
www.rsc.org/advances

RSC Advances

This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. This Accepted Manuscript will be replaced by the edited, 
formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 



 1

Two-dimensional Asynchronous spectrum with auxiliary cross 

peaks in probing intermolecular interactions 

 

Xiaopei Li
 a, b, c

, Anqi He
b, d

, Kun Huang
a,*

, Huizhou Liu
a
, Ying Zhao

e
, 

Yongju Wei
f
, Yizhuang Xu

b, d*
, Isao Noda

b,g
, Jinguang Wu

 b
 

 

a 
Institute of Process Engineering, Chinese Academy of Sciences, 

100190, P. R. China 
b 

Beijing National Laboratory for Molecular Sciences, State Key 

Laboratory for Rare Earth Materials Chemistry and Applications, 

College of Chemistry and Molecular Engineering, Peking University, 

Beijing 100871, P. R. China 
c 

Dalian Polytechnic University, Dalian 116034, P. R. China 
d 

Ninhai Doubly Advanced Martial Co, Ltd., Ninhai, 315602, China 
e 

Institute of Chemistry, Chinese Academy of Sciences, 100190, P. R. 

China 
f 

College of Chemistry and Material Science, Hebei Normal University, 

Shijiazhuang, 050016, P.R. China 
g 

Department of Materials Science and Engineering, University of 

Delaware, Newark, Delaware 19716, United States 

 

 

 

 

 

 

  

Corresponding Authors: xyz@pku.edu.cn, khuang@ipe.ac.cn 

 

Page 1 of 43 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 2

ABSTRACT 

A new approach called “asynchronous spectrum with auxiliary peaks 

(ASAP)” is proposed for generating 2D asynchronous spectrum to 

investigate intermolecular interaction between two solutes (P and Q) 

dissolved in the same solutions. In the ASAP approach, a virtual substance 

S with an isolated peak assumed to be at vS is introduced, while the 

characteristic peaks of P and Q are actually observed at vP and vQ. The 

concentrations series of P, Q and S are specifically designed so that spectral 

portion that has nothing to do with the intermolecular interaction between P 

and Q is completely removed from the 2D asynchronous spectrum. 

Auxiliary cross peaks around (vP, vS) and (vQ, vS) can be used to reveal 

spectral variation caused by intermolecular interaction, which cannot be 

observed on conventional cross peaks appearing around the spectral 

coordinates (vP, vP), (vP, vQ), (vQ, vP), (vQ, vQ). For example, variation of 

absorptivity of P caused by intermolecular interaction between P and Q can 

be probed from the auxiliary cross peaks around (vP, vS) when Q does not 

even have any characteristic peak in the observed spectral range.  

Keywords: Orthogonal, Auxiliary cross peaks, Asynchronous spectrum, 

Intermolecular interaction 
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1. Introduction 

Intermolecular interaction occurring ubiquitously in nature, is of the 

utmost importance with regard to basic science as well as applications in 

organic, biological, medicinal and materials chemistry 
[1-10]

. Investigation 

on intermolecular interaction becomes one of the most active topics in the 

past two decades 
[11-22]

. For example, non-covalent interactions are at the 

root of the whole field of supra-molecular chemistry that leads to the 

formation of highly complex and fascinating structures 
[23]

. In catalysis, the 

impact of weak interaction between ligand and substrate on controlling the 

reactivity has been recognized 
[24]

. In the field of pharmaceuticals, a key 

step is to rationalize and optimize the interactions between a potential drug 

and a relevant receptor 
[25]

.  In protein chemistry, exploration and 

comprehension of noncovalent bond interactions is a key to predict the 

pathways of protein folding and quantify the relative thermodynamic 

stability of intermediate and final states 
[26]

. In comparison to a plethora of 

theoretical calculations of intermolecular interactions, experimental studies 

on these intriguing intermolecular interactions are still quite limited.  

Two-dimensional (2D) correlation spectroscopy is a powerful 

spectroscopic technique proposed by Noda in the late 1980s
[27-30]

 and has 

attracted extensive application in a variety of research fields for the past 25 

years
[31-47]

. In 2D correlation spectroscopy, some forms of perturbation are 

applied to the sample, which imparts variations of spectral signals (called 

dynamic spectra). Based on cross-correlation analysis, the dynamic spectra 
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are then transformed into a spectrum with two independent spectral 

variable axes (2D correlation spectrum). In general, 2D correlation spectra 

are classified into two types: synchronous correlation spectrum and 

asynchronous correlation spectrum obtained by using different 

cross-correlation methods. Owing to the enhancement of the spectral 

resolution by spreading the peaks over the second dimension, the subtle 

changes of the sample, not readily seen in the original data set, can be 

visualized in terms of cross peaks in 2D correlation spectra.  

