

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Magnetic Fe ₃ O ₄ @MOFs decorated graphene nanocomposites as
2	novel electrochemical sensor for ultrasensitive detection of
3	dopamine
4	Yang Wang, Yun Zhang [*] , Chen Hou, Mingzhu Liu [*]
5	State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal
6	Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical
7	Engineering, College of Resources and Environment, Institute of Biochemical Engineering
8	&Environmental Technology, Lanzhou University, Lanzhou 730000, China
9	Abstract
10	A novel hybrid nanocomposite of magnetic Fe ₃ O ₄ @ZIF-8 (zeolitic imidazolate
11	framework-8 coated Fe ₃ O ₄ nanocomposites denoted as Fe ₃ O ₄ @ZIF-8) decorated
12	RGO (reduced graphite oxide) was prepared by a simple method for the first time and
13	denoted as Fe ₃ O ₄ @ZIF-8/RGO. After the Fe ₃ O ₄ /RGO was formed by solvothermal
14	approach, the MOFs (ZIF-8) was coated on the surface of Fe_3O_4 to get the
15	Fe ₃ O ₄ @ZIF-8/RGO nanocomposite. The resulted Fe ₃ O ₄ @ZIF-8/RGO nanocomposite
16	was characterized by means of the transmission electron microscope (TEM), scanning
17	electron microscopy (SEM), Fourier transform infrared spectra (FT-IR), X-ray
18	diffraction spectrometry (XRD), X-ray photoelectron (XPS), and vibrating sample
19	magnetometer (VSM). This nanocomposite was modified on the glassy carbon
20	electrode to fabricate biosensor which used to electrochemical determination for
21	dopamine (DA) in phosphate buffer solution. The results demonstrated the fabricated

^{*}Corresponding author. Fax: 86-931-8912113;^{*E-mail address:*} zhangyun@lzu.edu.cn(Y. Zhang) *Corresponding author. Fax: 86-931-8912582;^{*E-mail address:*} mzliu@lzu.edu.cn(M.Z. Liu)

RSC Advances Accepted Manuscript

biosensor showed great potential applications in the detection of DA with remarkable enhanced effect on voltammetric response of DA. The linear relationship between the response peak currents and DA concentration was in range from 2.0×10^{-9} to 1.0×10^{-5} M, the limits of detection is 6.67×10^{-10} M.. Moreover, the prepared biosensor also showed good selectivity for DA detection in the presence of ascorbic acid and uric acid and satisfactory result in real samples detection.

28 **1.Introduction**

Metal-organic frameworks (MOFs), as a new kinds of structured hybrid materials 29 that consist of inorganic connectors and organic linker molecules, have attracted 30 enormous interest because of their large accessible surface areas, high porosity, 31 tunable pore sizes, ordered crystalline structures and excellent mechanical stability.¹⁻³ 32 33 These remarkable characteristics helped MOFs showed great potential application in gas adsorption, catalysis, separation and purification.⁴ Because many metal ions used 34 in MOFs are electrochemically active, MOFs are also received growing concerns in 35 electrochemical biosensors field.^{5,6} To enhance the conductivity, stability in aqueous 36 37 solution and electro-catalytic activities of target analytes, the introduction of the other highly conductive and mechanically durable materials into MOFs has been 38 proposed.^{7,8} 39

Graphene, composed of a single-atom-thick two-dimensional sheet of covalently bonded carbon atoms, has extraordinary electronic conductivity, high specific surface area, exceptional electron transfer rate, optical, structural and mechanical properties.⁹⁻¹¹ In recent years, the graphene has been pay close attention to be the 44

RSC Advances

outstanding candidate for potential electrode modifying material because its

45	bio-electrocatalytic properties and physical stability. ^{12, 13} As one kind of chemically
46	derived graphene, reduced graphite oxide (RGO) with similar characteristics to
47	graphene in many aspects has shown great utilization potentiality for application as
48	highly sensitive biosensors. ¹⁴ To overcome the poor dispersibility and being prone to
49	aggregation owing to the strong stacking tendency in the synthesis process of
50	bulk-quantity RGO, decorating the RGO nano-sheets with inorganic nanoparticles
51	during the preparation is the reasonable way which not only decreases restacking for
52	RGO nano-sheets but also enhances the physical and chemical properties. ¹⁵
53	Dopamine (DA) is one of the most significant and representative catecholamine
54	neurotransmitter mediating the transmission of messages within the central nervous
55	system of mammals and humans. An abnormal dopaminergic neuron process may
56	lead to neurological illnesses, such as Parkinson's, Alzheimer's and Schizophrenia
57	diseases. ¹⁶ As the trace level concentration of DA change has been related to various
58	diseases, the rapid, sensitive and accurate measurement to detect the trace amount of
59	DA is of extreme importance. Several methods have been established for DA
60	detection, such as liquid chromatography, chemiluminescence, capillary
61	electrophoresis, fluorescence, and absorbance and colorimetric methods. Because DA
62	can be easily electrochemically oxidized, the electrochemical biosensors have been
63	considered to be superior to other techniques for the determination of DA in view of
64	its high accuracy, fast response, bulk modification with simple instruments, and low
65	operation and instrumental expenses. ¹⁷

