

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	
2	Determination of sub-ng g ⁻¹ Au in geological samples by ion
3	molecule reaction ICP-MS and CH ₄ plasma modifier
4	
5	
6	Wei Guo*, Wenke Xie, Lanlan Jin, Qinghai Guo, and Shenghong Hu*
7	
8	
9	State Key Laboratory of Biogeology and Environmental Geology, School of
10	Environmental Studies, China University of Geosciences, Wuhan, 430074, PR
11	China
12	
13	
14	
15	
16	*Corresponding author. Fax: (+86) 27-67883456; Tel: (+86) 27-67848602.
17	E-mail address: guowei012345@163.com (Wei Guo); shhu@cug.edu.cn (Shenghong
18	Hu)
19	
20	

RSC Advances Accepted Manuscript

21 Abstract

Direct determination of sub-ng g⁻¹ levels of gold by inductively coupled plasma mass 22 spectrometry (ICP-MS) is complicated because of the presence of serious mass 23 interferences, and the high first ionisation energy of Au (9.225 eV) also results in poor 24 analytical sensitivity. A reliable method based on the combination of ion molecule 25 reaction (IMR) ICP-MS and addition of a CH₄ plasma modifier technique was 26 27 evaluated for the direct determination of Au in geological samples. The interfering ¹⁸¹Ta¹⁶O⁺ and ¹⁸⁰Hf¹⁶OH⁺ (the sample matrix source) on the mono-isotope ¹⁹⁷Au were 28 successfully eliminated by oxidation using O_2 as the reaction gas. The deduced IMR 29 mechanism in the reaction cell involved the oxidation of ¹⁹⁷TaO⁺ and ¹⁹⁷HfOH⁺ to the 30 higher oxides ${}^{213}\text{TaO}_2^+$ and ${}^{213}\text{HfO}_2\text{H}^+$, ${}^{229}\text{TaO}_3^+$ and ${}^{229}\text{HfO}_3\text{H}^+$, and ${}^{245}\text{TaO}_4^+$ and 31 245 HfO₄H⁺, while the target Au does not react with O₂. In addition, to further improve 32 the method's signal to background ratio (SBR), a CH₄ modifier was introduced to the 33 ICP plasma at 2 mL min⁻¹; the poor sensitivity of Au⁺ was increased by a factor of 34 four and the background signal (at m/z 197) was decreased to 50%. The improvement 35 of the SBR (eight fold) was due to both the carbon enhancement effect (for Au) and 36 the carbon competition effect (with the interfering oxide ions) in the CH₄ modified 37 38 plasma. The proposed method was applied to the direct determination of Au in ten 39 different types of geological standard reference materials (SRMs). The results of all SRMs were found to agree well with the certified values. This method has great 40 potential for the direct determination of trace levels of Au in various geological 41 samples. 42

43

44 Introduction

Quantifying Au abundance in geological samples is critical for exploring areas such as planetary differentiation, core-mantle interaction manifesting as plume volcanism, meteorite impacts and the effects thereof ¹⁻³. However, gold is typically present in common terrestrial rocks at low to sub-ng g⁻¹ (parts-per-billion) levels ¹ and very difficult to quantify accurately. Thus, highly sensitive analytical techniques are required for Au determination in geological samples.

51 Inductively coupled plasma mass spectrometry (ICP-MS) has been widely used for the determination of trace levels of Au and other metals ⁴⁻⁶, because it offers 52 exceptional sensitivity and/or higher throughput than other elemental analysis 53 54 techniques, such as atomic absorption spectroscopy (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES), instrumental neutron activation 55 analysis (INAA), and total reflection X-ray fluorescence spectrometry (TXRFS). 56 Unfortunately, the direct analysis of geological samples via ICP-MS is a challenging 57 task because of (i) the presence of significant oxides and hydroxides of matrix metals 58 (*i.e.* 181 Ta 16 O⁺ and 180 Hf 16 OH⁺) which interfere with the monoisotope 197 Au (Table 1); 59 60 (ii) the poor analytical sensitivity for Au due to its low ionisation efficiency (<50%) in Ar plasma ⁷; and (iii) the low concentration of $0.1-10 \text{ ng g}^{-1}$ in most samples ⁸. 61 Although the mass interferences can be corrected using mathematical equations that 62 include ${}^{181}\text{Ta}{}^{16}\text{O}{}^{+}/{}^{181}\text{Ta}{}^{+}$ and ${}^{180}\text{Hf}{}^{16}\text{OH}{}^{+}/{}^{180}\text{Hf}{}^{+}$ ratios, the results for ${}^{197}\text{Au}{}^{+}$ 63

64 determination have large errors because both the Ta and Hf contents are thousands of 65 times higher than the Au content in geological samples (*i.e.* rock and sediment).