One of the most important features of 2D correlation spectra is that 

cross peaks in 2D correlation spectra can potentially be used to characterize 

intermolecular interactions 
[27, 28]

. However, this approach suffers from the 

following problem: interfering cross peaks due to other sources of 

correlation may also arise even if there are no intermolecular interactions. 

This makes the mere appearance of cross peaks in 2D correlation spectra 

difficult to be used as a reliable tool to characterize intermolecular 

interactions. 

To address the problem, we proposed orthogonal sample design 

scheme (OSD) approach in our previous work 
[48-53]

. The brief description 

of the OSD approach by Noda in his recent review 
[43]

 is given as follows: 

The basic concept of OSD is to use a well-designed set of concentration 

series for two different constituents in solution mixtures, such that patterns 

of concentration variations of the two species will become mathematically 

orthogonal to each other. The imposed orthogonality will break down when 
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the apparent deviation from the Beers–Lambert law, often associated with 

the presence of specific intermolecular interactions, is observed. Thus, the 

OSD technique becomes a very sensitive probe for the possible presence of 

specific molecular interactions. It should also be pointed out that OSD may 

be viewed as a form of multiple perturbation 2D correlation method, since 

two separate concentration variations are simultaneously imposed as 

perturbations. The unique feature of OSD is to proactively design the 

selective perturbation conditions to maximize the information content of 

the resulting 2D correlation spectra.  

Following this original idea, we have introduced asynchronous 

orthogonal sample design (AOSD)
 [54-56]

, double orthogonal sample design 

(DOSD) 
[57]

 and double asynchronous orthogonal sample design (DAOSD) 

[58-66] 
scheme to further enhance the ability of 2D correlation spectroscopy 

to reveal spectral variations on the characteristic peaks of solutes caused by 

intermolecular interactions. 

The chemical systems applicable for the OSD and related approaches 

are solutions containing two solutes (P and Q). The spectral coordinate of a 

characteristic peak from P is given by vP, and that from Q is vQ. 

Cross-peaks around (vP, vQ) in the 2D correlation spectrum are used to 

reflect intermolecular interactions between P and Q. That is to say, both P 

and Q possessing characteristic peaks is the prerequisite to apply OSD and 

relevant techniques to probe intermolecular interactions between P and Q. 

In many cases, however, only one solute possesses characteristic peak, 
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while another solute does not have any characteristic peak within the 

observed spectral region. Consequently, the OSD and related approaches 

cannot be used directly to probe intermolecular interactions between two 

solutes in these chemical systems.  

In our recent paper 
[67]

, we developed a new approach to probe 

intermolecular interactions between P and Q dissolved in the same 

solutions. In the system, only P possesses a characteristic peak at spectral 

coordinate vP, while Q does not possess any characteristic peak. Based on 

mathematical analysis, computer simulation and experiments on a real 

chemical system, we demonstrated that cross peaks around the spectral 

coordinate (vP, vP) in asynchronous correlation spectra can also be used to 

reflect intermolecular interactions between P and Q. Moreover, the patterns 

of cross peaks around the coordinate (vP, vP) can be used to reveal subtle 

variations on peak position and bandwidth of the characteristic peak of P 

caused by intermolecular interactions. Unfortunately, variations on 

absorptivity of the characteristic peak of P cannot be reflected by the 

pattern of cross peaks around the coordinate (vP, vP). 

The fact that the patterns of cross peaks fail to reflect variation of 

absorptivity brings about the following two problems: (1) The failure 

prevents us from obtaining comprehensive information on the 

spectroscopic behavior of the characteristic peak of P under intermolecular 

interactions. (2) The inability to reflect variation of absorptivity makes the 

approach under the risk of making incorrect conclusion concerning whether 
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intermolecular interactions occur or not in some special cases. If 

intermolecular interactions only bring about changes on the absorptivity of 

the characteristic peak of P, no cross peaks can be observed around the 

coordinate (vP, vP) in the asynchronous correlation spectrum.  

In order to solve this problem, a new method called “asynchronous 

spectrum with auxiliary peaks” (ASAP) approach, is proposed. In the 

ASAP approach, a virtual substance (denoted as S) with an isolated 

characteristic peak at coordinate vS is introduced. The cross peaks around 

(vS, vP) and (vS, vQ) are called auxiliary cross peaks. Mathematical analysis, 

computer simulation and experiment on a real chemical system were 

carried out. The results demonstrate that variations on absorptivity of 

characteristic peak of P can be reflected by the auxiliary cross peaks around 

(vS, vP) when only P possesses characteristic peak.  

2. Experimental  

2.1 Description of the model system used in the ASAP approach. 

The chemical system considered here consists of n solutions 

containing two solutes (P and Q). Variable concentrations are used as an 

external perturbation to construct 2D asynchronous correlation spectra. In 

addition, a virtual solute denoted as S is also introduced in association with 

each solution. The initial concentrations of P, Q and S are denoted as: 
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(init )

PC i , (init )

Q
Ci  and (init )

SC i  are the initial concentrations of P, Q and S in the 

i
th
 solution. 

