

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Anaerobic co-digestion of municipal wastewater sludge with food waste
2	under different fat, oil, grease contents: study on reactor performance
3	and extracellular polymeric substances
4	Rui Xu ^{a,b} , Zhaohui Yang ^{a,b,*} , Ting Chen ^{a,b} , Lijun Zhao ^{a,b} , Jing Huang ^{a,b} , Haiyin Xu ^{a,b} ,
5	Peipei Song ^{a,b} , Min Li ^{a,b}
6	^a College of Environmental Science and Engineering, Hunan University, Changsha
7	410082, P.R. China
8	^b Key Laboratory of Environmental Biology and Pollution Control (Hunan University),
9	Ministry of Education, Changsha 410082, P.R. China
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

RSC Advances Accepted Manuscript

* Corresponding author. Tel.: + 86–731–88822829; Fax: + 86–731–88822829.

E-mail address: yzh@hnu.edu.cn

21 Abstract

22	Linkage between reactor performance and microbial extracellular polymeric
23	substances (EPS) was investigated in the 3 group semi-continuously mesophilic
24	anaerobic co-digestion (ACoD) systems, treating municipal waste sludge (MWS) with
25	food waste (FW) under different fat, oil and grease (FOG) contents. Addition of FOG to
26	the test reactors enhanced the co-digestion process significantly in terms of the reactor
27	performance and microbial activity. During the process, no major variations in pH and
28	VFA/Alk were observed. Meanwhile, the biogas daily yield peaked at 810.3 mL/g
29	VS_{added} when the FOG load was up to 42% of the volatile solids (VS), with the organic
30	loading rate (OLR) of 5.2 g VS/L/d and hydraulic retention time (HRT) of 20 days. But
31	excessive FOG load (55% on a VS basis) restricted biogas production by 40.3% when
32	compared with the control unit (539.3 mL/g VS _{added}). At the end of digestion, 195 L,
33	381 L and 351 L cumulative biogas were obtained in 3 systems, respectively. Further
34	analysis of extracellular polymeric substances (EPS) showed that the accumulation
35	peaked at 648.5, 772.3 and 640.9 mg/L at the optimal digestion parameters, respectively.
36	The proportion of LB-EPS were always less than that of TB-EPS, which accounted for
37	about 40% and 60%. FOG enhanced systems (R2 and R3) obtained much higher EPS
38	than control system (R1) for both humic acid substances (HS) and proteins (PN).
39	Moreover, EPS variation revealed that 3 systems experienced the accommodation phase
40	followed a vigorous phase and an exhausted phase along with elevated FOG adding.
41	However, enhanced units may exhaust prematurely due to the "doping" phenomena.
42	Keywords: Anaerobic co-digestion; Food waste; Fat, oil, grease; Extracellular

10	nolum	aria	anho	toncos
45	poryn	ICIIC	subs	tances

44 **1. Introduction**

45	With the rapid development of cities construction, increasing numbers of
46	wastewater treatment plants (WWTPs) have been setup and come into service for decades
47	in China. As the main residual discharged from WWTPs, large amounts (30 million tons
48	per annum) of municipal waste sludge (MWS) created a tremendous threat to the public
49	health and environment when misconducted disposed. ^{1, 2} Anaerobic digestion (AD) has
50	been evaluated as a promising biological technology to alleviate sludge disposal problem,
51	since it converts organics in MWS to a renewable bioenergy resource in the form of
52	methane. ^{3, 4} AD could be simultaneous beneficial with the sludge volume reduction,
53	renewable energy recovery, potential hazardous compounds dilution and odor emission
54	control, when compared with the conventional sludge disposal procedure. ^{5, 6} However,
55	employing the MWS as a sole digestion substrate alone has been limited to the
56	successful implementation of this approach due to the low C/N ratio contained in sewage
57	sludge. This ratio in order of 6 to 16 is also regarded as a serious problem to the
58	anaerobic digestion. ⁷ It should range from 20 to 30 in order to ensure sufficient nitrogen
59	supply for cell production and the degradation of the carbon present in the process. ⁸
60	Thus, applying the readily available high organic and excellent biodegradability
61	waste, such as food waste (FW), is recognized as a desirable co-substrate material.
62	Anaerobic co-digestion (ACoD) may substantially promote biogas yield due to the
63	presence of abundant fat, oil, grease (FOG) in FW. ⁶ Despite the FOG has been
64	frequently cited to effectively improve biogas production by 30% or more when directly

