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Long-lived Néel states in antiferromagnetic quantum spin chains with strong uniaxial
anisotropy for atomic-scale antiferromagnetic spintronics

Jun Li and Bang-Gui Liu∗

Beijing National Laboratory for Condensed Matter Physics,
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

It has been experimentally established that magnetic adatoms on surfaces can be arranged to form
antiferromagnetic quantum spin chains with strong uniaxial anisotropy and Neel states in such spin
systems can be used to realize information storage. Here, we investigate eigen states, quantum spin
dynamics, and life times of Neel states in short antiferromagnetic quantum spin chains with strong
uniaxial anisotropy on the basis of numerical exact diagonalization method. We show rigorously
that as long as the uniaxial anisotropy is very strong, the ground state and the first excitation state,
being nearly degenerate, are safely separated from the other states and thus dominate the quantum
dynamics of the Neel states. Through further numerical analysis, we achieve a powerful life-time
expression of the Neel states for arbitrary spin and model parameters. It is interesting that for the
famous Fe adatom chains on Cu2N surface, 14 or 16 Fe adatoms are enough to obtain a practical
long life-time for Neel state storage of information. These should be applicable to other similar
antiferromagnetic spin systems for atomic-scale antiferromagnetic spintronics.

1. Introduction

It is inspiring that adatom-based antiferromagnets
have been realized on semiconductor surfaces and used
for novel magnetic information storage because their Néel
states can be stabilized by strong uniaxial single-ion mag-
netic anisotropy[1–3]. Such nanomagnets can be fabricat-
ed adatom by adatom, and their spin anisotropy can be
controlled[4–7]. Thus, one can make antiferromagnetic
chains, bi-chains, nano-ribons, or nano-sheets consisting
of several or tens of adatom spins with strong magnet-
ic anisotropy and adjustable inter-spin interactions. Spin
chains are of much interest because they belong to an im-
portant category of Heisenberg spin models. In fact, var-
ious one-dimensional antiferromagnetic Heisenberg mod-
els have been intensively investigated[8–15]. For S = 1,
there exists an inetresting Haldane topological phase if
there is no strong uniaxial magnetic anisotropy[16–18].
On experimental side, one usually use high spins with
strong uniaxial single-ion magnetic anisotropy in adad-
tom spin systems[1–7]. It is known that strong uniax-
ial single-ion anisotropy is necessary to achieve stable
Néel states. Experimentally, electrons currents injected
through STM tips have been used to control the Néel
states for information storage[3]. On theoretical side,
some efforts have been made to understand and explore
controlling the adatom-spin antiferromagnets with spin-
polarized electron current[19, 20], spin current[21], and
mechanical oscillator[22] and to investigate symmetry ef-
fects on spin switching of single adatoms[23]. It is be-
lieved that more significant advances and deeper insight
in this field can likely lead to an atomic-scale antiferro-
magnetic spintronics.
Here, we investigate the intrinsic quantum dynamics

and life times of Néel states in the quantum Heisenberg

∗ Corresponding author: bgliu@iphy.ac.cn

antiferromagnetic chain model consisting of 2N spin-
s (S ≥ 1) with strong uniaixal single-ion anisotropy.
We accurately calculate eigenvalues and eigenfunctions
through exact diagonalization, and rigorously show that
the ground state and the first excitation can be both safe-
ly separated from the other states and well described with
the two Néel states as long as the single-ion anisotropy
is very strong. Then, we thereby calculate the switch-
ing rates and life times of the Néel states. Surprisingly,
we achieve a unified powerful expression of the life times
through fitting our accurate numerical results. More im-
portantly, for the Fe-adatom spin antiferromagnets on
Cu2N semiconductor surface[1–3], 2N= 14 or 16 is large
enough to achieve practical life times of Néel states for
information storage. More detailed results will be pre-
sented in the following.

