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Abstract 14 

   Five different types of activated carbon varying in porosity, structures, and 15 

functional groups, were prepared and used as adsorbents. The effect of key properties 16 

of each activated carbon on its adsorption capacity, rate and mechanisms in terms of 17 

trimethoprim (TMP) removal were evaluated. The kinetics results suggested that 18 

chemical adsorption interactions and particle diffusion into micropores were the main 19 

rate-control steps for TMP adsorption, and the existence of mesopores promoted the 20 

diffusion of TMP into internal pores. The adsorption of TMP onto activated carbon 21 

could be attributed to the pore-filling effect (micropores and some narrow mesopores) 22 

and strong adsorptive interactions with the graphene surface or oxygenated groups. 23 

Regarding the surface area-normalized adsorption of TMP, porous activated carbon 24 

exhibited 50-500 times lower than nonporous carbon adsorbent due to the 25 

                                                             

* Corresponding author: Tel.: + 86 531 88363015; Fax: +86 531 88364513; E-mail address: 

zhangjian00@sdu.edu.cn (J. Zhang); shandaliuhai@ berkeley.edu (H. Liu). 

Page 1 of 28 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



size-exclusion effect, especially when oxygen complexes representing on the edges of 1 

pores of activated carbon. As from a system design point of view, fast adsorption rate 2 

and high adsorption capacity are normally required, the findings implied that activated 3 

carbon with high microporosity, certain mesoporosity and approachable surface 4 

groups can have a great application potential for TMP removal. 5 

Keywords: Activated carbon; Adsorption; Trimethoprim; Mechanism 6 

1. INTRODUCTION 7 

As a highly effective dihydropteroate synthetase inhibitor, trimethoprim (TMP) 8 

has been prescribed for more than 60 years to treat various bacterial infections both 9 

for human and veterinary use. Hence, it is regarded as one of the most essential 10 

medicines for basic health system by the World Health Organization 1, 2 and 11 

particularly recommended for treating tuberculosis 3 and reducing opportunistic 12 

infections for adults with HIV/AIDS 4. Due to its high effectiveness and low cost 13 

(approximate 16-32 USD/Kg) 5, a large quantity of TMP has been produced and 14 

prescribed, for instance, as reported by Chinese Medical Statistical Yearbook, about 15 

2400 tons of TMP was produced in China in 2011 6. However, only about 40-60% of 16 

the given dose can be digested by humans or animals, and the indigested TMP is 17 

excreted via faeces or urine into the sewage as its original form 7. In addition, as less 18 

than 10% TMP can be removed by conditional wastewater treatment plants 8, 9, the 19 

continuous medical use and incomplete removal have increased its occurrence in the 20 

environment. Consequently, bacteria in the environment are exposed to this drug, and 21 
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the relatively low concentrations have generated high bacterial resistance toward TMP 1 

10-12. Recently, TMP has been frequently detected in the effluents of wastewater 2 

treatment plants and surface waters at the level of ng L−1 to µg L−1 13, 14. 3 

Therefore, removal of TMP from water and wastewater has been a subject of 4 

intensive research due to the resistant bacteria can cause disease to humans. Several 5 

methods, including photo-Fenton 15, electrochemical oxidation 16, biological processes 6 

17, adsorption by silicates 18, and photocatalytic degradation 19, have been developed 7 

for this purpose. Since adsorption onto activated carbon is simple and low-cost 8 

operation comparing to other techniques, this technique is regarded as a very effective 9 

method to remove undesirable organic contaminants even at very low concentration 10 

from aqueous phase 20-22. Although a few reports are available on adsorption ability of 11 

TMP by carbon materials, such as charcoal and commercial activated carbon 23, the 12 

underlying mechanism(s) controlling TMP adsorption rate and capacity onto activated 13 

carbon are still need to be studied in details. 14 

Generally, activated carbon is composed of short stacks of graphite sheets with 15 

well-developed structure and some oxygen containing groups on edges or planes of 16 

the graphene structure. As a surface phenomenon, adsorption rate and extent of 17 

activated carbon toward a given adsorbate depend on its pore texture and surface 18 

chemistry. Activated carbon generally has microporous and/or mesoporous structures 19 

and different amounts of acidic and basic groups, which result in different adsorption 20 

performance toward TMP. Previous studies have reported that highly microporous 21 

activated carbon/charcoal showed high adsorption affinity toward low-sized 22 
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adsorbates 24-26. The presence of oxygen complexes on the surface of carbon material 1 

can act as acidic groups and lead to the destabilization of π electrons of graphene 2 