It is almost impossible to directly determine Au quantitatively through an 66 ICP-MS method and a separation and pre-concentration stage to account for the 67 removal of the matrix interferences and low abundances is required. The predominant 68 separation and pre-concentration method is nickel sulfide (NiS) fire assay ⁹⁻¹¹, which 69 70 has been modified into a good geochemical exploration tool in many geological analytical laboratories. Although fire assay is used extensively, it is highly labour 71 intensive, the large amounts of reagents required often elevate blank levels to low ng 72 g^{-1} levels, and one of its most serious limitations is a dependence of the quality of 73 results on the experience of the analyst⁸. Anion-exchange procedure was attempted to 74 75 separate the Au and platinum group metals (PGEs) from matrix elements, and 0.3 mol L^{-1} thiourea was used to elute Au. Their results indicated that the acceptable recovery 76 was acquired for some of the selected geological samples containing high 77 concentrations (*i.e.* > 1,000 ng g⁻¹) of Au; however, poor recovery (<50%) and 78 precision were obtained for most geological samples (< 200 ng g^{-1}). Although the 79 decomposition of eluates (theiourea) with HNO₃ prior to analysis was attempted to 80 reduce the total dissolved solids (TDS), this led to poorer and more erratic results, and 81 increased contamination^{8, 12}. 82

Recently, Yim et al. ¹³ reported a method based on collision cell technique (CCT) to remove the polyatomic ions ($^{181}Ta^{16}O^+$ and $^{180}Hf^{16}OH^+$) and for the direct determination of Au in rocks. However, the capability for the elimination of oxide

86	interferences is limited (<i>i.e.</i> $5-50$ fold for TaO ⁺ and HfOH ⁺) because the hexapole
87	rods CCT cannot effectively filter out the generation of new TaO^+ and $HfOH^+$ from Ta
88	and Hf. Fortunately, an alternative strategy based on selective ion-molecule reactions
89	in a quadrupole dynamic reaction cell (DRC) has proved to be effective for the
90	alleviation of mass spectral interferences ¹⁴⁻¹⁶ . Some studies ^{17, 18} on reducing the
91	interferences using O_2 as the reaction gas in a DRC have been published since the first
92	systematic study carried out by Simpson et al. ¹⁹ . In our previous works, the methods
93	of ion molecule reaction ICP-MS with O_2 as the reaction gas has been successfully
94	used to eliminate the complicated oxide interferences for the direct determination of
95	Cd, Ag, Hg, and As in environmental and biological samples ²⁰⁻²⁷ .

Additionally, like other particular elements (*i.e.* As, Se, and Hg), Au sensitivity in 96 97 ICP-MS is only 30–50% that of most metal elements (i.e. Li, In, and Bi), which is due to its high ionisation potential (9.225 eV)²⁸. As reported in our recent papers, the 98 addition of small amounts of carbon-containing compounds (*i.e.* methanol, glycerol) 99 to the ICP plasma can improve the signal intensities of As and Se up to 3-5 times $^{20, 24}$. 100 $^{27, 29}$. The signal enhancement of elements with high ionisation potential (9–11 eV) is 101 102 mainly due to the increased degree of ionisation in carbon-modified plasma, which due to the charges transfers from C⁺-species to analyte atoms in the central channel of 103 the plasma discharge.³⁰⁻³⁶. 104

The aim of this work was to develop a reliable method for direct determination of sub-ng g^{-1} Au in geological samples using ion molecule reaction ICP-MS with a CH₄ plasma modifier. The elimination of the interfering ¹⁸¹Ta¹⁶O⁺ and ¹⁸⁰Hf¹⁶OH⁺ on

¹⁹⁷Au was evaluated through the reaction with CH₄ gas in a DRC in combination with the addition of CH₄ gas to the ICP plasma to improve SBR by increasing the poor sensitivity of Au⁺ and decreasing the background signal. Optimisation of this technique, the ion molecule reaction mechanism, the performance of the analytical method, and its application to the direct determination of trace Au in a series of geological standard reference materials (SRMs) are described.

114

115 **Experimental**

116 **Instrumentation**

A PerkinElmer[®] NexION[®] 300D ICP-MS instrument with DRC (PerkinElmer, 117 Inc., Shelton, CT, USA) has been described in detail elsewhere ²⁷. The diagram of the 118 experimental setup is shown in Fig. S1 (Seen ESI[†]). CH₄ (99.999%) gas was added 119 through an additional port in the cyclonic spray chamber (PC³, Elemental Scientific, 120 USA) via a calibrated mass-flow controller (32907, Cole-Parmer, USA), capable of 121 regulating minute (measuring range of 0–10 mL min⁻¹, precision of 0.01 mL min⁻¹) 122 flows of the gas. O₂ (99.999%) was selected as the reaction gas in a DRC owing to its 123 124 high reaction efficiency for Au determination. The instrumental operating parameters 125 used in this work are summarised in Table 2.