2. Results and discussion

2.1 Spin Model and eigenstates

We start with general one-dimensional quantum
Heisenberg antiferromagnetic model with strong uniax-
ial single-ion anisotropy,

Ĥ = J

2N−1∑
i=1

ˆ⃗
Si ·

ˆ⃗
Si+1 −D

2N∑
i=1

(Ŝz
i )

2, (1)

where the total number of the spins is 2N , the parame-
ter J (> 0) is the antiferromagnetic exchange constant,
D (> 0) is used to characterize the single-ion magnetic

anisotropy in the z axis, and
ˆ⃗
Si is the spin operator at

site i, satisfying open boundary condition. For this an-
tiferromagnetic spin chain, there are two special states,
namely Néel states, as illustrated in Fig. 1. They are im-
portant, especially when D is very large in comparison
to J . Here, we do not need any inhomogeneous effective
magnetic field to split the two Néel states[3, 19], but to
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FIG. 1. An illustration of the two Néel states of the spin
chain. An adatom spin is presented with a ball with an arrow.
Parameter D is the uniaxial anisotropy of each spin, and J
the coupling constant between the nearest spins.

experimentally prepare a specific Néel state, one can use
an STM tip to inject a spin-polarized electron current on
the first adatom spin[3]. If being applied to similar spin
rings with uniaxial anisotropy, such as antiferromagnet-
ic molecule wheels[24], the Hamiltonian (1) needs some
modification to make the spin operators satisfy periodic
boundary condition.

Using Ŝ±
i = Ŝx

i ± iŜy
i , we have

ˆ⃗
Si ·

ˆ⃗
Si+1 = Ŝz

i · Ŝz
i+1 +

1
2 (Ŝ

+
i · Ŝ−

i+1+ Ŝ−
i · Ŝ+

i+1). The ideal Néel states (|N1⟩ and
|N2⟩) are certainly not the eigenstates of Hamiltonian (1)
due to the transverse part including the raising and low-
ing operators Ŝ±

i , but the strong single-ion anisotropy
D in the z axis makes the spin tend to orient in the
z axis. Consequently, there are large (D/J dependent)
weight of the two Néel states in the ground state and low
excitations, which implies that the two Néel states for
large D/J can be stable enough to be used for informa-
tion storage[3]. Using exact diagonalization method[25]
to the Hamiltonian (1), we can obtain the spin eigenval-
ues and eigenfunctions. For convenience, we shall use J
as our unit in the following, which means that anisotropy
parameter D and energy E can be scaled in terms of J .

In Fig. 2 we present the energy eigenvalues depending
on N (1 through 5) and D/J (10, 3, and 1) for S = 1
and 3/2. For each of the cases, the ground state G and
the first excitation E1 are both separated from the other
states. The trend is that the separation increases with
D/J and S. The corresponding energy gaps between
the ground states and the first excitation ones are sum-
marized in Table I. It is clear in the table that the gap
decreases with N , S, and D/J . The weights of the Néel
states in the ground state (G) and the first excitation
(E1) as functions of N are presented in Table II for the
two spin values and the three D/J ones. It can be seen
that the Néel weights increase with D/J , but decrease
with N . Except the special case of N = 1, the Néel
weights increase with S, too. Because we are interested
in the cases with strong uniaxial anisotropy, the ground
state and low excitations are far from the regime of the

Haldane state[16–18].
It is easy to prove that the total spin z-component

Ŝz =
∑

i Ŝ
z
i is conserved because it is commutable with

the Hamiltonian (1). All the energy eigenstates can be

classified in terms of the eigenvalue Sz of Ŝz. General-
ly speaking, for a finite antiferromagnetic chain with 2N
spins, the ground state is a spin single state. When D/J
is very large, the ground state can be approximately con-
structed with a superposition of the two Néel states. For
general D/J , we can always construct the following two
eigenstates from the Néel states.{

|+⟩ = c1(|N1⟩+ |N2⟩+O1|O+⟩+ · · · )
|−⟩ = c2(|N1⟩ − |N2⟩+O2|O−⟩+ · · · ),

(2)