66	Zeolitic imidazolate frameworks (ZIFs) is an attractive subfamily of MOFs due to
67	their exceptional chemical and thermal stabilities and the ease of synthesis. In this
68	work, we have developed a simple method to prepare a novel hybrid nanocomposite
69	of magnetic Fe ₃ O ₄ @ZIF-8 decorated graphene with excellent dispersibility and
70	stability in aqueous solution. ¹⁸ In this process, Fe ₃ O ₄ decorated RGO is formed firstly
71	by the solvothermal approach, and then ZIF-8 is synthesized on the surface of Fe_3O_4
72	to get the final products, Fe ₃ O ₄ @ZIF-8/RGO nanocomposite. The designed novel
73	structure of anchoring the Fe ₃ O ₄ @MOFs nanospheres on graphene nano-sheets could
74	not only restrained restacking of the graphene nano-sheets, but also incorporated of a
75	rapid response towards an assistant magnetic field and fascinating electro-catalytic
76	properties. To explore the potential electrochemical application of the
77	Fe ₃ O ₄ @ZIF-8/RGO, the nanocomposite was immobilized on a glassy carbon
78	electrode (GCE) to form a sensing platform for the detection of DA. The results
79	demonstrated that Fe ₃ O ₄ @ZIF-8/RGO modified electrode had a high sensitivity,
80	favorable performance and reproducibility, and excellent selectivity for determination
81	of DA.

82 **2.** Experiment

83 **2.1. Materials and Reagents**

Ferric chloride hexahydrate (FeCl₃·6H₂O), sodium acetate, ethylene glycol (EG), and Zn(NO₃)₂·6H₂O were obtained from Sinopharm Chemical Reagent, Co., Ltd (Shanghai, China). Stock solution of dopamine (0.01 mol L⁻¹) was prepared by dissolving dopamine (0.1531 g) in 100 mL deionized water. The phosphate buffer

solution (PBS, 0.1 mol L⁻¹), which was prepared by mixing Na_2HPO_4 and NaH_2PO_4 stock solution and adjusted to the pH value of 5.0-7.5 with 0.1 mol L⁻¹ H₃PO₄ or NaOH solution, was used as the supporting electrolyte during all measurements.

91 **2.2.** Apparatus

The FT-IR was recorded with a Nicolet Magna-IR spectrophotometer between 4000 92 and 450 cm⁻¹ using the KBr pellet technique. Transmission electron microscopy (TEM, 93 94 FEI Tecnai G20) was obtained to elucidate the dimensions of the nanoparticle. The 95 crystalline structures of samples were characterized by X-ray diffraction (XRD) (RigakuD/max-2400). The chemical analysis for the composites were conducted by 96 X-ray photoelectron spectroscopy (XPS, ESCALAB210, VG, UK). Magnetization 97 measurements were performed on a vibrating sample magnetometry (VSM, 98 99 LAKESHORE-7304, USA). Amperometric measurements were performed on a CHI 100 660E electrochemical workstation.

101 2.3. Preparation of Fe₃O₄/RGO nanocomposites

Graphite oxide (GO) was prepared according to the modified Hummers method.¹⁹ 102 103 Then, Fe_3O_4/RGO nanocomposites were synthesized via the solvothermal approach. Typically, 40 mg of GO was introduced into 30 mL of ethylene glycol (EG) and 104 105 sonicated for 30 min to get brown dispersion solution. Then 0.987 g of FeCl₃ \cdot 6H₂O and 1.946 g of sodium acetate were dissolved in the EG solution of GO by stirring for 106 30 min. After that, the mixture was transferred to a Teflon-lined autoclave and treated 107 at 200 °C for 8 h. The obtained Fe₃O₄/RGO nanocomposites were collected by 108 magnetic decantation and washed with ethanol and distilled water thoroughly. Finally, 109

RSC Advances Accepted Manuscript

110 the nanocomposites were dried at 60 $^{\circ}$ C of 24 h under vacuum.²⁰

111 2.4. Preparation of Fe₃O₄@ZIF-8/RGO nanocomposites

112 0.12 g of Zn(NO₃)₂ was dissolved in 15 mL of 50% ethanol solution containing 2 mmol HCl. 0.35 g of obtained Fe₃O₄/RGO nanocomposites was dispersed in above 113 solution by sonication for 20 min. After that, 30 mL of 50% ethanol solution 114 115 containing 0.34 g 2-methylimidazole was added to the suspension and the mixture 116 was stirred with ultrasound at room temperature for 10 min. The product, 117 $Fe_3O_4@ZIF-8/RGO$ nanocomposites, were collected by a magnet and washed with 118 distilled water and ethanol thoroughly, then dried at 60 °C under the vacuum for 24 h.²¹ 119