126 **Reagents and standards**

High purity water ($\geq 18.2 \text{ M}\Omega\text{-cm}^1$) used for preparation of the blank, standards,

128	and samples was obtained from a Millipore water purification system (Millipore,
129	France). Nitric acid (99.9999%), hydrofluoric acid (99.999%), and hydrochloric acid
130	(99.999%) were purchased from Alfa Aesar Ltd (Tianjing, P.R. China). Single element
131	stock solutions (Au, Ta, Hf, and Tl) were purchased from the National Center for
132	Analysis and Testing of Steel Materials, China. Ten geological SRMs were used to
133	evaluate the accuracy of the established method, which included two sediments, four
134	rocks, and four trace gold ores. Two of these SRMs (AGV-1 andesite and BCR-2
135	basalt) were purchased from the United States Geological Survey (USGS) and the
136	remainder (GBW07107 shale, GBW07108 argillaceous limestone, stream sediments
137	GBW07309 and GBW07311, and trace gold ores GBW07805, GBW07806,
138	GBW07242, and GBW07243a) from the Institute of Geophysical and Geochemical
139	Exploration of China (IGGE).

140 Sample preparation

0.5000 g of the homogenised sample was weighed into a 25 mL comparison tube,
and then 6 mL of aqua regia, and 2 mL of HF were added. After the samples were
decomposed entirely by heating on a hot plate at 150 °C overnight, each solution was
evaporated. Then, 2 mL of 2:1 aqua regia : HF mixed acid was added and heated at
150 °C overnight. After this solution was evaporated, residues were dissolved in 5%
aqua regia and diluted to 100g using 2% aqua regia. After filteration, the solution was

RSC Advances Accepted Manuscript

Results and Discussion

150 **Reduction of oxide interferences**

As the two predominant sources of mass interference in ¹⁹⁷Au determination, the 151 presence of ¹⁸¹Ta¹⁶O⁺ and ¹⁸⁰Hf¹⁶OH⁺ can result in significant positive bias. In our 152 previous study ²⁷, a method based on an ion molecule reaction was conducted to 153 alleviate potential interference in Se determination, and the interfering ion $({}^{40}Ar^{40}Ar^{+})$ 154 155 was successfully eliminated using CH_4 as the reaction gas in the DRC. A charge transfer reactions possible: $Ar_2^+ + CH_4 \rightarrow Ar + Ar + CH_4^+$, $\Delta H_r = -181$ kJ/mole, or 156 $Ar_2^++CH_4 \rightarrow Ar+Ar+CH_3^++H$, $\Delta H_r = -10$ kJ/mole ³⁷. The precondition of this charge 157 transfer is the ionization energy (IE) of reaction ions higher than that of the reaction 158 molecule, i.e, 14.4 eV $(Ar_2^+) > 12.6$ eV $(CH_4)^{37}$. However, the reductive gas CH_4 159 cannot react with the complicated oxide-based interferences ¹⁸¹Ta¹⁶O⁺ and ¹⁸⁰Hf¹⁶OH⁺ 160 by charge transfer, which due to the IE of TaO (8.61 eV ^{38, 39}) and HfOH (no available 161 data, only IE of HfO is 7.60 eV^{39,40}) much lower than that of CH₄ (12.6eV). Another 162 reaction scheme based on O_2 -atom transfer reactions was explored to address the 163 above interferences in Au determination. SBR was used as a criterion for the 164 optimisation of DRC conditions. Fig. 1 shows the effects of O_2 gas flow rate on the 165 signals of the matrix blank and 1 ng mL⁻¹ Au + matrix blank at m/z 197. A mixture of 166 700 ng mL⁻¹ Ta, 5,300 ng mL⁻¹ Hf, and 2 % agua regia was treated as the matrix blank 167 to simulate the interfering elements on Au according their average crustal abundances. 168 As shown in Fig. 1, at a low O₂ flow rate, there was a sharp increase in the signals of 169

interfering species at m/z 197. With increasing O_2 flow rate, the background signal decreased rapidly at m/z 197 (Fig. 1); the optimum O_2 flow rate was 2.0 mL min⁻¹ and the signal at 197 amu, generated by interfering ions was reduced by three orders of magnitude (from 630,125 to 432 cps).