When there are intermolecular interactions between P and Q, part of P 

undergoes subtle structural variation and converts to U and part of Q 

converts to V. This inter-conversion can be expressed by the following 

equilibrium where K is the equilibrium constant. The so-called solute S is a 

virtual substance, and it does not interact with either P or Q. 

P+Q U +V
K→←  (2) 

For the i
th
 solution, the corresponding spectrum is given by Eq. 3. 

P Q U V SP U VQ S

(eq) (eq) (eq) (eq) (eq)
A ( ) f ( )C f ( )C f ( )C +f ( )C f ( )Ci i i i i iν ν ν ν ν ν= + + +  (3) 

where v is the wavelength. fP(v), fQ(v), fU(v), fV(v) and fS(v) are the spectral 
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functions of P, Q, U. V and S. P
(eq)Ci , 

Q

(eq)C i , U
(eq)Ci , V

(eq)Ci  and
 

S
(eq)Ci are 

the equilibrium concentrations of P, Q, U, V and S in the i
th
 solution. The 

path length is set as 1 for convenience. 

For each of P, Q, U, V and S, the spectral function is a single peak 

function that is represented by a Gaussian function as shown in Eq. 4. 

2

2

( )
ln 2

( ) )f (

j

j

v v

w

j j j jv vg eε ε

−
−

= =  
(4) 

where j is the index of the five chemical species, i.e., P, Q, U, V and S. εj, vj, 

and wj are the corresponding molar absorptivity, peak position and 

bandwidth (half-width at half-height, HWHH) of the characteristic band of 

the j
th

 chemical species. gj(ν) is the peak shape function. 

Since S does not interact with other solutes, we have:  

S S
(init) (eq)C Ci i=  (5) 

Based on Eq. 2, the following two expressions can be obtained. 

P P U

(eq) (init) (eq)C C Ci i i= −  (6a) 

VQ Q

(eq) (init) (eq)C C Ci i i= −  (6b) 

Thus, Eq. 3 also can be expressed as: 

P U P

VQ Q S

P U

VQ S

(init) (eq)

(init) (eq) (init)

A ( ) f ( ) [f ( ) f ( )]

f ( ) +[ f ( ) f ( )] f ( )

C C

C C C

i i i

i i i

ν ν ν ν

ν ν ν ν

= + −

+ − +
 (7) 

After removing the average value over all solution samples at each 

wavelength, dynamic spectrum of the i
th
 solution can be expressed as Eq. 8. 

(init) (eq)
P P U P U

(init) (eq) (init)
V VQ Q Q S S

A ( ) f ( ) C [ f ( ) f ( )]C

f ( ) C +[ f ( ) f ( )]C f ( ) C

i i i

i i i

ν ν ν ν

ν ν ν ν

= + −

+ − +

% % %

% % %
 (8) 

where 
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(init) (init ) init (av)

P P PC C Ci i= −%  (9a) 

(init) (init ) init (av)

Q Q QC C Ci i= −%  (9b) 

(eq) (eq ) eq (av )

U U UC C Ci i= −%  (9c) 

(eq) ( eq ) eq ( av )

V V VC C Ci i= −%  (9d) 

(init) (init ) init (av )

S S SC C Ci i= −%  (9e) 

(init)

PC i% , (init)

QCi% and (init)

SCi%  are the dynamic initial concentrations of P, Q and S in 

the i
th
 solution. (eq )

UC i%  and (eq )
VC i%  are the dynamic equilibrium 

concentrations of U and V in the i
th
 solution.  

init (av) (init)

P P

1

1
C = C

n
i

in =
∑  (10a) 

init (av) (init)

Q Q

1

1
C = C

n
i

in =
∑  (10b) 

eq(av) (eq)

U U

1

1
C = C

n
i

in =
∑  (10c) 

eq(av) (eq)

V V

1

1
C = C

n
i

in =
∑  (10d) 

init (av) (init)

S S

1

1
C = C

n
i

in =
∑  (10e) 

Asynchronous correlation spectrum can be constructed based on Eq. 8 and 

Eq. 11 

T

1 2 1 2

1
( , ) ( ) ( )

1n
ν ν ν νΨ =

−
A NA
r r
% %  (11) 

where 1( )νA
r
%  and 2( )νA

r
%  are the dynamic spectral vector ( )νA

r
%  at the 

spectral coordination v1 and v2, respectively. 

In the computer simulation on the model system, the simulated 1D 

spectra were generated via a program written in our lab with the MATLAB 

Page 10 of 43RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 11

software. All asynchronous correlation spectra were calculated based on the 

algorithm by Noda
[30]

 using the software of MATLAB. 