where |O±⟩ is defined as
∑2N−1

i=1 (Ŝ+
i · Ŝ−

i+1 + Ŝ−
i ·

Ŝ+
i+1)(|N1⟩±|N2⟩), and c1, c2, O1, and O2 are coefficients

to be determined. Actually, our exact diagonalization re-
sults show that when 2NS is even, the ground state G is
|+⟩ and the first excitation E1 is |−⟩; and when 2NS is
odd, we have G=|−⟩ and E1=|+⟩. This is in accordance
with the theoretical results obtained by spin coherent s-
tate path integral[26, 27]. The higher excitation states
with Ei (i ≥ 2) can be constructed in the similar way.

2.2 Quantum dynamics of Néel states

We shall mainly focus on the subspace of the states
with Sz = 0 because the ground state and the low exci-
tation states including the Néel states belong to this sub-
space. For convenience, we shall use |g⟩ and |ei⟩ (i ≥ 1)
to denote all the eigenstates in the Sz = 0 subspace. Be-
cause this subspace is closed under the Hamiltonian (1),
the time evolution of the two Néel states can be expanded
as

|Ña(t)⟩ = fa
0 e

iE0t/~|g⟩+
∑
j≥1

fa
j e

iEjt/~|ej⟩, (3)

where Ej and fa
j (j ≥ 0, a =1,2) are the eigenvalues

and expansion coefficients of the j-th eigenstates. Here,
of course, we have |Ña(0)⟩ = |Na⟩, |g⟩=G, and |e1⟩=E1.

Then, the weight of |Na⟩ in |Ña(t)⟩ can be expressed as

χ2
a(t) = |fa

0 +
∑
j≥1

fa
j e

i∆Ejt/~|2, (4)

where ∆Ej = Ej−E0. The total Néel weight of |N1⟩ and
|N2⟩ in |Ñ1(t)⟩ can be defined as WN (t) = χ2

1(t) + χ2
2(t).

WN (t) reflects how well the Néel states describe the quan-
tum antiferromagnetic chain. The two-state approxima-
tion results in a simplified expansion of |Ña(t)⟩, such as

|Ñ1(t)⟩ ∝ cos(
∆E1

2~
t)|N1⟩+ sin(

∆E1

2~
t)|N2⟩. (5)

We present χ2
1(t) and WN (t) in Fig. 3 for D/J=10 ,

3, and 1. For χ2
1(t), the two-state approximation is al-

so presented for comparison. It is clear that χ2
1(t) is a
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FIG. 2. The eigen energies (E/J) of Hamiltonian (1) for S = 1 (a) and S = 3/2 (b), with D/J = 10, 3, and 1.

TABLE I. The N -dependent energy gap ∆E between the ground state G and the first excitation E1 for two spin values (1 and
3/2) and three D/J (1, 3, and 10).

N = 1 N = 2 N = 3 N = 4 N = 5

S = 1 D/J = 1 0.561 0.158 4.76× 10−2 1.43× 10−2 4.32× 10−3

D/J = 3 0.275 3.66× 10−2 4.95× 10−3 6.68× 10−4 9.03× 10−5

D/J = 10 9.48× 10−2 4.41× 10−3 2.05× 10−4 9.56× 10−6 4.46× 10−7

S = 3/2 D/J = 1 0.228 1.24× 10−2 6.64× 10−4 3.56× 10−5 1.90× 10−6

D/J = 3 4.53× 10−2 4.44× 10−4 4.34× 10−6 4.25× 10−8 4.15× 10−10

D/J = 10 5.09× 10−3 5.69× 10−6 6.36× 10−9 7.96× 10−12 8.81× 10−15

periodic function of t and WN (t) is almost a constant ex-
cept a narrowly oscillating noise due to the higher states.
For small D/J such as 1, the maximal value of χ2

1(t)
is approximately 0.8 and the Néel weight WN (t) is less
than 0.9, but for large D/J such as 10, χ2

1(t) can be well
described with cos2(t/2T ) and the Néel weight becomes
larger than 0.99. Here, the time period is equivalent to
P = 2πT , and 1/T reflects the switching rate (or frequen-
cy) between the two Néel states. It is surprising that for
this case of S = 2 and N = 2, T increases by five orders
of magnitudes when D/J changes from 1 to 10.