The reaction mechanism between O₂ and various ions in the DRC were explored 174 175 by monitoring related mass spectra in ICP-MS. The procedure of reactions between Ta or Ta-oxides and O2 was monitored throughout the course of an optimisation 176 procedure with increasing O_2 gas flow rates. As shown in Fig. 2, the ¹⁸¹Ta¹⁶O⁺ signal 177 intensity increased initially and reached a maximum, followed by ²¹³TaO₂⁺, ²²⁹TaO₃⁺, 178 and ²⁴⁵TaO₄⁺. Finally, at the optimised gas flow rate of 2.0 mL min⁻¹, the signal 179 intensity was 11,708 cps for ²¹³TaO₂⁺, but only 427 cps for ¹⁹⁷TaO⁺ (Fig. 2). Similar 180 181 types of multiple oxide generation profiles can also be seen for Hf-hydroxides. Therefore, the interference from ¹⁸¹Ta¹⁶O⁺ and/or ¹⁸⁰Hf¹⁶OH⁺ in ¹⁹⁷Au⁺ determination 182 was significantly reduced by the reactions with molecular oxygen, and the proposed 183 184 ion molecule reaction mechanisms are given as follows:

185
$$M^+ \rightarrow MO^+/MOH^+ \rightarrow MO_2^+/MO_2H^+ \rightarrow MO_3^+/MO_3H^+ \rightarrow MO_4^+/MO_4H^+$$

M represents Ta or Hf. In addition, a high rejection parameter q (Rpq) value of 0.80 was selected to filter out large Ta⁺ and Hf⁺, which effectively prevent the generation of fresh TaO⁺ or HfOH⁺ from Ta⁺ and Hf⁺. Similar dioxides and higher oxide formation from mono-oxides (i.e. MO⁺) have been reported by Bohme's group ⁴¹, who used an inductively coupled plasma/selected ion flow tube (ICP/SIFT) tandem 191 mass spectrometer.

192 Improvement of signal to background ratio by CH₄ plasma modifier

193 It is well known that addition of a small amount of carbon to the plasma can improve the SBR by increasing the analyte signal and/or decreasing the background signal ^{28, 33,} 194 ⁴²⁻⁴⁴. Our recent studies showed that the signal of As or Se can be improved three- to 195 four-fold by addition of 4% methanol or ethanol to the analytical solution ^{20, 24, 27, 29}; 196 meanwhile, the signal of double-charged ions (Ce^{2+}) and oxide ions (ZnO^{+} , NiO^{+} , and 197 CuOH) are reduced by a factor of two to six ^{27, 29}. In this experiment, to improve the 198 poor signal of Au and further reduce the background interferences, CH₄ gas was used 199 as the carbon source by directly introducing it to the spray chamber. Signal intensities 200 of ¹⁹⁷Au⁺ after blank corrections as a function of CH₄ gas flow rate are illustrated in 201 Fig. 3a. The results show that 2 mL min⁻¹ CH₄ can lead to a five-fold improvement in 202 the maximum sensitivity for ¹⁹⁷Au⁺ over that of without CH₄. This 203 signal enhancement phenomenon can be explained by a charge transfer reaction occurring 204 between the positively charged carbon species (i.e. C, 11.26eV, C₂, 12.00eV, CO, 205 14.00eV, and CO₂ 13.70eV) and the high ionisation energy element (*i.e.* Au, 9.225eV) 206 in the central channel of the plasma ^{7, 30, 31, 36}. On the other hand, addition of carbon to 207 208 the plasma can alleviate the interference (oxide or hydroxide ions) on Au at m/z 197, which due to the conversion of MO^+ species into M^+ by reaction with C ^{27, 30, 45}. Fig. 209 3b illustrates the signals of oxide and hydroxide ions (TaO⁺ and HfOH⁺) in CH₄-Ar 210 mixed gas (2 mL min⁻¹ CH₄) plasma DRC-ICP-MS (normalised to the pure Ar-plasma 211

212	DRC-ICP-MS) as a function of nebulizer gas flow rates. When the nebulizer gas flow
213	rate was higher than 0.77 L min ⁻¹ , the interference signals of TaO^+ and $HfOH^+$ were
214	effectively suppressed with the addition of CH_4 gas in the plasma (Fig. 3b), and the
215	signals of oxide or hydroxide ions at m/z 197 decreased up to 50% at a nebulizer gas
216	flow rate of 0.80 L min ⁻¹ . The reduction in mono-oxide ions (MO^+) may have
217	originated from the competitive formation of M^+ over MO^+ in the presence of carbon,
218	which through the reactions between C with MO^+ ($MO^+ + C \rightarrow M^+ + CO$) ^{27, 30, 45} . It
219	was also found that the interference reduction and Au signal enhancement highly
220	depend upon the nebulizer gas flow rate in the CH ₄ -Ar mixed plasma. A relatively
221	high nebulizer gas flow rate facilitates the suppression of interfering ions, whereas
222	improvement of the Au signal requires a relatively low nebulizer gas flow rate (Fig. 3).
223	Therefore, a protocol involving a compromise of using a nebulizer gas flow rate of
224	0.80 mL min ⁻¹ was selected to obtain the best SBR. Compared to the method without
225	addition of a CH ₄ plasma modifier, the SBR of this method was improved by eight
226	times with contributions from two fold reduction of the background (TaO ⁺ and HfOH ⁺)
227	signal and the four fold improvement of the analyte (Au^+) signal.