 

2.2 Experiment on a real chemical system 

2.2.1. Materials 

Benzo-15-crown-5 (98%) was purchased from Aladdin. Lithium chloride 

and methanol were of AR grade and purchased from Beijing Chemical 

Company. 

2.2.2. Instrument 

FT-IR spectra were collected on a Thermo-Fischer Nicolet 6700 

spectrometer by using a pair of BaF2 cell with a fix spacing (100 µm). All 

the spectra were recorded at a resolution of 2 cm
-1

and 32 scans were 

co-added. 

3. Results and Discussion 

Scheme 1 illustrates the 1D spectra used in constructing asynchronous 

correlation spectrum. Since S is a virtual substance, the characteristic peak 

of S appears in gray lines. In principle, the molar absorptivity, peak 

position and bandwidth of the characteristic peak of S can be arbitrary. In 

experiment, the peak of S is not overlapped with the characteristic peaks of 

P and Q.      

The cross peaks in asynchronous correlation spectrum based on the 

ASAP approach can be divided into three spectral domains, as shown in 

Scheme 2. Domain I contains the cross peaks around the spectral 
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coordinates (νP, νP), (νQ, νQ), (νP, νQ) and (νQ, νP). These cross peaks are 

conventional cross peaks in asynchronous correlation spectrum. Cross 

peaks located around (νS, νP) and (νS, νQ) in domain II and cross peaks 

around (νP, νS) and (νQ, νS) in domain III are auxiliary cross peaks. 

According to the basic properties of asynchronous correlation spectra, the 

auxiliary cross peaks in domain III are anti-symmetric to these in domain II 

with respect to diagonal. Thus, we focus on the auxiliary cross peaks in 

domain II in the following part.  

3.1 Basic properties of the ASAP approach. 

It is assumed S does not interact with P or Q since it is a virtual 

substance. We try to use the auxiliary cross peaks around (vS, vP) and (vS, vQ) 

to reflect intermolecular interactions between P and Q. In an ideal 

asynchronous correlation spectrum generated by using the ASAP approach, 

the auxiliary cross peaks should possess the following two properties: (I): 

No auxiliary cross peak could be produced around (νS, νP) and (νS, νQ) 

when there are no intermolecular interactions between P and Q. (II): When 

intermolecular interactions occur between P and Q, auxiliary cross peaks 

around (νS, νP) or (νS, νQ) should be present. Moreover, the variations of 

spectral function caused by the conversion from P to U and from Q to V 

can be manifested by the auxiliary cross peaks around (νS, νP) or (νS, νQ). 

To achieve the above goals, mathematical analysis on the auxiliary 

cross peaks around (νS, νP) or (νS, νQ) is carried out. Herein, ν1 is in the 

spectral region of the characteristic peak of S, while ν2 is in the spectral 
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region of the characteristic peak of P, Q, U and V. Ψ(ν1, ν2) is calculated by 

combining Eq. 8 and Eq. 11 and its expression can be expressed as Eq. 12. 

The expressions of the twenty-five terms in Eq. 12 are given in the 

appendix.   

25

1 2 1 2
1

( , ) ,
1

R ( )
1 i

in
ν ν ν ν

=
Ψ =

− ∑  (12) 

Since the characteristic peak of S is intentionally set not to overlap with 

characteristic peaks of P, Q, U, V, we have: 

fP(ν1)=0 fQ(ν1)=0 fU(ν1)=0 fV(ν1)=0 fS(ν1)≠0 

fP(ν2)≠0 fQ(ν2)≠0 fU(ν2)≠0 fV(ν2)≠0 fS(ν2)=0 

(13) 

Based on Eq. 13, the values of R1~R20 and R25 in Eq. 12 are all zero, thus 

only four terms R21~ R24 are left. 

When there are no intermolecular interactions between P and Q, 

equilibrium concentrations of U and V which are the products of 

intermolecular interactions between P and Q, should be zero. Thus we 

have: 

eq
U

eq
V

0

0

=

=

C

C

r
%

r
%

 (14) 

According to Eq. 14, the value of R23 and R24 are zero when there are no 

intermolecular interactions between P and Q. 

23 S U P

24 S V Q

init T eq
U1 2 1 2 2 S

init T eq
V1 2 1 2 2 S

( ) f ( )[ f ( ) f ( )][ [

( ) f ( )[ f ( ) f ( )][ [

R , ] ] 0

R , ] ] 0

ν ν ν ν ν

ν ν ν ν ν

−

−

= =

= =

C C

C C

N

N

r r
% %

r r
% %

 (15) 

The corresponding Ψ(ν1, ν2) changes into Eq. 16. 