120 **2.5.** Preparation of Fe₃O₄@ZIF-8/RGO modified electrode

121 1 mg of Fe₃O₄@ZIF-8/RGO was dispersed in 1 mL of dimethyl formamide (DMF) 122 and the mixture was sonicated for 30 min to achieve a well-dispersed suspension. 123 Prior to modification, the bare GCE was polished to a mirror-like surface sequentially with 1.0, 0.3 mm and 0.05 μ m of a-Al₂O₃, and then rinsed ultrasonically with water 124 125 and ethanol and de-ionized water. After the solvent was evaporated, 5 μ L of Fe₃O₄@ZIF-8/RGO suspension was cast onto the electrode surface. Thus the 126 Fe₃O₄@ZIF-8/RGO nanocomposites modified electrode (Fe₃O₄@ZIF-8/RGO/GCE) 127 was obtained after it was dried in air for approximately 3 h. For comparison, the 128 Fe₃O₄@ZIF-8 modified GCE (Fe₃O₄@ZIF-8/GCE) and GO modified GCE (GO/GCE) 129 130 were prepared only by replacing the Fe₃O₄(a)ZIF-8/RGO suspension with Fe₃O₄(a)ZIF-8 or GO suspension. Fig. 1 shows the preparation of Fe₃O₄@ZIF-8/RGO/GCE 131

and its application for sensing analysis of DA.

136 **2.6. Electrochemical measurement**

137 Electrochemical characterizations of the modified electrodes were performed in 0.1 M phosphate buffer solution (PBS) (pH 5.0) through cyclic scan in the potential 138 139 range from -1.0 to 0.8 V. The electrochemical sensing test of the modified electrode 140 was carried out with a CHI 660E electrochemistry workstation by a conventional 141 three-electrode system, comprising a platinum wire as the auxiliary electrode, a 142 saturated calomel electrode as the reference electrode and the modified GCE as the 143 working electrode in the following procedure: A 15 mL solution containing an appropriate amount of dopamine and 0.1 M PBS was transferred into a voltammetric 144 cell, and then cyclic voltammetry (CV) and differential-pulse voltammetry (DPV) 145 146 measurements were recorded. Real samples determination was experimented by the

standard addition method. The urine and serum samples were diluted with PBS (0.1
M, pH 5.5) and spiked with different amounts of known concentrations of DA, and
measured under the optimal conditions.

150 **3. Results and discussion**

151 **3.1.** Characterization of Fe₃O₄@ZIF-8/RGO nanocomposites

152 The morphologies of the Fe₃O₄/RGO, Fe₃O₄@ZIF-8 and Fe₃O₄@ZIF-8/RGO are 153 characterized by SEM and TEM, and the TEM and SEM images of each synthesized 154 composites are shown in Fig. 2. As shown in Fig. 2a and d, Fe_3O_4 nanoparticles have 155 been decorated on the surface of graphene nano-sheets with a diameter of about 200 nm. The monodisperse core-shell structure of Fe₃O₄(a)ZIF-8 is just like the reported.²¹ 156 The nearly spherical shape of Fe₃O₄(a)ZIF-8 and the formation of the ZIF-8 shell 157 158 could be observed by the SEM image (Fig. 2b) and TEM image (Fig. 2e). Compared with Fe₃O₄/RGO and Fe₃O₄@ZIF-8, the Fe₃O₄@ZIF-8/RGO nanocomposites (Fig. 2c 159 160 and f) combined two features of each composites, the folds of graphene sheets and 161 core-shell structure of Fe₃O₄@ZIF-8 are exhibited obviously in the images. Therefore, 162 demonstrated by TEM and SEM results, the novel Fe₃O₄@ZIF-8/RGO nanocomposites have been successfully prepared. 163

Fig. 2. TEM images of the Fe₃O₄/RGO (a), Fe₃O₄@ZIF-8 (b) and

166 $Fe_3O_4@ZIF-8/RGO$ (c) and SEM images of the Fe_3O_4/RGO (d), $Fe_3O_4@ZIF-8$ (e)

167

and Fe_3O_4 (*i*)ZIF-8/RGO (f)

chemical structures of the Fe₃O₄, Fe₃O₄/RGO, Fe₃O₄@ZIF-8 168 The and Fe₃O₄@ZIF-8/RGO are characterized by FT-IR spectra, as presented in Fig. 3. The 169 spectrum of Fe₃O₄ is just same to the report, and the peak at 580 cm⁻¹ is related to the 170 vibration of Fe-O functional groups.²² While in the FT-IR spectrum of Fe₃O₄/RGO, 171 the bands at 3490 cm⁻¹ and 1200cm⁻¹ appear, which correspond to the stretching 172 vibration of C-H and C-N (in the -C-NH-C- group), respectively.^{23, 24} Compared to the 173 spectrum of Fe₃O₄, the spectrum of Fe₃O₄@ZIF-8 displays different peaks contributed 174 by the ZIF-8 shell. The bands in region of 900-1330 cm⁻¹ and band at 1440 cm⁻¹ are 175 attributed to the imidazole ring, and the band at 422 cm⁻¹ could be assigned to the 176 Zn-N stretch mode.^{21, 25} The spectrum of Fe₃O₄@ZIF-8/RGO nanocomposites also 177 combines the features of above composites, and shows the characteristic absorption 178 bands of each constituent part. Overall, the FT-IR spectra confirmed the formation of 179 180 $Fe_3O_4(a)ZIF-8/RGO$ structure.