structure, eventually altering the electron-donor/-acceptor and acid-base properties of 3 

activated carbon. Depending on the multiple groups (three methoxy groups on 4 

benzene ring and two amino groups on pyrimidine ring) and the electron-rich 5 

aromatic rings in TMP molecule, TMP is expected to react strongly with the 6 

corresponding adsorption sites (acidic or basic groups) of activated carbon by 7 

chemical interactions, such as ion exchange, Lewis-acid-base interactions, π-π 8 

electron donor-acceptor (EDA) interactions and cation-π bonding. However, oxygen 9 

containing groups at edges of pores of activated carbon can easily form water clusters 10 

with water molecules via hydrogen bond, resulting in blocking entrance of these pores 11 

and lowering adsorption capacity 27, 28. Therefore, the existence of mesopores is also 12 

beneficial to the adsorption by providing channels for pollutants diffusing into 13 

internal pores. Accordingly, it seems unreasonable to deduce that activated carbon 14 

with high microporosity and functional groups content can have large TMP adsorption 15 

capacity. Furthermore, although high surface area leads to a large contact area for 16 

such interactions and fast adsorption, the entire surface of activated carbon cannot be 17 

completely accessible for TMP. Functional groups can also produce attractive and/or 18 

repulsive forces to TMP species, causing an enhancement or inhibition of adsorption 19 

rate. So far, no relevant study has been conducted to evaluate these effects on the 20 

TMP adsorption capacity and rate onto activated carbon. 21 

In order to get a fundamental and systematic understanding of TMP adsorption 22 
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onto activated carbon, activated carbon with mainly microporous or mesoporous 1 

structures, high or low surface functionalities, and high, low or non- porosities, were 2 

prepared to investigate their TMP adsorption performance. The specific mechanisms 3 

for TMP adsorption were studied through X-ray photoelectron spectroscopy (XPS) 4 

analysis and batch adsorption experiments. By comparing adsorption kinetics and 5 

isotherms of TMP, the main physicochemical properties of activated carbon 6 

influencing the TMP adsorption rate and capacity were recognized. 7 

2. EXPERIMENTAL SECTION 8 

2.1. Materials. 9 

Trimethoprim (TMP) used was purchased from Shanghai Jingchun biological 10 

technology Co., Ltd. (Shanghai). The carbon precursors and activating agents were 11 

Phragmites australis (biomass), inositol (99%), starch (99%), sodium hydroxide 12 

(99.99%), phosphoric acid (85 wt.%), and trimethyl phosphate (98%). Nonporous, 13 

pure graphite was purchased from Alfa Aesar and was used as received.  14 

Five different types of activated carbon (AC), namely Micro-AC (micropore AC), 15 

Meso-AC (mesopore AC), AC-M (micro-mesopore AC with more surface oxygenated 16 

functional groups), AC-L (micro-mesopore AC with less surface oxygenated 17 

functional groups) and Non-AC-M (nonporous AC with more surface oxygenated 18 

functional groups) were prepared and used in this study. The various process 19 

parameters for AC preparation are listed in Table S1 in the Supporting Information. 20 

Each kind of activated carbon was prepared by heating the mixture of activating agent 21 
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and carbon precursor under an inert atmosphere of nitrogen (150 mL/min). Briefly, 1 

carbon precursor was mixed with an activating agent at a certain ratio. Then, the 2 

sample was heated at the desired temperature for 1 h. After cooling to room 3 

temperature, the carbonized sample was washed with distilled water until the pH of 4 

filtrate became steady (~6.0-7.0). Finally, the samples were dried at 105 oC until the 5 

constant weight. 6 

2.2. Characterization. 7 

N2 adsorption and desorption measurements were performed using a Quadrasorb 8 

apparatus (Quantachrome Instruments, USA) at 77 K. Prior to gas adsorption analysis, 9 

all samples were degassed at 300 oC for 6 h. AC samples were analyzed by Raman 10 

spectroscopy (Nicolet Almega XR Dispersive Raman, Thermo Electron Corporation, 11 