228 Analytical performances

Standard solutions with Au concentrations from 0.05 to 50 ng mL⁻¹ were analyzed to construct a calibration curve (Y = 205,250X + 126) with a correlation coefficient of 0.999. Compared to the conventional ICP-quadrupole mass spectrometry (QMS) method, the SBR of Au was increased from 0.16 to 1,200 (the certified Au

concentration is 1 μ g L⁻¹) by the proposed method involving ion molecule reaction 233 ICP-MS with a CH_4 plasma modifier (Table 3). The SBR was calculated by the ratio 234 of the signal intensity (at 197 amu) of 1 µg L⁻¹ Au and the simulated background 235 matrix (a mixture of 700 ng mL⁻¹ Ta, 5,300 ng mL⁻¹ Hf, and 2 % aqua regia). The 236 limit of quantification (LOO, ten times the standard deviation of produce blank) was 237 0.008 ng g^{-1} for Au, which was better than these reported in the literatures^{9, 12} using 238 the conventional separation and/or pre-concentration procedures ($0.05-2.0 \text{ ng g}^{-1}$). 239 240 The LOQ is expressed as the concentration in the samples, thereby taking into account 241 the dilution factor (200). This sensitivity is sufficient for trace or ultra-trace Au determination in various geological samples, which Au is often found at $0.1-10 \text{ ng g}^{-1}$. 242 Reproducibility was calculated based on triplicate sample digestions and analyses, 243 244 and was generally less than 10% (relative standard deviation, RSD).

245 Geological standard reference material analysis

The proposed method was used to analyse ten different types of geological SRMs, 246 247 which included of four rocks, two sediments, and four trace gold ores. As shown in 248 Table 4, all of the results agreed well with the reference values. The Au concentrations in these samples (0.62–3.6 ng g^{-1}) were similar to the crustal abundance, 1.3 ng g^{-1} . 249 250 For each sample, the relative standard errors were <10%. However, the results by the 251 conventional ICP-MS method were larger (300-500%) than that of the Au values 252 using the reference values and the proposed method (Table 4). Although the results of 253 other two methods (ICP-DRC-MS with O₂ as DRC gas and ICP-MS with addition of

254	CH ₄) were better than that of the conventional ICP-MS method, but they remain
255	higher than the target reference values, which due to the interference of the Ta and Hf
256	(Table 4). Fortunately, it can be solved by our proposed method.

257

258 Conclusion

This study demonstrated that the combination of the ion molecule reaction technique 259 and addition of a CH₄ plasma modifier effectively eliminated the oxide interferences 260 in Au determination via ICP-MS. The predominant interfering ¹⁸¹Ta¹⁶O⁺ and 261 180 Hf¹⁶OH⁺ on 197 Au were reduced by three orders of magnitude using methane as the 262 DRC reaction gas. When CH₄ gas modifier was added to ICP plasma at 2 mL min⁻¹, 263 the background signal originating from the interfering residual oxide and/or 264 hydroxides ions was further reduced by up to 50%; meanwhile, the poor sensitivity of 265 ¹⁹⁷Au⁺ was improved four fold. This method has potential as a routine laboratory 266 method for the determination of sub-ng g^{-1} levels of Au in various geological samples. 267

268

269 Acknowledgements

This work was supported by the National Nature Science Foundation of China (No.
21207120) and the National Key Scientific Instrument and Equipment Development
Projects of China (No. 2011YQ06010008) and the Fundamental Research Funds for
the Central Universities, China University of Geosciences (Wuhan), and the Research