182

183

Fig. 3. FT-IR spectrum of Fe₃O₄, Fe₃O₄@ZIF-8, Fe₃O₄/RGO and

 Fe_3O_4 (*a*)ZIF-8/RGO nanocomposite

The crystal structure of the as prepared samples have been identified by X-ray 184 power diffraction techniques and the XRD spectrum are show in Fig. 4. The intense 185 186 and sharp peak at 10.6° in the spectrum of GO is attributed to the crystalline plane of 187 graphite oxide, and the diffraction peaks of Fe_3O_4 can be assigned to a superposition of standard XRD pattern of face-centered cubic Fe₃O₄.²⁶ However, the peak at 10.6° 188 has entirely disappeared after the Fe_3O_4 decorated on the graphene through 189 hydrothermal reaction because EG could reduce GO and Fe^{3+} to graphene and Fe^{2+} , 190 repectively.^{20, 27} Simultaneously, standard Fe₃O₄ XRD pattern in the spectrum of 191 Fe₃O₄/RGO demonstrating the Fe₃O₄ nanoparticles are successfully decorated on 192 graphene sheets. The XRD pattern of Fe₃O₄@ZIF-8 is consistent with the 193 characteristic peaks of Fe₃O₄ and the simulated pattern of published ZIF-8 structure 194 data.^{21, 28} The diffraction peaks of Fe₃O₄@ZIF-8/RGO are very similar to 195 $Fe_3O_4(a)ZIF-8$, indicating the coexistence of $Fe_3O_4(a)ZIF-8$ and graphene in the 196

197 resulted nanocomposite.

198

199 Fig. 4. XRD spectrum of Fe₃O₄, Fe₃O₄@ZIF-8, Fe₃O₄/RGO and

200

Fe₃O₄@ZIF-8/RGO nanocomposite

201 To investigate the chemical elements on the surface of the Fe₃O₄/RGO and 202 Fe₃O₄@ZIF-8/RGO, the XPS analysis was performed. The wide-scan XPS spectra for 203 Fe₃O₄/RGO and Fe₃O₄@ZIF-8/RGO are shown in Fig. 5(a). The characteristic peaks 204 of Fe 2p, Fe 3p, O 1s and C 1s appeared in the spectrum of Fe₃O₄/RGO. Compared 205 with the Fe₃O₄/RGO, new peaks assigned to Zn 2p1, Zn 2p3 and N 1s are clearly 206 observed in the spectrum of Fe₃O₄@ZIF-8/RGO, demonstrated the MOFs (ZIF-8) 207 have been successfully reacted on the surface of Fe₃O₄. Moreover, as the ZIF-8 was 208 covered on the Fe_3O_4 , the peaks of Fe 2p and Fe 3p are disappeared and the peak of O 209 1s decreased sharply. Fig. 5(b) shows the C 1s spectrums of Fe_3O_4/RGO and Fe₃O₄@ZIF-8/RGO, the only peak at 527.95 eV could be assigned to the C-C in the 210 spectrum of Fe₃O₄/RGO, and two peaks in Fe₃O₄@ZIF-8/RGO corresponding to C-C 211 212 (183.51 eV) and C=C (186.16 eV) demonstrated the 2-methylimidazole has covered

RSC Advances Accepted Manuscript

on the Fe₃O₄. The N 1s spectrum of Fe₃O₄@ZIF-8/RGO (Fig. 6(c)) shows two species

of N 1s peak corresponding to -NH- (397.53 eV) and -N= (400.59 eV) which also

characterized the 2-methylimidazole on the nanocomposite.^{20, 29}

Fig. 5. XPS spectra of (a) wide scan of Fe_3O_4/RGO and $Fe_3O_4@ZIF-8/RGO$; (b) N

218 1s of Fe₃O₄@ZIF-8/RGO; (c) C1s of Fe₃O₄/RGO and Fe₃O₄@ZIF-8/RGO

216

The magnetic property of Fe₃O₄@ZIF-8/RGO was studied using a superconducting quantum interference device (SQUID) magnetometer at room temperature, as shown in Fig. 6. The hysteresis loops of the Fe₃O₄ nanoparticle, Fe₃O₄/RGO, Fe₃O₄@ZIF-8 and Fe₃O₄@ZIF-8/RGO nanocomposite are characterized the magnetic measurements of each product. The saturation magnetization of Fe₃O₄, Fe₃O₄/RGO, Fe₃O₄@ZIF-8 and Fe₃O₄@ZIF-8/RGO is 79.08, 60.87, 50.41 and 41.65 emu g⁻¹, respectively. Although the magnetic intensity of Fe₃O₄@ZIF-8/RGO decreases obviously after the