USA) with laser wavelength of 1050 nm. Surface elemental compositions of AC were 12 

identified by X-ray photoelectron spectroscopy (XPS). The oxygenated acidic and 13 

basic surface groups of AC were measured using the Boehm’s titration method. 14 

2.3. Batch Adsorption Experiments. 15 

Batch adsorption experiments were carried out in a thermostated shaker bath 16 

(model THZ-82B, Shanghai) at 25 oC and 120 rmp with 10 mg of adsorbent in 17 

150-mL conical flasks containing 50 mL TMP aqueous solution for 48 h. The pH of 18 

each test solution was adjusted to the required value with 0.1 M HCl and NaOH 19 

solutions as measured with a pH-meter (PHS-3C, Shanghai). For the kinetics and 20 

isotherm experiments, the initial pH of all the solution was chosen to the value of pKa 21 
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of TMP (7.30), since at this condition the equilibrium pH of each adsorption system 1 

was between 7.0-7.5, and these systems contained nearly identical amount of cationic 2 

and neutral TMP species. All experiments were conducted in 10 mM NaCl 3 

background electrolyte. After equilibrium was reached, samples were filtered and the 4 

remaining TMP concentration in filtrate was determined with a spectrophotometer 5 

(UV-5100, Shanghai) at 274 nm and a standard curve. The TMP adsorbed onto the 6 

adsorbents was calculated by a mass balance. At each condition, adsorption 7 

experiments were performed in triplicate and averaged. 8 

3. RESULTS AND DISCUSSION 9 

3.1. Pore Structure and Surface Chemistry. 10 

The specific surface area, pore volume parameters, surface acidic and basic 11 

groups, and surface elemental compositions of Micro-AC, Meso-AC, AC-M, AC-L 12 

and Non-AC-M are summarized in Table 1. Regarding the surface area of the five 13 

different ACs, Micro-AC has the largest specific surface area (~1500 m2/g), whereas 14 

Non-AC-M is almost nonporous with a very small surface area (7.8 m2/g). Meso-AC 15 

has the highest pore volume (1.108 cm3/g), while AC-M and AC-L have similar pore 16 

structure characters. The high porous structures of Micro-AC and Meso-AC and the 17 

low/non porous surfaces of AC-M, AC-L and Non-AC-M can also be observed from 18 

their SEM images in Figure S1 in Supporting Information. The results of Boehm 19 

titration reveal that the ACs are considered acidic (Table 1), which is in agreement 20 

with their pHpzc values (< 7.0). The acidic functionalities are determined by 21 
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oxygenated groups, such as carboxyl, lactone, and phenolic groups. On the other hand, 1 

the basic ones derive mainly from delocalized π-electrons of graphene structures, as 2 

well as oxygen groups (chromene, ketone or pyrone). These functional groups can 3 

provide effective adsorption sites for TMP removal. For the functional groups, AC-M 4 

and Non-AC-M possess the highest content of acidic and basic groups, and Micro-AC 5 

and AC-L contain the least. 6 

 7 

Table 1. Surface area, pore volume parameters, surface functional groups, and surface 8 

elemental composition of the adsorbents. 9 

 
Micro-AC Meso-AC AC-M AC-L Non-AC-M 

a
SBET (m

2
/g)

 1534 911 393 404 7.8 
b
Vmic (cm

3
/g)

 0.689 0.107 0.108 0.097 0.002 
c
Vtot (cm

3
/g) 0.778 1.108 0.172 0.171 0.006 

Vmic/Vtot (%)
 88.6  9.7  62.8  56.7  33.3  

d
Carboxyl (mmol/g)

 0.567 0.831 1.062 0.615 1.124 
d
Lactone (mmol/g)

 0.822 0.556 0.835 0.979 0.759 
d
Phenolic (mmol/g) 0.302 0.698 1.269 0.944 1.035 
d
 Total acidity (mmol/g)

 1.690 2.085 3.165 2.538 2.918 
d
 Total basicity (mmol/g)

 0.824 1.885 1.910 0.972 1.925 

Density of groups (mmol/m
2
) 1.64 4.36 12.66 8.69 621 

e
pHPZC 6.22 6.04 6.13 5.75 6.26 
f
C % (atomic percentage) 67.3 63.4 57.9 58.1 54.3 
f
O % (atomic percentage) 32.7 36.6 42.1 41.9 55.7 
aBET surface area (SBET) was determined by using the Brunauer -Emmett-Teller (BET) theory. 10 

bMicropore volume was determined by the t-method. cTotal pore volume was calculated for P/P0= 11 

0.95. dDetermined by Boehm’s titration 29. epHpzc: pH at point of zero charge and determined by a 12 

batch method 30. fDetermined by X-ray photoelectron spectroscopy (XPS). 13 

 14 
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Fig. 1. XPS survey spectra (a) and Raman spectra of the ACs (b). C 1s high-resolution 2 

spectra of the ACs (c). 3 

 4 

   The XPS survey spectra reveal that the functional groups of the ACs are derived 5 

from the combination of carbon and/or oxygen elements (Fig. 1a). The ACs show 6 

similar Raman spectrum patterns with two broad peaks at around 1350 cm-1 for 7 

disorder carbon structure (D-band) and 1595 cm-1 for graphitic carbon (G-band) (Fig. 8 