2.3 Life times of Néel states

Because χ2
1(t) is a well-defined periodic function of

t, the quantity T , the time spent by a switching cir-
cle between the two Néel states, can be used to char-
acterize the life times of the Néel states. In the case of
two-spin chains (N = 1) with S ≤ 3, we can calculate

eigenstates and |Ña(t)⟩ exactly. For S = 1, we obtain

∆E1 = J [
√

4(D/J)2 + 4D/J + 9−2D−1]/2, and T can
be expressed as (2D/J + 1)/2 when D/J is large. For
higher spins, we can achieve T ∝ (2D/J + 1)2S−1 for
both integer and half odd integer spins by using a usual
perturbation method. Generally speaking, we can also
use exact diagonalization method to calculate ∆E and T
for arbitrary S and N . In Fig. 4 we present the calculat-
ed T as functions of D/J for N = 1, with S taking nine
values from 1 to 5. In Fig. 5 we present our accurate
calculated T curves for N=1 through 4 and S=1, 3/2, 2,
and 5/2.

It is very interesting that all these (D/J)-T curves can
be satisfactorily fitted with one simple function,

T = A
~
J
(2

D

J
+ 1)N(2S−1) (6)

where A is a constant depending on S and N only. It
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FIG. 3. The time dependence of χ2
1(t) (black lines in the left

column) and WN (t) (the right column) for S = 2, 2N = 4,
and D/J = 10 (a,d), 3 (b,e), and 1 (c,f), respectively. The
two-state approximated results of χ2

1(t) (blue dash lines in the
left column ) are also presented for comparison.
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FIG. 4. The life times T (in unit of ~/J) of the two-spin
chains as functions of D/J for nine S values, fitted with Eq.
(5).

TABLE II. The N -dependent Néel weights in the ground state
(G) and the first excitation (E1) for different S and D/J .

N = 1 N = 2 N = 3 N = 4 N = 5

S = 1 D/J = 1 G 0.864 0.750 0.693 0.634 0.575

E1 1.000 0.854 0.735 0.650 0.580

D/J = 3 G 0.964 0.935 0.916 0.892 0.867

E1 1.000 0.958 0.921 0.893 0.868

D/J = 10 G 0.996 0.991 0.988 0.985 0.980

E1 1.000 0.994 0.989 0.985 0.980

S = 3/2 D/J = 1 G 0.900 0.875 0.822 0.770 0.720

E1 0.968 0.882 0.823 0.770 0.720

D/J = 3 G 0.985 0.946 0.957 0.941 0.926

E1 0.991 0.973 0.957 0.941 0.926

D/J = 10 G 0.999 0.995 0.994 0.992 0.991

E1 0.999 0.996 0.994 0.992 0.991
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FIG. 5. The life times T (in unit of ~/J) of the 2N chains as
function of D/J for S = 1 (a), S = 3/2 (b), S = 2 (c), and
(d) S = 5/2, fitted with Eq. (5).

is surprising that, as we show in Fig. 6, A can be well
fitted with A = baN , and furthermore the parameters a
and b can be well fitted with a = 0.2427 × 4.1545S and
b = 0.5007 × S−2.0713. The fitted data of A, a, and b
are summarized in Table III. Consequently, we obtain a
unified expression for T as functions of D, J , N , and S.
It can be used to extrapolate T with given D and J for
higher S and larger N . It should be pointed out that
although T increases with increasing D or decreasing J ,
too small J will be harmful to stability against thermal
fluctuations. Although T increases exponentially with N
increasing, one cannot use too long spin chains for prac-
tical information storage because the Néel weight will
decrease with N increasing. Therefore, for a practically
useful system, one should keep a balance between a large
T and a good stability of the Néel states.