- 226 ZIF-8 was reacted on the Fe₃O₄, the Fe₃O₄@ZIF-8/RGO nanocomposite can be easily
- 227 separated conveniently by using magnetic field, and facilitated collection and
- 228 operation.³⁰

231

229

Fe₃O₄@ZIF-8/RGO nanocomposite

3.2. Voltammetric behavior of DA at Fe₃O₄@ZIF-8/RGO/GCE

To exploit the potential application of the Fe₃O₄@ZIF-8/RGO nanocomposite, 233 234 the electrochemical behaviors of DA were investigated on the Fe₃O₄@ZIF-8/RGO 235 /GCE. Fig. 7 shows typical CVs of 1 mM DA on the bare GCE, the Fe₃O₄@ZIF-8 /GCE, the Fe₃O₄/RGO/GCE and the Fe₃O₄@ZIF-8/RGO/GCE. On the bare GCE, DA 236 237 exhibits a reversible electrochemical behavior and the small current indicates it is inefficient to detect of DA on the bare GCE. At the Fe₃O₄@ZIF-8, a couple of small 238 redox peaks appeared and the oxidation peak current of DA enhanced notable, it is 239 240 because that the relative large surface area of electrode increased significantly after immobilization of Fe₃O₄@ZIF-8. Due to the excellent electric conductivity of reduced 241

-

242 graphite oxide, the anodic peak current at the Fe₃O₄/RGO/GCE is increased strikingly. However, when the Fe₃O₄@ZIF-8/RGO/GCE was applied for determination, the 243 redox peaks of DA increased dramatically with a well-defined peak shape, and the 244 245 redox process became more reversible as judged from the more symmetric peak profiles. Therefore, the component of MOFs (ZIF-8) material in the graphene 246 247 nano-sheets have positive effect on improving the electrochemical response, which is 248 likely caused by the outstanding porous structure and favorable electron transfer mediating function of the electroactive MOFs.^{7,31} 249

250

 $Fe_3O_4/RGO/GCE$ and the $Fe_3O_4@ZIF-8/RGO/GCE$ in the presence of DA in PBS

253 (0.1M, pH 5.5). DA concentration: 1 mM, and scan rate: 20 mV s⁻¹

254 **3.3. Electrochemical parameters of DA at Fe₃O₄@ZIF-8/RGO/GCE**

The influence of the scan rate (v) on the oxidation current of 0.1 mM DA was examined using Fe₃O₄@ZIF-8/RGO/GCE in 0.1 M pH 5.0 PBS by varying the scan

rates from 10 to 50 mV s⁻¹. As shown in Fig. 8, the anodic and cathodic peak currents 257 are both increased gradually when increasing the scan rate. Farther more, with the 258 259 increase of scan rate, the anodic peak potential and cathodic peak potential slightly 260 shifted to more positive and negative potentials, respectively, indicating that the 261 electrontransfer rate decreased and the electrochemical reaction of DA tended to be 262 less reversible. A good linear relationship among the scan rate, the values of the anodic peak current (Ipa) and the cathodic peak current (Ipc) is also obtained. The 263 linear regression equation for the anodic peak current and cathodic current is I_{pa} (µA) 264 = 5.6328 + 0.21468v (mV s⁻¹), and I_{pc} (μ A) = -3.1756 - 0.1023v (mV s⁻¹), respectively, 265 and the correlation coefficient is $R_{pa} = 0.9965$, $R_{pc} = 0.9903$, respectively. This result 266 suggests that the electrochemical oxidation is an absorption-controlled process for DA 267 at the Fe₃O₄@ZIF-8/RGO/GCE surface.³² 268

269

270

anodic and cathodic peak currents vs. scan rates.

RSC Advances Accepted Manuscript

271 Fe₃O₄@ZIF-8/RGO/GCE at scan rate of 10-50 mV s⁻¹. The inset shows the plots of

Since the redox system was affected by the change of pH due to the involvement of 273 protons in the electrode reaction and the electro-catalytic reaction at the 274 Fe₃O₄@ZIF-8/RGO/GCE is a two electron, two proton process, the influence of pH 275 276 on the biosensor performance was investigated by measuring the electrode response in 0.1 mM DA with pH values ranging from 5.0 to 7.5. 33 As shown in Fig. 9, the 277 oxidation peak potential (E_{pa}) of DA shifted negatively with the increased of pH. A 278 good linear relationship between E_{pa} and pH was constructed and described with a 279 280 linear equation: E(V) = -0.0704 pH + 0.7773 (R=0.9935). Farther more, the oxidation peak current (I_{pa}) also changed with the pH of DA solution ranged from 5.0 to 7.5, 281 282 and the maximum response current was obtained at pH of 5.5. Thus, a phosphate 283 buffer solution of pH 5.5 was chosen as the optimum pH and used in all experiments 284 below.