1b). The relative intensity ratios of D-band against G-band of the ACs are in the range 9 

of 0.6-0.7, indicating they are amorphous carbon materials. These results mean that 10 

the chemical interactions between the TMP species and the surfaces of ACs are 11 

similar. The C 1S spectra of the AC samples are shown in Fig. 1c. Deconvolution of C 12 

1s spectra exhibites four individual component peaks at: 284.6 eV (graphitic carbon), 13 

286 eV (C-O bond in phenol, alcohol or ether), 287 eV (C=O groups), and 290 eV 14 

(carbonyl groups). Fig. 1c also summarize the calculated percentages of graphitic and 15 

functional carbon atoms according to the area-simulating curve. The order of %values 16 

for functional carbon atoms of the ACs is coincident with their orders of surface O/C 17 

ratios. 18 
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3.2. Adsorption Isotherms. 1 
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Fig. 2. Adsorption isotherms of TMP for the ACs on unit mass basis (a) and on unit surface 4 

area basis (b). The solid and dash lines represent the calculated Langmuir and Freundlich 5 

model fitting curves, respectively (dosage = 0.2 g/L, temperature = 25 ± 2 
o
C, ionic strength = 6 

10 mM NaCl, initial TMP concentrations = 0.3-0.7 mmol/L, and initial pH = 7.30 ± 0.02). 7 

 8 

  Graphite with 99.9995% graphitized C and surface area of 7.26 m2/g is also used as 9 

adsorbent to evaluate the effect of physic and chemical properties of AC samples on 10 

TMP adsorption. Adsorption isotherms of TMP onto the adsorbents are presented in 11 
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Fig. 2. The adsorption data were fitted by Langmuir (Qe= QmKLCe/(1 + KLCe)) and 1 

Freundlich (Qe = KFCe
1/n) models, where Qm (mg/g) is the maximum adsorption 2 

capacity according to a complete monolayer adsorption, KL (L/mg) represents the 3 

Langmuir constant, KF (mg1-nLn/g) is the Freundlich affinity coefficient, and n is the 4 

Freundlich linearity index. The fitted parameters are summarized in Table S2 in 5 

Supporting Information. As shown in Fig. 2a and Table S2, both the Langmuir and 6 

Freundlich models fit the adsorption isotherms very well with R2 > 0.95. However, the 7 

Langmuir model seems to fit the equilibrium data better than the Freundlich model 8 

with higher R2 and better representation of the data, which indicates a monolayer 9 

adsorption due to the strong interactions between the carbon’s surface and TMP 10 

species. The very small Freundlich 1/n values (generally not exceeding 0.2) reflect the 11 

high adsorption nonlinearity, which can be attributed to the multiple interactions. The 12 

maximum adsorption capacity (Qm, mg/g) of the six adsorbents is in the order of: 13 

Micro-AC > Non-AC-M > AC-M ≥ Meso-AC ≫ AC-L ≫ graphite. No apparent 14 

linear trends can be observed on the basis of surface area/porosity and surface 15 

chemistry, indicating that both chemisorption and physisorption take place 16 

simultaneously for TMP adsorption onto the adsorbents. Based on the 17 

physicochemical characterizations of AC, three aspects should be considered as 18 

follows: 19 

(1) Pore-filling effect. According to the geometry of TMP molecule 20 

(7.03*7.5*12.28 A calculated from the software of Chem3D Program), pronounced 21 

micropore-filling might invoke TMP adsorption onto porous ACs because the 22 
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molecular size of TMP is close to the width of micropores 31. Thus, even though 1 

Micro-AC has the lowest content of surface groups, it exhibits the highest TMP 2 

adsorption capacity (Qm, 543 mg/g) among these carbon samples. As expected, some 3 

mesopores (> 2 nm) also contribute to the TMP adsorption by direct pore-filling or 4 

enhanced diffusion effect. Meso-AC has slightly higher micropore volume (Vmic) and 5 

much lower content of surface groups than AC-M, but its TMP adsorption capacity 6 

(373 mg/g) is similar to that of AC-M (380 mg/g) since the small-size pores and the 7 

functional groups in the internal pores can be accessible for TMP species. 8 

(2) Chemical interactions. Various interactions are expected to exist between TMP 9 

species and surface functionalities of AC: 1) π-π EDA interactions; 2) cation-π 10 

bonding; 3) Lewis-acid-base interactions; 4) electrostatic attraction; and 5) hydrogen 11 

binding. The three methoxy groups (-OCH3) on benzene ring and two amino groups 12 