1 2 21 1 2 22 1 2( , ) , ,
1

(R ( ) R ( ))
1n

ν ν ν ν ν νΨ = +
−

 (16) 
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Since no intermolecular interactions occur between P and Q, Ψ(ν1, ν2) 

should be zero. To make Ψ(ν1, ν2) be zero, a feasible way is to make both 

R21(ν1,ν2) and R22(ν1,ν2) be zero. This can be achieved by setting the initial 

concentrations of S to be linearly proportional to the initial concentrations 

of P and Q simultaneously (Eq. 17). Mathematical analysis to support this 

statement is given in detail in the Appendix. 

where a , b , c, m, h and d are preset constants. 

Thus, the property I is achieved if the concentration series of P, Q and S 

satisfy Eq. 17a and 17b. That is to say, no auxiliary cross peaks are 

produced around (νS, νP) and (νS, νQ) when there are no intermolecular 

interactions between P and Q. 

By selecting the concentration series P, Q and S based on Eq. 17, the 

auxiliary cross peaks can be expressed as Eq. 18 for the chemical system 

where intermolecular interactions occur between P and Q. 

S U P S V Q

1 2 23 1 2 24 1 2

init T eq init T eq

1 2 2 S U 1 2 2 S V

( , ) , ,

f ( )[ f ( ) f ( )][ [ f ( )[ f ( ) f ( )][ [

1
(R ( ) R ( ))

1

1
( ] ] ] ])

1

n

n

ν ν ν ν ν ν

ν ν ν ν ν ν

Ψ =

− −

+
−

= +
−

C C C CN N
r r r r
% % % %

 (18) 

According to Eq. 4, Eq. 18 changes into Eq. 19 

( init) ( init )

S Q
C Ci ia b c+ =  (17a) 

(init) (init )

S PC Ci im h d+ =   (17b) 
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eq T init eq T init

S U 2 P 2 U S S V 2 Q 2 V S

eq T init eq T init

S 2 2 U S S 2 2 V S

1 2 1 1

1 U U P P 1 V V Q Q

1
( , ) { f ( )[ f ( ) f ( )] ] [ ] f ( )[ f ( ) f ( )] ] [ ]}

1

1
{f ( )[ ] ] [ ] f ( )[ ] ] [ ]}

1

1

( ) ( ) ( ) ( )

n

n

n

g g g g

ν ν ν ν ν ν ν ν

ν ν ν ν ν νε ε ε ε

Ψ − + −
−

− + −
−

−

=

=

=

[C N C [C N C

[C N C [C N C

r r r r
% % % %

r r r r
% % % %

eq T init

S 2 2 U S

eq T init

S 2 2 V S

T

1 U U U P 2 U P 2 P P

1 V V V Q 2 V Q 2 Q Q

eq init

U S 1 U 2 P 2 U S U P S 1 P 2

{f ( )[ ( ) ( ) ] ] [ ]
1

f ( )[ ( ) ( ) ] ] [ ]}

1 1
f ( ) ( ) ( )) ] ) f ( ) ( )

1 1

( ) ( )

( ) ( )

( (

g g

g g

g g g
n n

g g

g g

ν ν ε ν ε ν ν

ν ν ε ν ε ν ν

ε ν ν ν ε ε ν ν

ε ε

ε ε

− + −

+ − + −

− + −
− −

=

[C N C

[C N C

[C NC

r r
% %

r r
% %

r r
% % T

eq T init eq T init

V S V S

eq init

U S

V S 1 V 2 Q 2 V Q S 1 Q 2

]

1 1
f ( ) ( ) ( )) ] [ ] - ) f ( ) ( ) ] [ ]

1 1
( (g g g

n n
ε ν ν ν ε ε ν ν− +

− −
+

[C NC

[C N C [C N C

r r
% %

r r r r
% % % %

 

(19) 

Eq. 19 can be expressed as a summation of four parts. The first term 

contains U 1 P 1( ) ( )g gν ν− . That is to say, it reflects variations of bandwidth and 

peak position of P. The second term contains 
V Q- )(ε ε , demonstrating that it 

is relevant to the variations of absorptivity of P. Similarly, the third term 

reflects the variations of bandwidth, peak position of Q and the forth term 

is relevant to the variation of absorptivity of Q. Thus, the auxiliary cross 

peaks in the ASAP approach do reflect the variation of spectral function of 

P and Q caused by intermolecular interaction. Therefore, the property II of 

auxiliary cross peak is also achieved. 

3.2 The application of the ASAP approach in reflecting the variation of 

absorptivity when only one substance involving intermolecular interactions 

possesses characteristic peak. 

Equipped with the ASAP approach, we try to establish a method to 

reveal the variation of absorptivity of P when Q does not possess any 

characteristic peak in the spectral region. 

Considering a chemical system where P possesses a characteristic 

peak at νP but Q has no characteristic peak. We have proved that cross 

peaks around the coordinate (νP, νP) near the main diagonal in an 
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asynchronous correlation spectrum can be used to characterize the 

intermolecular interactions between P and Q. In our previous work
[68]

, we 

demonstrated that the cross peaks around the coordinate (νP, νP) can be 

expressed as Eq. 20. 