285

272

Fig. 9. Effects of pH on E_{pa} and I_{pa} of 0.1 mM in 0.1 M PBS on the

289 Voltammetric current responses of successive additions of DA were recorded by differential pulse voltammetry (DPV) to check the sensitivity of the sensor under the 290 291 optimal experimental conditions. As shown in Fig. 10, with the increasing concentration of DA, the oxidation peak current (Ipa) increased relatively. Linearly 292 proportional of peak current and DA concentration is observed in the range from 293 2.0×10^{-9} to 1.0×10^{-5} M (inset of Fig. 10). The linear regression equations for DA is I_{pa} 294 $(\mu A) = 1.144 + 0.0056C (10^{-9} M)$ and the correlation coefficient is 0.9966. According 295 to signal to noise (S/N) = 3, the detection limits of DA was estimated to be 6.67×10^{-10} 296 297 M. Table 1 summarized the comparison of analytical results of the analytical performance Fe₃O₄@ZIF-8/RGO/GCE with other dopamine sensor reported recently. 298 299 Through the comparison, the obtained biosensor in this work has comparable and 300 even better performance than the others, demonstrating that Fe₃O₄@ZIF-8/RGO/GCE has extraordinary application potential in determination of DA. 301

302

Fig. 10. DPV for different concentration of DA at the Fe₃O₄@ZIF-8/RGO/GCE.

The inset shows the relationship between the peak current and DA concentration

RSC Advances Accepted Manuscript

305

Modified materials	Methods	Linear ranges (M)	Detection limits (M)	reference
GO	DPV	1×10 ⁻⁶ -1.5×10 ⁻⁷	0.27×10 ⁻⁶	35
Fe ₃ O ₄ /r-GO	DPV	4×10 ⁻⁷ -1.6×10 ⁻⁴	8×10 ⁻⁸	36
Pd/graphene/chitosan	DPV	5×10 ⁻⁷ -2×10 ⁻⁴	1×10 ⁻⁷	37
Polypyrrole@r-GO	DPV	6×10 ⁻⁸ -8×10 ⁻⁶	6×10 ⁻⁹	38
Cu(tpa)-EGR	DPV	1×10 ⁻⁶ -5×10 ⁻⁵	2.1×10 ⁻⁷	7
Nafion/C/Al-MIL-53-(OH)2	DPV	3×10 ⁻⁸ -1×10 ⁻⁵	8×10 ⁻⁹	8
Porphyrin-RGO	DPV	1×10 ⁻⁶ -7×10 ⁻⁵	9.5×10 ⁻⁹	39
RGO-MWNTs-PTA	DPV	5×10 ⁻⁷ -2×10 ⁻⁵	1.14×10 ⁻⁶	40
Fe ₃ O ₄ @ZIF-8/RGO	DPV	2×10 ⁻⁹ - 1×10 ⁻⁵	6.67×10^{-10}	This work

Table 1 Comparison of analytical performance of DA at different modified electrodes

307 As an important parameter for a biosensor, discriminating the target between the 308 interfering species in similar physiological environments is necessary to be 309 investigated. For the determination of DA, the electrochemical behaviors of ascorbic 310 acid (AA), and uric acid (UA) (usually coexist with DA) on Fe₃O₄@ZIF-8/RGO/GCE 311 has be studied. As shown in Fig. 11, a couple of shape redox peaks is exhibited in the CV of 1 mM of DA, on the contrary, no obvious peak appeared in the CV of 1×10^{-3} M 312 313 of AA and UA, which suggested that DA can be detected in the presence of AA and UA.34 To demonstrate the selectivity of Fe₃O₄@ZIF-8/RGO/GCE for DA more 314 comprehensively, various potential organic compounds and inorganic ions such as 315 NaCl, K₂SO₄, CaCl₂ solutions, lysine, cysteine and glucose solutions were added to 316 the 1 mM of DA solution. The peak currents of DA showed almost no interference in 317 the presence of these influences since their peak currents changes were below 5%. A 318 319 possible reaction mechanism was discussed here, the negatively charged 320 Fe_3O_4 (*a*)ZIF-8/RGO acted as electro-catalysts and selective reagents simultaneously,

18

thus, the positively charged DA was attracted and electro-catalyzed on the sensor, otherwise, the negatively charged analytes such as AA and UA were repelled. Therefore, with a wide linear range, low detection potential, and high sensitivity, the Fe₃O₄@ZIF-8/RGO could be used as promising candidates to prepare the dopamine biosensors.

326

328 mM DA, AA and UA, respectively.

329 **3.5.** Reproducibility of biosensor and real sample determination.