(-NH2) on pyrimidine ring are strong electron donating groups, making the aromatic 13 

rings π-electron rich. The amino groups can be positively charged at acidic conditions, 14 

and are capable of electronic coupling. It is well known that carboxylic and lactonic 15 

groups of AC are able to withdraw the electrons of π-electrons on graphene layer, 16 

leading to electron deficient π-structures. Therefore, the structures can act as effective 17 

π-electron-acceptors to interact strongly with the electron-rich aromatic rings of TMP 18 

via the mechanism of π-π EDA interactions. The amino groups of TMP are easily 19 

protonated under favorable environmental conditions. The basic groups (Cπ-electrons) 20 

can provide adsorption sites of cation-π bonding for the protonated amino group 21 

(-NH3
+) of TMP. The (hydrolyzed) acidic groups can also adsorb the cationic TMP via 22 
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electrostatic attraction and Lewis-acid-base interactions. Furthermore, the mechanism 1 

of hydrogen bonding also contributes to the adsorption of organic compounds on 2 

carbon materials 32. The -NH3/-OCH3 groups on TMP and the oxygen complexes on 3 

the carbon surface can form hydrogen bonds. Accordingly, AC having higher surface 4 

oxygen content exhibits higher TMP adsorption through these chemical interactions. 5 

As nonporous carbon materials, graphite shows not obvious adsorption, while 6 

Non-AC-M exhibits higher TMP adsorption as compared with the other porous 7 

activated carbons, except Micro-AC. Similarly, AC-M (393 m2/g) has a similar Qm 8 

(414 mg/g) to the highly mesoporous activated carbon (Meso-AC, 911 m2/g, 373 9 

mg/g). The higher content of the surface groups can compensate for the absence of 10 

micropore-filling effect and enable stronger adsorption affinity. 11 

(3) Size-exclusion effect. It should be emphasized that size-exclusion effect is 12 

expected to exist when TMP is adsorbed onto AC with micropores and surface oxygen 13 

complexes. As shown in Fig. 1, some oxygenated groups locate on the external 14 

surface of carbon materials. These oxygen groups can adsorb water molecule via 15 

hydrogen binding and further form cluster of water molecules. Such phenomenon can 16 

prevent TMP species from accessing some adsorption sites of the internal pores. The 17 

surface area-normalized adsorption isotherm of the ACs is analyzed and compared as 18 

shown in Fig. 2b. The normalized adsorption of TMP follows the order of Non-AC-M 19 

≫ AC-M > graphite, Micro-AC, Meso-AC > AC-L. The surface area-normalized 20 

adsorption on Non-AC-M is significantly higher than that on the other carbons by 21 

approximately 50-500 times in the tested concentration range, mainly because of its 22 
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highest density of functional groups on unit surface area basis and the absence of 1 

size-exclusion effect. As another nonporous carbon material, graphite with 2 

free-oxygen surface is also not expected to invoke the pore effect (micropore-filling 3 

or size exclusion). It shows similar normalized adsorption of TMP as Micro-AC and 4 

Meso-AC. Similarly, the normalized adsorption capacities of Micro-AC and 5 

Meso-AC are identical and approximately 2.5 time less than that of AC-M. Their low 6 

normalized adsorption are mainly due to that a large part of pores with pore width less 7 

or much larger than the size of TMP are useless for TMP adsorption. The 8 

size-exclusion effect is most obvious for TMP adsorption on AC-L. AC-L has similar 9 

pore characteristics to AC-M, and its density of functional groups is about 30% less 10 

than that of AC-M. However, the normalized TMP adsorption of AC-L is about 8 11 

times less than that of AC-M. As compared with AC-M, AC-L contains much more 12 

oxygen complexes on the edges of pores (see XPS analysis, Fig. 1), thus the 13 

adsorption sites in the pores are difficult for TMP to access. Similarly, although AC-M 14 

has some micropores and slightly higher functional groups than Non-AC-M, it 15 

exhibits moderately lower TMP adsorption. The relatively high TMP adsorption for 16 