274 Program of State Key Laboratory of Biogeology and Environmental Geology of

275 China (No. GBL11505).

276

277 **References**

278	1.	J. C. Ely, C. R. Neal, J. A. O'Neill and J. C. Jain, <i>Chem Geol</i> , 1999, 157,
279		219-234.
280	2.	L. Pattou, J. P. Lorand and M. Gros, Nature, 1996, 379, 712-715.
281	3.	N. J. Evans, D. C. Gregoire, R. A. F. Grieve, W. D. Goodfellow and J. Veizer,
282		Geochimica Et Cosmochimica Acta, 1993, 57, 3737-3748.
283	4.	P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin
284		and S. Gross, Rsc Adv, 2015, 5, 16302-16310.
285	5.	I. G. Tanase, D. E. Popa, G. E. Udristioiu, A. A. Bunaciu and H. Y.
286		Aboul-Enein, Rsc Adv, 2015, 5, 11445-11457.
287	6.	H. C. Wu, T. Y. Su, T. L. Tsai, S. B. Jong, M. H. Yang and Y. C. Tyan, Rsc Adv,
288		2014, 4 , 39226-39230.
289	7.	G. Grindlay, J. Mora, M. de Loos-Vollebregt and F. Vanhaecke, Spectrochim
290		<i>Acta B</i> , 2013, 86 , 42-49.
291	8.	I. Jarvis, M. M. Totland and K. E. Jarvis, Chem Geol, 1997, 143, 27-42.
292	9.	K. Oguri, G. Shimoda and Y. Tatsumi, Chem Geol, 1999, 157, 189-197.
293	10.	R. Juvonen, T. Lakomaa and L. Soikkeli, Talanta, 2002, 58, 595-603.
294	11.	H. G. Plessen and J. Erzinger, Geostandard Newslett, 1998, 22, 187-194.
295	12.	I. Jarvis, M. M. Totland and K. E. Jarvis, Analyst, 1997, 122, 19-26.
296	13.	S. A. Yim, M. S. Choi and J. S. Chae, J Am Soc Mass Spectr, 2012, 23,
297		171-178.
298	14.	V. I. Baranov and S. D. Tanner, Journal Of Analytical Atomic Spectrometry,
299		1999, 14 , 1133-1142.
300	15.	S. D. Tanner and V. I. Baranov, J Am Soc Mass Spectr, 1999, 10, 1083-1094.
301	16.	S. D. Tanner, V. I. Baranov and U. Vollkopf, Journal Of Analytical Atomic
302		Spectrometry, 2000, 15, 1261-1269.
303	17.	C. C. Chang, H. T. Liu and S. J. Jiang, Analytica chimica acta, 2003, 493,
304		213-218.
305	18.	J. W. Olesik and D. R. Jones, Journal Of Analytical Atomic Spectrometry,
306		2006, 21 , 141-159.
307	19.	L. A. Simpson, M. Thomsen, B. J. Alloway and A. Parker, Journal Of
308		Analytical Atomic Spectrometry, 2001, 16, 1375-1380.
309	20.	W. Guo, S. H. Hu, X. F. Li, J. Zhao, S. S. Jin, W. J. Liu and H. F. Zhang,
310		Talanta, 2011, 84, 887-894.
311	21.	W. Guo, S. H. Hu, X. J. Wang, J. Y. Zhang, L. L. Jin, Z. L. Zhu and H. F.