Page 4 of 6RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



5

TABLE III. Fitted results of A, a, and b for the antiferromag-
netic spin-S chains including 2N spins.

Spin
A

a b
N=1 N=2 N=3 N=4

S=1 0.506 0.519 0.531 0.542 1.023 0.4952

S=3/2 0.445 0.909 1.839 3.725 2.029 0.2202

S=2 0.500 2.039 8.527 36.47 4.178 0.1183

S=5/2 0.640 5.245 47.49 371.9 8.415 0.07596

S=3 0.894 15.74 289.2 4871 17.68 0.05080
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(s

)

N

(a)

FIG. 6. (a) Fitting of the numeric results of A depending on
N for different S; (b) fitting of a depending on S; (c) fitting of
b depending on S; and (d) Plot of the life time T (in second)
depending on N defined in Eq. (6) for the Fe adatom spin
chains on Cu2N surface.

2.4 Long life times in real adatom spin chains

For the short antiferromagnetic chains of Fe adatom
spins on Cu2N surface, experimental result reveals that
S = 2, J = 0.7 meV, and D = 1.87 meV [5]. In this case,
we have D/J = 2.67, belonging to the regime of strong
uniaxial anisotropy. As a result, we obtain a simple for-

mula of T (in second) depending on N ,

T = 1069N × 1.120× 10−13. (7)

We plot it in Fig. 6(d). The expression (6) implies that
the switching rate (1/T ) will be decreased approximately
by 1000 times when we add two more Fe-adatom spins to
the chain, which is consistent with the low-temperature
limit (with external thermal effects being frozen) of the
experimental results[3].

This implies that the life times T can be very long,
reaching 1.9 days, 5.7 years, and 6057 years when N is
equivalent to 6, 7, and 8, respectively. This theoretical
trend is also consistent with the experimental result of
the Fe-adatom spin system[3]. These results show that
for such antiferromagnetic chains, 14 or 16 spins (for 2N)
should be enough to achieve stable Néel states for prac-
tical information storage.

On the other hand, for practical usage, we need to
consider other factors affecting the life times of Néel s-
tates. First, we consider possible transverse single-ion
anisotropy E and transverse magnetic field Bx which ap-
pear as additional

∑
i{E[(Ŝx

i )
2− (Ŝy

i )
2]+γBxŜ

x
i } in the

Hamiltonian. Our calculations reveal that as long asD/J
is not less than 1, there is little change in T even when
E/J and γBx/J reach to 0.2. Then, we investigate effect
of spin exchange anisotropy on T , showing that the effect
is very small for D/J > 1. Therefore, our T results are
robust and technically sound.

3. Conclusions

In summary, we have investigated the intrinsic quan-
tum dynamics and life times of Néel states in the quan-
tum Heisenberg antiferromagnetic chains with strong u-
niaixal single-ion anisotropy. For typical values of spin,
chain length, and magnetic anisotropy, we have used ex-
act diagonalization method to accurately calculate eigen-
values and eigenfunctions, and shown rigorously that the
ground state and the first excitation are both safely sep-
arated from the other states and can be well described
with the two Néel states as long as both D/J and S are
large enough and N is not too large. Through investigat-
ing accurate time evolution of the Néel states, we have
determined their switching rates and life times. Surpris-
ingly, we have achieved a unified powerful expression of
the life times for arbitrary values of N , S, D, and J .
Furthermore, we show that for the Fe-adatom spin anti-
ferromagnets on Cu2N semiconductor surface[1–3], 2N=
14 or 16 is large enough to achieve practically long life
times for the Néel states. These theoretical results should
be useful to help realize the Néel state storage of infor-
mation and atomic-scale antiferromagnetic spintronics.
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