Non-AC-M can be explained by its accessible surface and high content of surface 17 

groups. Accordingly, the oxygen complexes around pore entrances restrict TMP 18 

admittance, and result in the markedly size-exclusion effect and the low TMP 19 

adsorption. 20 

The results of adsorption isotherms for the ACs indicate that (1) micropore-filling 21 

effect leads to the high adsorption affinity of low molecular-sized TMP onto highly 22 
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microporous AC; (2) the presence of mesopores allows TMP entering the internal 1 

pores, and guaranteeing TMP adsorption on these adsorption sites effectively; (3) 2 

strong interactions exist between TMP species and the surface groups of AC, and (4) 3 

the existence of large amount of oxygen containing groups on the edges of narrow 4 

pores of AC inhibits TMP uptake profoundly by limiting TMP transport into the 5 

internal pores. 6 

3.3. Adsorption Kinetics. 7 
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Fig. 3. Kinetics of TMP adsorption onto the ACs. The dash and solid lines represent the 9 

calculated pseudo-first and pseudo-second order model fitting curves, respectively (dosage = 10 

0.2 g/L, temperature = 25 ± 2 
o
C, ionic strength = 10 mM NaCl, initial TMP concentration = 11 

0.4 mmol/L (116 mg/L), and initial pH = 7.30 ± 0.02). 12 

 13 

Since adsorption rate is an important factor for practical operation, adsorption 14 

kinetics of TMP for the five ACs was investigated. The effect of contact time on TMP 15 

adsorption is presented in Fig. 3. The TMP adsorption increases rapidly, then rises 16 

gradually and reaches equilibrium within 35 h for all samples tested. As expected, the 17 
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five ACs exhibit completely different adsorption rates and equilibrium times. To 1 

quantitatively compare the TMP adsorption rates on the ACs, the pseudo-first order 2 

and pseudo-second order models were used to fit the experimental data, and the 3 

kinetic parameters are shown in Table S3 in Supporting Information. According to Fig. 4 

3 and Table S3, the pseudo-second order model fits all the experimental data better 5 

than the pseudo-first order model, which implies that chemical interactions are 6 

involved in TMP adsorption. The calculated rate constants of the ACs follows an 7 

order of Micro-AC > Meso-AC > Non-AC-M > AC-M ≫ AC-L, which does not 8 

correlate with neither porosity nor surface functionalities. These results demonstrate 9 

that TMP adsorption rate on the carbon materials is controlled by both pore diffusions 10 

and chemical interactions. 11 

It can also be seen from Fig. 3 that the initial TMP adsorption for Micro-AC and 12 

Meso-AC is much faster than that for AC-M, AC-L and Non-AC-M. For example, 13 

approximately 80% of adsorption is achieved within 1 h for Micro-AC and Meso-AC, 14 

while only 20-50% adsorption is accomplished for AC-M, AC-L and Non-AC-M. 15 

Particularly, Non-AC-M shows relatively slow adsorption and long equilibrium time. 16 

These results strongly support that chemical adsorption for TMP removal is a much 17 

slower process as compared to pore-filling one. Previous studies have explored the 18 

micropore-filling mechanism to explain the enhanced adsorption rates of organic 19 

chemicals to microporous adsorbents 33, 34. However, as adsorption increases, the 20 

internal pores will be hard to access for TMP due to the pore-width decrease by the 21 

accumulation of TMP adsorption. Thus, the presence of mesopores is beneficial for 22 
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adsorbate to diffuse into the internal pores. Accordingly, although the equilibrium 1 

adsorption capacity of Micro-AC (479 mg/g) is much larger than that of Meso-AC 2 

(304 mg/g), its equilibrium time (within 16 h) is longer than that of Meso-AC (within 3 

6 h) (see Fig. 3). The longer adsorption equilibrium time required by Micro-AC 4 

indicates that diffusion of TMP within micropores also controls the adsorption rate of 5 

AC with microporosity. This result can also be confirmed from observation that the 6 

nonporous Non-AC-M shows a similar amount of surface functional groups as AC-M, 7 

but has shorter equilibrium time. Meanwhile, the oxygen-containing groups on the 8 

edges of pores further inhibit the diffusion of TMP molecules into the pores due to 9 

steric effect, which is most obvious for TMP adsorption onto AC-L as evidenced by 10 

its dramatically low adsorption among all the ACs. 11 

According to the results discussed above, we can draw some conclusions about 12 

the effects of pore texture and surface functional groups on TMP adsorption rate as 13 

follows: (1) both diffusion of TMP in micropores and chemical interactions between 14 

TMP species and surface functional groups are slow processes; (2) the presence of 15 

mesopores can promote the diffusion of TMP into internal pore and improve 16 

adsorption rate; and (3) the oxygen complexes represented on edges of the pores can 17 

obviously restrain TMP diffusion into narrow pores. 18 
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3.4. Effect of Solution pH on Adsorption. 1 
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Fig. 4. Variations of solution pH before and after equilibrium: control system and adsorption 2 

system are the batch experiments by adding carbon samples to distilled water (a) or TMP 3 

solution (b) with different initial pH. Effect of pH on the adsorption of TMP onto the ACs (c) 4 