312		Zhang, Journal Of Analytical Atomic Spectrometry, 2011, 26, 1198-1203.
313	22.	W. Guo, S. H. Hu, Y. F. Xiao, H. F. Zhang and X. J. Xie, Chemosphere, 2010,
314		81 , 1463-1468.
315	23.	W. Guo, S. H. Hu, J. Y. Zhang, Z. C. Hu, H. F. Zhang and Y. X. Wang, Talanta,
316		2012, 91 , 60-64.
317	24.	W. Guo, S. H. Hu, J. Y. Zhang, L. L. Jin, X. J. Wang, Z. L. Zhu and H. F.
318		Zhang, Journal Of Analytical Atomic Spectrometry, 2011, 26, 2076-2080.
319	25.	W. Guo, S. H. Hu, J. Y. Zhang and H. F. Zhang, Sci Total Environ, 2011, 409,
320		2981-2986.
321	26.	W. Guo, S. H. Hu, J. A. Zhao, S. S. Jin, W. J. Liu and H. F. Zhang,
322		Microchemical Journal, 2011, 97, 154-159.
323	27.	W. Guo, S. H. Hu, Y. X. Wang, L. Y. Zhang, Z. C. Hu and J. Y. Zhang,
324		Microchemical Journal, 2013, 108, 106-112.
325	28.	P. Allain, L. Jaunault, Y. Mauras, J. M. Mermet and T. Delaporte, Anal Chem,
326		1991, 63 , 1497-1498.
327	29.	Z. C. Hu, S. Gao, S. H. Hu, H. L. Yuan, X. M. Liua and Y. S. Liu, Journal Of
328		Analytical Atomic Spectrometry, 2005, 20, 1263-1269.
329	30.	Z. C. Hu, S. H. Hu, S. Gao, Y. S. Liu and S. L. Lin, Spectrochim Acta B, 2004,
330		59 , 1463-1470.
331	31.	E. H. Larsen and S. Sturup, Journal Of Analytical Atomic Spectrometry, 1994,
332		9 , 1099-1105.
333	32.	G. C. Y. Chan and W. T. Chan, <i>Spectrochim Acta B</i> , 2003, 58 , 1301-1317.
334	33.	G. Grindlay, L. Gras, J. Mora and M. T. C. de Loos-Vollebregt, Spectrochim
335		<i>Acta B</i> , 2008, 63 , 234-243.
336	34.	J. Machat, V. Kanicky and V. Otruba, Analytical and bioanalytical chemistry,
337		2002, 372 , 576-581.
338	35.	J. Machat, V. Otruba and V. Kanicky, Journal Of Analytical Atomic
339		Spectrometry, 2002, 17, 1096-1102.
340	36.	Z. Arslan, V. Yilmaz and L. Rose, Microchemical Journal, 2015, 123,
341		170-178.
342	37.	B. Hattendorf and D. Gunther, Spectrochim Acta B, 2003, 58, 1-13.
343	38.	J. M. Dyke, A. M. Ellis, M. Feher, A. Morris, A. J. Paul and J. C. H. Stevens, J
344		<i>Chem Soc Farad T 2</i> , 1987, 83 , 1555-1565.
345	39.	NIST, Search for Species Data by Chemical Formula,
346		http://webbook.nist.gov/chemistry/form-ser.html.
347	40.	E. G. Rauh and R. J. Ackermann, J. Chem. Phys., 1974, 60, 1396-1400.
348	41.	G. K. Koyanagi, D. Caraiman, V. Blagojevic and D. K. Bohme, J Phys Chem
349		<i>A</i> , 2002, 106 , 4581-4590.
350	42.	R. M. Olivas, C. R. Quetel and O. F. X. Donard, Journal Of Analytical Atomic
351		Spectrometry, 1995, 10, 865-870.
352	43.	C. D. Pereira, E. E. Garcia, F. V. Silva, A. R. A. Nogueira and J. A. Nobrega,
353		Journal Of Analytical Atomic Spectrometry, 2010, 25, 1763-1768.
354	44.	M. Pettine, B. Casentini, D. Mastroianni and S. Capri, Analytica chimica acta,
355		2007, 599 , 191-198.

356	45.	E. H. Evans and L. Ebdon, Journal Of Analytical Atomic Spectrometry, 1990,
357		5 425-429

358

359

360 Abstract graphic

- 361 Direct determination of Au in geological samples using a combination of
- ion molecule reaction ICP-MS and CH_4 plasma modifier technique

363

Figure captions

- 365
- **Fig. 1** Effects of O_2 gas flow rate on the signal intensities (at m/z 197) of Au + matrix,
- matrix blank, and SBR. The concentration of Au was 1 ng mL⁻¹. A solution of 700 ng matrix blank, and SBR.
- mL^{-1} Ta, 5,300 ng mL⁻¹Hf, and 2 % aqua regia was used as the matrix blank.
- Fig. 2 Effects of O_2 gas flow rate on ion signal intensities of ${}^{181}\text{Ta}^+$, ${}^{181}\text{Ta}{}^{16}\text{O}^+$, ${}^{213}\text{Ta}O_2^+$, ${}^{229}\text{Ta}O_3^+$, and ${}^{245}\text{Ta}O_4^+$. The concentration of Ta was 700 ng mL⁻¹.

Fig. 3 (a) Normalised signal (to that without CH_4 plasma modifier) of ¹⁹⁷Au as a function of the added CH_4 gas flow rate; (b) normalised signals (to that without CH_4 plasma modifier) of Au and background in ion molecule reaction ICP-MS with 2 mL min⁻¹ CH_4 plasma modifier as a function of nebulizer gas flow rate. Au concentration was 1 ng mL⁻¹. A solution of 700 ng mL⁻¹ Ta, 5,300 ng mL⁻¹ Hf, and 2 % aqua regia was used as the background.

	Relative			Potential interferences				Dequired	
Target	abundance	Content in the crust (ng g ⁻¹)	m/z	Element	Relative	Content in the crust	Ovida iona		- Required resolution
	(%)			Element	abundance (%)	$(ng g^{-1})$	Oxide ions		resolution
¹⁹⁷ Au	100	1.2	10(07	¹⁸¹ Ta	99.99	900	¹⁸¹ Ta ¹⁶ O ⁺	196.94	8335
Au	100	1.3	196.97	$^{180}\mathrm{Hf}$	35.08	5300	$^{180}{\rm Hf}^{16}{\rm OH}^{+}$	196.95	12492

