represent normal, slightly moldy, moderately moldy, and seriously 254 
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moldy wheat samples, respectively. It can be seen in Figs. 6 (a) and (b) that a similar 255 

distribution of points between the full spectrum and the optimal frequencies was obtained. The 256 

experimental results demonstrate the feasibility of using selected optimal frequencies for the 257 

discrimination of wheat grains with different mold statuses. 258 

3.3 THz Images of Moldy Wheat  259 

 The implementation of a visualization process is helpful for determining the degree of 260 

moldiness of a wheat grain, which can be difficult when observed by just the naked eye. In this 261 

study, the PCA-SVM model acquired the best classification accuracy and therefore was used to 262 

generate THz moldy wheat images. Training of the SVM model was done using the optimal 263 

frequencies selected by the PCA. The reduced spectral data were then used as input to the SVM 264 

model. The output value of the model was the reflectivity of each pixel, which corresponds to a 265 

different component within each wheat grain. When the values of all pixels within the wheat 266 

grain were calculated, an image was generated based on the spatial positions of each pixel. 267 

 Figure 8 shows the THz images of normal, slightly moldy, moderately moldy, and seriously 268 

moldy wheat. Regions (1), (2), and (3) represent the embryo of each wheat grain. Except for the 269 

embryo structure, the inner structures of the wheat sample in Fig. 7(a) and 7(b) are evenly 270 

distributed. However, in Fig. 7(b) the embryo and edge structure have changed, indicating that 271 

the wheat is in its moldy infancy, while it is seen that the wheat in Fig. 7(a) is not contaminated 272 

with mold. In Fig. 7(c), the embryo area and small range of inner structures are damaged, 273 

indicating that the sample has a moderate degree of mold growth. Finally, in 7(d), the red area 274 
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(5) indicates that the inner structures of this wheat sample are totally damaged, and the 275 

embryonic area is absent. 276 

3.4 Discussion 277 

 The excellent discrimination results demonstrate that the THz reflection imaging technique 278 

combined with PCA feature extraction and a SVM classification model can be used to identify 279 

wheat grains with different mold statuses. Six optical frequencies (0.32 THz, 0.59 THz, 0.87 280 

THz, 1.0 THz, 1.29 THz, and 1.58 THz) were selected according to the top four PC loading 281 

weights. The overall prediction accuracy of the PCA-SVM model based on the selected optimal 282 

frequencies was 95%, which is higher than that achieved with the PCA-PLS and PCA-BPNN 283 

models. The optimal frequency-based models used six frequencies instead of 159 frequencies, 284 

indicating a decrease of 96.49%. The performance of each classification model showed only a 285 

slight decline from full spectra to optimal frequencies, implying that the optimal frequencies 286 

were effective, and as such, we encourage further study of them. Furthermore, the fewer input 287 

variables accelerated the data calculation speed and simplified the model complexity. In further 288 

studies, different frequency selection methods and different classification models will be 289 

applied to improve the prediction accuracy and explore the optimal frequency for moldy wheat 290 

identification. 291 

 Additionally, the PCA-SVM model was used to classify the THz image data and determine 292 

the degree of mold contamination as normal, slightly moldy, moderately moldy, and seriously 293 

moldy. The THz images provided information regarding the spatial distribution of different 294 
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components within the wheat grain, and were helpful for detecting changes in a grain’s inner 295 

structure due to varying mold status. Our results show that THz imaging can be used to 296 

recognize the wheat when it is in its early moldy stage, which cannot be done with conventional 297 

imaging and spectroscopy, and thus provides an early warning technique for mold 298 

contamination. The THz imaging technique has the potential to be an effective tool for 299 

agriculture quality and safety control. Therefore, it is essential to expand the sample variety 300 

number and optimize the image classification algorithm in further studies to assist 301 

in discriminating the multiple statuses of wheat mold en masse and for practical applications. 302 

4 Conclusion 303 

 THz imaging combined with multivariate data analyses was employed to discriminate 304 

wheat grains with different mold statuses. Spectral information was extracted from the THz 305 

images, in the range of 0.2–1.6 THz, for each wheat sample. The feature data of each spectrum 306 

were analyzed and six optimal frequencies were selected using PCA. In addition, the SVM, 307 

PLSR, and BPNN models were constructed based on the full spectra and optimal frequencies to 308 

help discriminate between different moldy wheat samples. The prediction accuracies of the full 309 

spectra were similar to those obtained using only the optimal frequencies. The PCA-SVM 310 

model was considered to be the optimal model, and the prediction accuracies reached 95%. The 311 

PCA-SVM model was also used on THz images as a visual demonstration of the classification 312 

technique. Our experimental results demonstrate that THz imaging is a potential tool for the 313 

classification of moldy wheat. 314 
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Figure captions 401 

Fig.1 THz reflectance imaging experimental setup. 402 

Fig.2 Wheat samples with different stages of mold contamination: (a) normal; (b) slightly; (c) 403 

moderately; (d) seriously. 404 

Fig. 3 Flowchart of the procedure of discrimination moldy wheat by using THz imaging: (a) 405 

Imaging pre-processing; (b) Spectral analysis; (c) Imaging visualization.   406 

Fig. 4 Frequency-domain THz spectra of the moldy wheat samples 407 

Fig.5 Scores scatter plot of PC1, PC2, and PC3 for each moldy wheat sample 408 

Fig.6 Loading weights of the top four PCs used for selecting the optimal frequencies 409 

Fig.7 Scatter plots of the actual value versus the predicted value using the PCA-SVM model 410 

based on (a) the full spectrum and (b) the optimal frequencies for different moldy wheat samples. 411 

Fig. 8 THz images of four wheat grains with different mold statuses: (a) normal; (b) slightly 412 

moldy; (c) moderately moldy; (d) seriously moldy. 413 

 414 

 415 

 416 
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Fig. 2 

(a)  (b) (c) (d) 
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Fig. 3 

Wheat samples 

n=200

THz imaging 

system (0.1-2 THz)

Image acquisitionROIs identificationSpectral extraction

Classification models

(full spectra)

Feature extraction

PCA 

Optimal frequency 

selection

New classification models

(optimal frequencies)

Excellent fitted model
Images at optimal 

frequencies

Visualization of 

moldy distrbution

(a)

(b)

(c)

 

  

Page 27 of 32 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 

(a)  (b)  (c)  (d) 
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