(dosage = 0.2 g/L, temperature = 25 ± 2 
o
C, ionic strength = 10 mM NaCl, and initial TMP 5 

concentration = 0.4 mmol/L). 6 

 7 

As above-mentioned, TMP adsorption onto the ACs involves strong interactions 8 

between TMP species and the surface groups. The speciation of TMP and surface 9 

charge properties of AC are susceptible to solution pH, because the two amino groups 10 

of TMP molecule can be protonated by excess H+ ions in bulk solution, and the acidic 11 

and basic groups of AC can also be deprotonated or protonated. Thus, solution pH can 12 

be favorable or unfavorable to adsorption. To recognize these interactions for TMP 13 

adsorption, the effects of pH on adsorption were evaluated with pH ranging from 3.0 14 

to 11.0 and are represented in Fig. 4. 15 

Fig. 4a and b illustrate the equilibrium pH levels of control and adsorption 16 

samples. Obviously, Micro-AC and Meso-AC have less acidic and basic groups, 17 

thereby exhibiting the lowest acid/base neutralization capacity (Fig. 4a). By 18 
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comparing the equilibrium pH levels of all samples at acidic condition, the final pH 1 

values of control samples are higher than those of adsorption samples, which indicates 2 

that adsorption of TMP is accompanied by releasing H+ ions into the bulk solution, 3 

namely a proton exchange mechanism. For instance, the final pH levels for Micro-AC 4 

adsorption samples are lower than their initial pH levels after TMP adsorption. The 5 

proton exchange mainly derives from the cation-π interactions between protonated Cπ 6 

electrons and -NH3
+ of TMP as well as acid-base reactions of acidic groups and -NH3

+ 7 

of TMP. 8 

Previous studies have well demonstrated the formation of cation-π bonding 9 

between protonated amino group and (protonated) Cπ-electrons 35, 36. The Cπ 10 

electrons within graphene structures and amino groups (pKa of 7.30) of TMP are 11 

easily protonated under acidic conditions 37. When initial pH increases from 2 to 11, 12 

the charge of activated carbon surface will be converted from positive to negative 13 

electricity, and the cationic TMP will turn into neutral TMP molecule. Therefore, it 14 

means that the electrostatic repulsion exists and impedes TMP adsorption at low pH 15 

conditions. Additionally, when the amino groups are deprotonated, the electron giving 16 

ability will decrease dramatically, and the π-π EDA interactions will be weakened. 17 

However, the ACs show an obvious decrease in TMP adsorption at initial pH between 18 

7.0 and 11.0 and a higher TMP adsorption under acidic conditions in comparison with 19 

that under basic conditions (AC-M, AC-L and Non-AC-M) (see Fig. 4c). These results 20 

reflect that the existence of cation-π interactions promotes the adsorption cationic 21 

TMP species. In addition, Lewis-acid-base interactions between amino groups of 22 
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TMP and carboxylic and phenolic hydroxy groups have been reported in previous 1 

studies about adsorption of organic compounds to AC 38, 39. Thus, it can be deduce 2 

that the reaction between -NH3
+ groups and the acidic groups (especially carboxylic 3 

groups) is another contributor to lower final pH of adsorption samples, which is 4 

demonstrated by XPS analysis (Fig. 5). Lewis-acid-base interactions can also be 5 

observed from the higher final pH levels for the adsorption samples compared to 6 

those for the control samples at high initial pH (above 7) (Fig. 4b), as less acidic 7 

groups is left for neutralizing excess OH- ions in solution. The XPS survey and N 1s 8 

spectra of Non-AC-M before and after TMP adsorption at different initial pH (3.0, 7.3 9 

and 11.0) are shown in Fig. 5. One peak appears at 400 eV for the XPS survey spectra 10 

of TMP-adsorbed Non-AC-M samples, indicating the fixation of TMP onto the ACs 11 

(Fig. 5a). It is also shown in Fig. 5b, c and d that the peak area of N 1s on 12 

TMP-adsorbed Non-AC-M surfaces follows the order of TMP-Non-AC-M-7.3 > 13 

TMP-Non-AC-M-3.0 > TMP-Non-AC-M-11.0, which is consistent with the TMP 14 

adsorption capacity of Non-AC-M at corresponding pH of the solution. The N 1s 15 

spectra of the samples comprise two peaks, which are assigned to the nitrogen atoms 16 

in the forms of -CO-NH- (399.6 eV) and C-NH2 (400.4 eV). The results elucidates 17 

that reaction occurs between amine functional groups on TMP and carbonyl 18 

functional groups on activated carbon. 19 
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Fig. 5. XPS survey spectra and N 1s spectra of Non-AC-M before and after TMP 2 

adsorption at initial solution pH of 3.0, 7.3 and 11.0. 3 

 4 

All ACs used in this study are dominated by the graphitized carbons with some 5 

associated oxygen complexes, and thus they present the same types of adsorptive 6 

interactions with TMP species. However, they exhibit different variable trends (Fig. 7 