Table 1 Potential interferences in target Au analysis via ICP-MS

ICP-MS instrument	Perkin-Elmer [®] NexION [®] 300D ICP-MS
Sample introduction	PFA-400 MicroFlow nebulizer
Spray chamber	Cyclonic spray chamber (PC ³ Peltier Chiller)
Injector tube	1.0 mm id quartz
RF power, W	1,300
Plasma gas flow, L min ⁻¹	16
Auxiliary gas flow, L min ⁻¹	1.00
NT 1 1:	0.82 (Ar-plasma)
Nebulizer gas flow, L min ⁻¹	0.80 (CH ₄ -Ar mixed plasma)
Optional gas (CH ₄), mL min ⁻¹	2.0
Reaction gas O ₂ , mL min ⁻¹	2.0
Rejection parameter, q	0.80
Rejection parameter, a	0
Autolens	on
Dwell time, ms	50
Sweeps	20
Readings	1
Replicates	3
Monitored ratios	¹⁹⁷ Au ⁺
Internal standard	$^{205}\text{Tl}^{+}$

Table 2 Instrument operating parameters

Analytical methods	SBR ^a	$LOQ^{c} (ng g^{-1})$
DRC Ar-CH ₄ mixed plasma-MS (this work)	1200	0.008
Conventional ICP-MS	0.16	0.6
DRC ICP-MS	150	0.02
ICP-MS after NiS fire assay and Te co-precipitation ⁹	_b	0.053 (MLOD ^d)
ICP-MS after microwave digestion, alkali fusion and cation-exchange chromatography ¹²	_ b	2.0

 Table 3 Comparison of the signal to background ratio (SBR), and limit of

 quantification (LOQ) of the five different methods

^a The ratio of the signal intensity (at 197 amu) of 1 μ g L⁻¹ Au and the simulated background matrix (a mixture of 700 ng mL⁻¹ Ta, 5,300 ng mL⁻¹ Hf, and 2 % aqua regia).

^b No available.

^c The LOQ was the limit of quantification (LOQ, ten times the standard deviation of produce blank), which is taken into account the dilution factor (200).

^d Method detection limit (MLOD).

SRM	This method $(n = 5^{a})$	Reference value	ICP-MS ^b	ICP-DRC-MS ^c	ICP-MS with addition of CH ₄ ^d	Та	Hf
AGV-1, andesite	$0.60~\pm~0.04$	0.62	$2.70~\pm~0.22$	0.72 ± 0.16	1.43 ± 0.18	885	5020
BCR-2, basalt	$0.68~\pm~0.05$	0.66	$2.73~\pm~0.18$	$0.80~\pm~0.16$	1.30 ± 0.12	765	4850
GBW07107, shale	1.06 ± 0.12	1.0	$3.25~\pm~0.22$	1.43 ± 0.27	$2.82~\pm~0.20$	852	2750
GBW07108, argillaceous limestone	$0.94~\pm~0.09$	0.94	1.96 ± 0.25	1.19 ± 0.16	1.45 ± 0.15	405	1820
GBW07309, stream sediments	$1.32~\pm~0.12$	1.3	9.40 ± 1.05	1.58 ± 0.25	$4.36~\pm~0.66$	1250	9610
GBW07311, stream sediments	3.55 ± 0.20	3.6	19.6 ± 1.2	4.10 ± 0.72	9.40 ± 0.86	5660	5360
GBW07805, trace gold ore	$0.84~\pm~0.03$	$0.85~\pm~0.05$	$8.25~\pm~0.45$	1.06 ± 0.12	$3.35~\pm~0.25$	955	3220
GBW07806, trace gold ore	$3.12 ~\pm~ 0.14$	$3.10~\pm~0.20$	16.4 ± 2.2	$4.10~\pm~0.56$	7.54 ± 0.65	1060	5290
GBW07242, trace gold ore	$0.48~\pm~0.04$	$0.50~\pm~0.10$	$9.42~\pm~0.92$	$0.65~\pm~0.10$	3.15 ± 0.26	795	5860
GBW07243a, trace gold ore	1.58 ± 0.08	1.60 ± 0.10	$10.5~\pm~0.6$	1.76 ± 0.18	3.50 ± 0.43	886	4547

Table 4 Au in ten geological standard reference materials (SRMs), ng g⁻¹

^a The interval estimation is calculated from 5 independently dissolved sample portions (method repeatability).

^b The conventional ICP-MS method after closed acid digestion procedure (Seen in ESI[†] Table S1).

^c DRC-ICP-MS with O_2 as reaction gas method (no CH₄ added to the plasma) after closed acid digestion procedure (Seen in ESI[†] Table S1). ^d ICP-MS with addition of the CH4 plasma modifier method (no O_2 -DRC) after closed acid digestion procedure (Seen in ESI[†] Table S1).

209x148mm (300 x 300 DPI)

209x148mm (300 x 300 DPI)

296x419mm (300 x 300 DPI)

201x141mm (300 x 300 DPI)