1 2

1
, (H ( , ) H ( , ))

1
( )x y x y x y

n
+

−
Ψ =  

init T eq

1 P U P P U

eq T init

2 P U P U P

H ( , ) f ( )[f ( ) f ( )]( )

H ( , ) f ( )[f ( ) f ( )]( )

x y x y y

x y y x x

= −

= −

C NC

C NC
 

(20) 

where x and y are in a spectral region around νP.  

Based on the mathematical property of the Hilbert-Noda transformation 

matrix N listed in Eq. 21, H1(x, y) and H2(x, y) can be combined into one 

term. 

T T

= −A NB B NA
ur ur ur ur

  (21) 

where A
ur

 and B
ur

 can be arbitrary n-dimensional vectors. 

Eq. 20 can be expressed as Eq. 22. 

1 init T eq
P U P U P U P U1

( , ) [ ( ) ( ) ( ) ( )]( )
n

g g g gx y x y y xε ε−Ψ −= C NC

r r
% %

 (22) 

As shown in Eq. 22, the pattern of cross peaks around (νP1, νP2) can reflect 

the variations of g(v) that are relevant to peak position and bandwidth. 

Although the variation of absorptivity is related with the intensity of cross 

peak, it is hard to retrieve the information on the variations of absorptivity 

from the intensity of cross peak, since the intensity of cross peak is affected 

by a variety of factors. These factors are difficulty to be measured 

accurately. 

To solve the problem, the ASAP approach is adopted, and we try to 
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obtain the variation of the absorptivity of the characteristic peak of P from 

the auxiliary cross peak. Since both Q and V do not show any characteristic 

peak, we have fQ(ν1)=0 and fv(ν1)=0. Thus, the R24 term in Eq. 18 is zero. 

Consequently, the auxiliary cross peaks can be expressed as Eq. 23. 

T

T

T

eq init

1 2 S 1 U 2 P 2 U S

eq init

S 1 U U 2 P P 2 U S

eq init

S 1 U U 2 U P 2 U P 2 P P 2 U S

e

U S 1 U 2 P 2 U

1
( , ) f ( )[ f ( ) f ( )] ]

1

1
f ( )[ ( ) ( )] ]

1

1
f ( )[ ( ) ( ) ( ) ( )] ]

1

1
f ( ) ( ) ( ))

1
(

n

g g
n

g g g g
n

g g
n

ν ν ν ν ν

ν ε ν ε ν

ν ε ν ε ν ε ν ε ν

ε ν ν ν

Ψ = −
−

= −
−

= − + −
−

= −
−

[C NC

[C NC

[C NC

[C

r r
% %

r r
% %

r r
% %

r
% T Tq init eq init

S U P S 1 P 2 U S

1
] ) f ( ) ( ) ]

1
( g

n
ε ε ν ν+ −

−
NC [C NC

r r r
% % %

 (23) 

As shown in Eq. 23, the auxiliary cross peak is composed of two parts. 

We notice that the second part contains (εU-εP) term, which reflects the 

variation of absorptivity of characteristic peak of P under intermolecular 

interactions. Therefore, the problem that variation of absorptivity of 

characteristic peak of P cannot be reflected when Q does not possess any 

characteristic peak is addressed by using the ASAP approach. Information 

on the variation of absorptivity can be retrieved from the pattern of 

auxiliary cross peak around (vS, vP). 

First, we carry out computer simulation on a model chemical system 

to show how variation of absorptivity can be obtained by using the ASAP 

approach. In this simulated system, intermolecular interactions between P 

and Q only cause the variation of absorptivity of P, and the corresponding 

K value is arbitrarily set as 0.01 here. The spectral parameters of P, U and S 

are given in Table 1. The concentrations of P, Q and S are listed in Table 

2.  
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As shown in Figure 1, no cross peak in domain I is observed, 

indicating that variation of absorptivity of the characteristic peak of P 

cannot be reflected by the conventional cross peaks in asynchronous 

correlation spectrum. Furthermore, this result demonstrates that 

conventional cross peaks fail to detect intermolecular interaction between P 

and Q. However, a single auxiliary cross peak can be clearly observed 

around (100, 350) in domain II of Figure 1. This result demonstrates that 

intermolecular interactions between P and Q can be manifested by the 

present of auxiliary cross peak. Moreover, the pattern of auxiliary cross 

peak is also helpful to reveal the variation of absorptivity. As shown in 

domain I of Figure 1, no cross peak around (350, 350) is observable, 

indicating intermolecular interactions do not produce variations on either 

peak position or bandwidth of the characteristic peak of P. Thus, the first 

term in Eq. 23 is zero and the second term relevant to the variation of 

absorptivity is left. According to Eq. 23, the second term will produce a 

single auxiliary cross peak. As shown in domain II of Figure 1, a single 

auxiliary cross peak is observed, confirming that variation of absorptivity is 

revealed. 