5c). The results are mainly related to the difference in amounts of acidic and basic 8 

groups of the ACs. These groups can neutralize the excess H+ and OH- ions in bulk 9 

solution (see Fig. 5a), and affect the species of TMP, eventually resulting in the 10 

different adsorption patterns. As shown in Fig. 5c, the TMP adsorption capacities of 11 

the ACs increase with increasing pH, and then decrease with pH. The low TMP 12 

adsorption at low pH is attributed to electrostatic repulsion as well as the competition 13 

from excess H+ ions in the solution. Moreover, the less available cationic TMP leads 14 

to the free of cation-π interactions, decreasing the TMP adsorption at high pH. Since 15 
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TMP is dominated by the cationic form and the ACs surface is negatively charged at 1 

moderate initial pH levels (~6-9), the enhanced electrostatic attraction and the 2 

existence of cation-π interactions promote the TMP adsorption. 3 

It should be emphasized that in acidic pH range Micro-AC and Meso-AC show 4 

the highest increase in TMP adsorption, which is due to their lowest content of surface 5 

basic groups. In particular, the adsorption to Micro-AC is even lower than that of 6 

AC-M at initial pH 2-6.5. The pore-filling is proposed to be an important mechanism 7 

participating in the TMP adsorption to Micro-AC and Meso-AC. At acidic conditions, 8 

the surfaces of the ACs are positively charged, and cannot be easily accessible for 9 

cationic TMP molecules, thereby resulting in the low adsorption. However, AC-M and 10 

Non-AC-M have high content of acidic and basic groups, which can buffer the excess 11 

H+ and reduce changes of their surface net charges. Thus, they can have a relatively 12 

steady TMP at acidic conditions. 13 

4. CONCLUSION 14 

Five types of activated carbons with different porosities and functional groups 15 

contents (mainly microporous or mesoporous structures, high or low surface 16 

functionalities, and high, low or non- porosities) were prepared and used as 17 

adsorbents for TMP removal. The underlying mechanisms controlling TMP 18 

adsorption rate and capacity onto activated carbons are expatiated in this study. The 19 

diffusion of TMP in micropores and reactions between TMP species and functional 20 

groups are slow processes, and the mesopores promote the diffusion of TMP into the 21 
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internal pores and adsorption rates. The micropore-filling mechanism accounts for the 1 

high adsorption affinity of low molecular-sized TMP species to a highly microporous 2 

activated carbon compared to the mesoporous and low porous activated carbons. 3 

Surface functional groups give significant contribution toward TMP adsorption 4 

capacity, primarily through providing strong chemical interactions, such as 5 

Lewis-acid-base interactions, π-π EDA interactions, electrostatic attraction/repulsion, 6 

cation-π bonding, and hydrogen binding. However, the oxygen-containing groups 7 

block the micropore entrances and reduce the TMP adsorption. The high content of 8 

acidic and basic functional groups neutralizes the excessive base and acid in the bulk 9 

solution and keeps the high TMP adsorption in a large solution pH.  10 
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Table captions:  1 

Table 1. Surface area, pore volume parameters, surface functional groups, and surface 2 

elemental composition of the adsorbents. 3 

Figure captions:  4 

Fig. 1. XPS survey spectra and Raman spectra of the ACs.  5 

Fig. 2. Kinetics of TMP adsorption onto the ACs.  6 

Fig. 3. Adsorption isotherms of TMP for the ACs (a) on unit mass basis and (b) on 7 

unit surface area basis. 8 

Fig. 4. Variations of solution pH before and after equilibrium: control system and 9 

adsorption system are the batch experiments by adding carbon samples to distilled 10 

water (a) or TMP solution (b) with different initial pH. Effect of pH on the adsorption 11 

of TMP onto the ACs (c). 12 

Fig. 5. XPS survey spectra and N 1s spectra of Non-AC-M before and after TMP 13 

adsorption at initial solution pH of 3.0, 7.3 and 11.0. 14 
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