330 The reproducibility and stability of the Fe₃O₄@ZIF-8/RGO/GCE were further 331 examined. When the electrode was successively scanned in 1 mM DA in 0.1 M pH 332 5.0 PBS for 50 cycles, there were no obvious changes in the peak current in the CV 333 curves. Repeated DPV experiment was also conducted in the same condition, and the 334 relative standard deviation (RSD) was 2.13% after 15 successive measurements. The long-term stability of the electrode was investigated by measuring its CV response 335 336 over a 10 day period. The fabricated electrodes were stored under normal conditions 337 at room temperature, and no obvious changes were found when measured it

	5
	0
	6
	Š
	2
	σ
	5

RSC Advances Accepted

338 periodically. Therefore, the results indicated the excellent reproducibility and stability of the prepared Fe₃O₄@ZIF-8/RGO/GCE biosensor. Real samples were analyzed by 339 340 standard addition method to evaluate the potential application of the Fe₃O₄@ZIF-8/RGO/GCE biosensor. Urine and serum samples were diluted with PBS 341 (0.1 M, pH 5.5) in order to avoid the interferences of the complicated matrix in the 342 343 real samples and fit into the linear ranges of DA. Then the diluted samples were 344 spiked with different amounts of known concentrations of DA, and measured under 345 the optimal conditions. The analytical results are shown in Table 2. As can be 346 observed, the recovery of the spiked samples was in the range of 98.20-102.73% (n = 347 5) with the relative standard derivation (RSD) values were calculated to be less than 2.69%, indicated that the method is reliable and sensitive for determination of DA in 348 349 real samples.

Comulas	Added	Found	RSD	Recovery
Samples	(µM)	(µM)	(%)	(%)
	—	0.093	1.91	—
Serum 1	0.200	0.301	2.23	102.73
	0.500	0.597	2.54	100.81
	—	0.223	2.36	—
Serum 2	0.200	0.429	1.87	101.42
	0.500	0.719	1.61	99.44
	—	0.134	2.62	—
Urine 1	0.200	0.328	2.69	98.20
	0.500	0.639	2.28	100.88
	—	1.102	1.77	—
Urine 2	0.200	1.309	1.89	100.73
	0.500	1.597	2.01	99.61

Table 2 Determination of DA in real samples using $Fe_3O_4(a)ZIF-8/RGO/GCE$

351 4. Conclusions

In this paper, a novel hybrid nanocomposite of magnetic $Fe_3O_4@ZIF-8$ decorated

353	graphene was prepared by a simple method for the first time. After the Fe_3O_4/RGO
354	was formed by solvothermal approach, the MOFs (ZIF-8) was fabricated on the
355	surface of Fe ₃ O ₄ to get the Fe ₃ O ₄ @ZIF-8/RGO nanocomposite. By combing the
356	unique properties of large specific surface area and high conductivity derived from
357	both of MOFs and graphene, the Fe $_3O_4$ @ZIF-8/RGO nanocomposites modified glassy
358	carbon electrode was successfully constructed and used for electrochemical detection
359	of DA. The fabricated biosensor showed great potential applications in the detection
360	of DA with extraordinary advantages such as wide linear range $(2.0 \times 10^{-9} - 1.0 \times 10^{-5} \text{ M})$,
361	low detection limit (6.67×10^{-10}) and good selectivity for DA detection in the presence
362	of ascorbic acid and uric acid. Moreover, the prepared sensor also showed satisfactory
363	result in real samples detection. Our present study demonstrated the combination of
364	MOFs and graphene composites could fabricate a new kind of high sensitive
365	biosensor for electrochemical detection.

366 Acknowledgments

The authors gratefully acknowledge financial supports from the National Natural Science Foundation of China (No. 21304040), Natural Science Foundation of Gansu Province (1308RJYA027) and Chinese Postdoctoral Funds (2013M532090). This paper is dedicated to memory of pro. Yanfeng Li, who passed away recently.

371

RSC Advances Accepted Manuscript

Reference

- 1 J. R. Li, J. Sculley and H. C. Zhou, Chem. Rev., 2011, 112, 869.
- 2 M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, *Nature*, 2003, 423, 705.
- 3 P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach and S. Gumma, *Microporous Mesoporous Mater.*, 2009, **117**, 406.
- 4 M. Zhao, S. Ou and C. D. Wu, Acc. Chem. Res., 2014, 47, 1199.
- 5 Y. Li, C. Huangfu, H. Du, W. Liu, Y. Li and J. Ye, J. Electroanal. Chem., 2013, 709, 65.
- 6 Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li and L. Guo, Chem. Commun., 2013, 49, 6885.
- 7 X. Wang, Q. X. Wang, Q. H. Wang, F. Gao, F. Gao, Y. Z. Yang and H. X. Guo, *ACS Appl. Mat. Interfaces*, 2014, **6**, 11573.
- 8 Y. Wang, H. L. Ge, G. Q. Ye, H. H. Chen and X. Y. Hu, J. Mater. Chem. B, 2015, 3, 3747.
- 9. X. Li, S. Zhu, B. Xu, K. Ma, J. Zhang, B. Yang and W. Tian, Nanoscale, 2013, 5, 7776.
- 10. L. Li, A. R. O. Raji and J. M. Tour, Adv. Mater., 2013, 25, 6298.
- 11 B. Zhan, C. Liu, H. Chen, H. Shi, L. Wang, P. Chen, W. Huang and X. Dong, *Nanoscale*, 2014, 6, 7424.
- 12 C. Z. Liao, M. Zhang, L. Y. Niu, Z. j. Zheng and F. Yan, J. Mater. Chem. B, 2014, 2, 191-200.
- 13 X. M. Feng, Y. Zhang, J. h. Zhou, Y. Li, S. F. Chen, L. Zhang, Y. W. Ma, L. H. Wang and X. H. Yan, *Nanoscale*, 2015, **7**, 2427.
- 14 A. M. J. Haque, H. Park, D. Sung, S. Jon, S. Y. Choi and K. Kim, Anal. Chem., 2012, 84, 1871.
- 15 X. H. Li, H. Zhu, J. Feng, J. Zhang, X. Deng, B. Zhou, H. Zhang, D. Xue, F. Li, N. Mellors, Y.
 F. Li and Y. Peng, *carbon*, 2013, **60**, 488.