Then we apply the ASAP approach on a real chemical system. In the 

real chemical system, coordination between Li
+
 and benzo-15-crown-5 is 

probed. First a series of methanol solutions containing lithium chloride 

(denoted as LC) and benzo-15-crown-5(denoted as BC) were prepared. The 

concentrations of benzo-15-crown-5 and lithium chloride are listed in 
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Table 3. The concentration of S in the four solutions listed in Table 3 is 

0.00, 0.08, 0.19 and 0.30 mol.L
-1

 respectively. The peak position, 

bandwidth and absorptivity of the characteristic peak of virtual substance(S) 

is set to be 1450.00, 10.00 and 1.00 respectively.  FT-IR spectra of the 

solutions were recorded and shown in Figure 2a. The band located around 

1597 cm
-1

 is assigned to vibration of skeleton of the aromatic ring and used 

as a characteristic peak of benzo-15-crown-5. In the FTIR spectra, spectral 

data below 1500cm
-1

 is truncated and spectra of a virtual substance S are 

put in the spectral region between 1500 and 1400 cm
-1

. The peaks shown in 

gray refer to the virtual substance S. Li
+
 does not exhibit any absorption 

peak in FTIR spectrum. The asynchronous correlation spectrum based on 

the ASAP approach is constructed by using the 1D spectra of Figure 2a 

and shown in Figure 2b. A pair of cross peaks in domain I can be clearly 

observed in Figure 2b.  

According to our previous work
[48-67]

, the following experiment is 

performed: Benzo-15-crown-5 is dissolved in methanol alone. Good linear 

relationship between the absorbance of the 1597cm
-1

 band and the 

concentration of benzo-15-crown-5 can be obtained when the concentration 

range of benzo-15-crown-5 is between 0.00 mol.L
-1

 and 0.30 mol.L
-1

 

(supporting information). Since the concentrations of benzo-15-crown-5 

listed in Table 3 are within the above concentration range, the possibility 

that the conventional cross peaks in domain I of Figure 2b are caused by 

interaction between benzo-15-crown-5 and methanol can be safely 

Page 19 of 43 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 20

precluded. That is to say, it is the coordination between Li
+
 and 

benzo-15-crown-5 that brings about the structural variation on the aromatic 

ring and produces the cross peaks in the corresponding asynchronous 

correlation spectrum. This spectral pattern suggests that coordination 

between Li
+
 and benzo-15-crown-5 brings about blue shift on the 1597cm

-1
 

band. The result obtained from the conventional cross peak in domain I is 

consistent with that shown in Figure 2a. 

However, whether the absorptivity of the 1597cm
-1

 band varies or not 

remains unknown. Herein the auxiliary cross peak around (1450, 1597) in 

domain II is used to check whether the intermolecular interactions between 

benzo-15-crown-5 and Li
+
 cause the variation of absorptivity besides peak 

position. According to 1D spectra in Figure 2a and the conventional cross 

peak in domain I of Figure 2b, we learn that the interactions between 

benzo-15-crown-5 and Li
+
 make the characteristic peak of 

benzo-15-crown-5 undergo blue-shift (∆xU>0). In domain II, a pair of 

vertical auxiliary cross peaks can be observed. One auxiliary cross peak is 

positive and another is negative. The spectral pattern of the auxiliary cross 

peak also indicates that the 1597cm
-1

 band undergoes a band-shift. When 

we examine the auxiliary cross peaks carefully, it is noticed that the 

absolute intensity of the positive auxiliary cross peak is slightly larger than 

that of the negative auxiliary cross peak. The pattern of cross peaks around 

the coordinate (1597, 1597) demonstrates that coordination between 

lithium ion and benzo-15-crown-5 cannot produce observable variation on 
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the bandwidth of the 1597cm
-1

 peak. If coordination only brings about 

band-shift on the 1597cm
-1

 peak, the absolute intensities of the pair of the 

auxiliary cross peak should be the same. This is not the case in Figure 2b, 

suggesting that the absorptivity of the 1597cm
-1

 also changes as 

coordination occurs between benzo-15-crown-5 and lithium.  

Thus, we performed computer simulation on three model systems to 

mimick the spectral behavior of the benzo-15-crown-5/lithium system. The 

peak parameters of P, U and S in the three model systems are listed in 

Table 4. The corresponding 2D asynchronous spectra are shown in Figure 

3. It is found that the pattern of auxiliary cross peak in Figure 2B is quite 

similar to that shown in Figure 3C. This result demonstrates that the 

absorptivity of the 1597cm
-1

 band also increases upon coordinating with 

lithium. That is to say, coordination between Li
+
 and benze-15-crown-5 not 

only makes the 1597cm
-1

 band undergoes a blue shift but also brings about 

slight increment on its absorptivity.  

In summary, we propose the ASAP approach, where a virtual 

substance(S) is introduced into solutions containing two solutes (P and Q), 

as a useful technique. Under suitable concentration series, auxiliary cross 

peaks around (vS, vP) and (vS, vQ) can be used to reflect intermolecular 

interactions between P and Q. By using the ASAP approach, variations on 

absorptivity of the characteristic peak of P can be retrieved when Q has no 

characteristic peak in the spectral region.  
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Scheme 1 Schematic diagram of the simulated 1D spectra used in 

constructing asynchronous correlation spectrum. S is a virtual substance, 

and its characteristic peak of S appears in gray lines. It should be pointed 

out that the spectral region between 200 cm
-1

 and 0 cm
-1

 in this scheme is a 

virtual frequency region. 
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Scheme 2 Asynchronous correlation spectrum generated by using the 

ASAP approach. Cross peaks can be classified into three domains. Domain 

I contains conventional cross peak in asynchronous correlation spectrum. 

Both domain II and domain III contain auxiliary cross peaks. Since cross 

peaks in domain III are anti-symmetric to the cross peaks in domain II with 

respect to diagonal. Only auxiliary cross peaks in domain II are discussed. 

  

Q 

P Q S 

Auxiliary cross peak reflects 

spectral variations of Q. 

Auxiliary cross peak reflects 

spectral variations of P. 

Domain III 
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Figure 1 Asynchronous correlation spectrum based on the ASAP approach 

when just P possesses characteristic peak and intermolecular interactions 

induce the variation of absorptivity of P. It should be pointed out that the 

spectral region between 200 cm
-1

 and 0 cm
-1

 in this figure is a virtual 

frequency region. 
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Figure 2 (a) FT-IR spectra of the benzo-15-crown-5 of the solutions; (b) 2D asynchronous correlation spectrum generated by 

using the 1D spectra in Figure 2A based on the ASAP approach. The spectral region between 1500 cm
-1

 and 1400 cm
-1

 is virtual 

frequency region. In Figure 2B, the absolute intensity of the positive peak is larger than that of the negative peak (This is 

manifested by that the number of contour in the positive auxiliary peak is larger than that in the negative auxiliary peak). 
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Figure 3 2D asynchronous correlation spectra generated by using the ASAP approach on three model systems to simulate the 

spectral variation on the lithium/ benzo-15-crown-5 system. The spectral region between 1500 cm
-1

 and 1400 cm
-1

 in Figure 3 is 

virtual frequency regions. Red contours mean cross peaks are positive and blue contours mean cross peaks are negative. The 

pattern of the auxiliary cross peak around (1450, 1597) in Figure 3C is similar to that shown in Figure 2B. The absolute intensity 

of the positive peak is larger than that of the negative peak (This is manifested by that the number of contour in the positive 

auxiliary peak is larger than that in the auxiliary negative peak). 
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TABLE 1 Peak parameters of the chemical species P, U and S in the 

model system when only P possesses characteristic peak. 

Spectral 

Variable 
Peak position Bandwidth absorptivity 

P 350.00 20.00 1.00 

U 350.00 20.00 1.03 

S* 100.00 20.00 1.00 

 *It should be pointed out that S is in the virtual frequency region. 
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TABLE 2 Initial concentrations of the chemical species P, Q and S in the 

model systems. 

Number CP  CQ  CS  

1 2.00 5.00 10.00 

2 0.00 3.00 12.00 

3 4.00 7.00 8.00 

4 7.00 10.00 5.00 
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TABLE 3 The concentrations of benzo-15-crown-5 and lithium chloride 

in solutions  

Number CBC (mol.L
-1

) CLC (mol.L
-1

) 

1 0.30 0.00 

2 0.22 0.08 

3 0.11 0.19 

4 0.00 0.30 

 

  

Page 41 of 43 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 42

Table 4 Peak parameters for three model systems 

 Model system I Model system II Model system III 

XP (cm
-1

) 1597.00  1597.00 1597.00 

WP (cm
-1

) 10.00 10.00 10.00 

εP 1.00 1.00 1.00 

XU (cm
-1

) 1600.00  1600.00 1600.00 

WU (cm
-1

) 10.00 10.00 10.00 

εU 0.97 1.00 1.03 

XS (cm
-1

) 1450.00 1450.00 1450.00 

WS (cm
-1

) 10.00 10.00 10.00 

εS 1.00 1.00 1.00 

XU-XP(cm
-1

) 3.00 3.00 3.00 

WU-WP(cm
-1

) 0.00 0.00 0.00 

εU-εP -0.03 0.00 0.03 
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