- 16 S. Ikemoto, Brain Res. Rev., 2007, 56, 27.
- 17 W. X. Zhang, J. Z. Zheng, C. H. Tan, X. Lin, Sh. R. Hu, J. H. Chen, X. L. You and S. X. Li, J. Mater. Chem. B, 2015, 3, 217-224.
- 18 Y. C. Pan, Y. Y. Liu, G. F. Zeng, L. Zhao and Z. P. Lai, Chem. Commun., 2011, 47, 2071.
- 19 H. Zhou, W. Yao, G. Li, J. Wang and Y. Lu, Carbon, 2013, 59, 495.
- 20 W. Yao, T. Ni, S. Chen, H. Li and Y. Lu, Compos. Sci. Technol., 2014, 99, 15.
- 21 J. N. Zheng, Z. Lin, G. Lin, H. H. Yang and L. Zhang, J. Mater. Chem. B, 2015, 3, 2185.
- 22 Y. Wang, Y. Zhang, C. Hou, Z. Qi, X. He, Chemosphere, 2015, 141, 26.
- 23 Y. Q. Wang, B. F. Zou, T. Gao, X. P. Wu, S. Y. Lou, S. M. J. Zhou, *Mater. Chem.*, 2012, 22, 9034.
- 24 H. L. Ma, Y. W. Zhang, Q. H. Hu, D. Yan, Z. Z. Yu, Zhai M. L. Zhai, *J. Mater. Chem.*, 2012, **22**, 5914.
- 25 Y. Hu, H. Kazemian, S. Rohani, Y. N. Huang and Y. Song, Chem. Commun., 2011, 47, 12694.
- 26 W. Fan, W. Gao, C. Zhang, W. W. Tjiu, J. S. Pan, T. X. Liu, J. Mater. Chem., 2012, 22, 25108.
- 27 K. F. Zhou, Y. H. Zhu, X. L. Yang, C. Z. Li, New J. Chem., 2010, 34, 2950.
- 28 K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, *Proc. Natl. Acad. Sci. U. S. A.*, 2006, **103**, 10186.
- 29 L. Sun, L. Wang, C. G. Tian, T. X. Tan, Y. Xie and K. Y. Shi, RSC Adv., 2012, 2, 4498.
- 30 Y. Wang, Y. Zhang, C. Hou, X. He, M. Liu, J. Taiwan Inst. Chen. E., 2015, doi:10.1016/j.jtice.2015.05.044.
- 31 C. L. Sun, H. H. Lee, J. M. Yang and C. C. Wu, Biosens. Bioelectron., 2011, 26, 3450.
- 32 M. Zheng, F. Gao, Q. Wang, X. Cai, S. Jiang, L. Huang and F. Gao, Mater. Sci. Eng. C, 2013,

33, 1514.

- 33 J. Yang, J. R. Strickler and S. Gunasekaran, Nanoscale, 2012, 4, 4594.
- 34 X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang and P. Chen, ACS Appl. Mat. Interfaces, 2012, 4, 3129.
- 35 F. Gao, X. Cai, X. Wang, C. Gao, S. Liu, F. Gao and Q. Wang, *Sens. Actuators, B*, 2013, **186**, 380.
- 36 H. Teymourian, A. Salimi and S. Khezrian, Biosens. Bioelectron., 2013, 49, 1.
- 37 X. Wang, M. Wu, W. Tang, Y. Zhu, L. W. Wang, Q. J. Wang, P. J. He and Y. Z. Fang, J. *Electroanal. Chem.*, 2013, 695, 10.
- 38 T. Qian, S. S. Wu and J. Shen, Chem. Commun., 2013, 49, 4610.
- 39 S. F. Hou, M. L. Kasner, S. J. Su, K. Patel and R. Cuellari, J. Phys. Chem., 2010, 114, 14915.
- 40 Y. Y. Ling, Q. A. Huang, M. S. Zhu, D. X. Feng, X. Z. Li and Y. J. Wei, *Electroanal. Chem.*, 2013, **693**, 9.

Graphical abstract:

A novel hybrid nanocomposite of magnetic Fe₃O₄@ZIF-8 decorated reduced graphite

was prepared and used to determination of dopamine.