65	add to the anaerobic digester based on their theoretical methane potential (1430 mL/g
66	VS_{added}). ^{9, 10} Previous studies discussed the inhibition concerns or the potential for
67	inhibition during ACoD. In fact, high FOG contents of organic wastes can lead to the
68	accumulation of inhibitory compounds such as long chain fatty acids (LCFAs), resulting
69	in process disturbances by affecting the microbial composition. ^{11, 12} LCFAs, the primary
70	component of FOG presented in FW, are degraded anaerobically via the β -oxidation
71	pathway to acetate and H_2 , which are subsequently converted to methane. β -oxidation
72	begins when the fatty acids are activated with coenzyme A and the subsequent oxidation
73	leads to the release of acetyl-CoA and the formation of a fatty acid chain. ¹³ One concern
74	is that LCFAs may have a detrimental effect on methanogenic bacteria when introduced
75	at sufficiently high concentrations or loading rates. Researchers have suggested that the
76	detrimental effect on methanogenic bacteria may be due to: sludge floatation and
77	washout; transport limitation from bacteria being coated in a layer of LCFAs thereby
78	hindering the cells access to substrates and tie ability to release biogas; or a LCFAs
79	toxicity effect on methanogenic bacteria. Digester foaming is another operational
80	concern associated with anaerobic digestion of lipids. ³ Foaming can result in inefficient
81	gas recovery, inverse solids profile with higher solids concentrations at the top of a
82	digester, blockages of gas mixing devices, fouling of gas collection pipes, and so on. ¹⁴
83	Hence, it is crucial to evaluate a practicable compromise between waste treatment
84	capacity and biogas yield without causing operation instability.
85	AD occurs via four main steps, namely hydrolysis, acidogenesis, acetogenesis and
86	methanogensis, ¹⁵ which is rely on a different microbial community with all of species

87	living together in symbiotic associations. Therefore, it is necessary to clarify the
88	different digestion parameters influencing community and optimize the microbial
89	activity. However, most previous researches work on the microbial community diversity
90	and dynamics, little information is available to specifically address the role of microbial
91	metabolism in digestion process. Extracellular polymeric substances (EPS) of biological
92	sludge treatment systems are a general property of a microbial community. The
93	production and composition of EPS mainly come from bacterial active secretion, cell
94	surface material shedding, cell lysis and desorption from the surface of an external
95	matrix. ¹⁶ EPS is composed of a variety of organic substances including carbohydrates
96	and proteins as the major constituents and humic substances, uronic acids and nucleic
97	acids in smaller quantities. ¹⁷ It is noticeable that EPS partly results from microbial
98	metabolism and thus is affected by the microbial community composition and its
99	activity. ¹⁸ Additionally, resent suggestions have identified parameters, such as oil,
100	grease, volatile fatty acid, detergents, proteins and products (EPS) from the metabolic
101	activity of microorganisms as anaerobic digestion foaming causes. ¹⁹ A better insight
102	into the degradation pathways and the by-products of these compounds during ACoD
103	could provide additional information of the relationship of microbial response and
104	digestion performance. Therefore, it is worth exploring whether FOG enhanced ACoD
105	system affects the EPS accumulation.
106	This study investigated the influence of different FOG contents on ACoD of MWS
107	and FW systems. Digestion process stability and general performance were discussed
108	separately. The characteristics of microbial metabolism were discussed with EPS by

109	detecting polysaccharides, proteins, humic acid substances and nucleic acids
110	components. Further investigation is a matter of great interest not only in terms of
111	deepening understanding of biological sludge treatment, but also in improving the
112	efficiency of such treatment through the optimization of operational parameters.
113	2. Materials and methods
114	2.1 Inoculum and substrates preparation
115	Primary sludge and MWS were collected from a WWTP in Changsha, China. This
116	plant located in the Xiang River region and annually disposes 280,000 tons of
117	wastewater (90% domestic and 10% industrial sewage) with an oxidation ditch process.
118	Raw food waste (RFW) was collected over 5 consecutive working days from a typical
119	Chinese restaurant in Changsha, China. The collected samples were transported to
120	laboratory within 1 h and stored at 4 °C for no more than 3 days.
121	Prior to pump into the digestion reactors: (i) primary sludge was thickened by
122	gravity for 6 h at 4 °C with supernatant decant. The sediment seed sludge (SS) was
123	sealed in a glass bottle with crimped butyl rubber stoppers and purged with nitrogen for
124	2 min to create an anaerobic condition. Bottles were subsequently incubated at 37 $^{\circ}$ C in
125	a shaking incubator at 100 rpm for 15 days as an anaerobic adaptation period. (ii) RFW
126	was squeezed excessively by cement compressor (YAW-300C, Hengda) followed
127	Soxhlet extraction method ²⁰ to eliminate FOG. (iii) MWS and FW were smashed into
128	pasted respectively using an electrical food grinder (XTL-767, IFAVORITE. (iv)
129	post-treated MWS, FW and FOG were stored at 4 $^{\circ}$ C until utilization. All of them were
130	brought to room temperature before adding to the digester. The characteristics of SS and

6

131

RSC Advances

substrates are summarized in Table 1.

132	2.2 Reactor set-up and operation strategy
133	The semi-continuous experiments were performed under three strategies for a total
134	progress of 120 days, using single stage mesophilic continuous stirred-tank reactors
135	(CSTR) with 2.0 L working volume. Three group reactors were carried out in triplicates
136	as $R1_{(1,2,3)}$, $R2_{(1,2,3)}$ and $R3_{(1,2,3)}$. 120 days operation were divided into four periods (30
137	d/period). Corresponding strategies are shown in Table 2. Each reactor initially
138	inoculated 70% seed sludge and 30% co-substrates (MWS+FW). From the next day
139	feeding was arranged for once a day. 100 mL (R1 and R2)/133 mL (R3) of digest
140	materials were withdrawn each day and fed with the same volume to keep a constant
141	HRT of 20 d/15 d. Co-substrates were mixed of MWS and FW with a TS ratio of 1:1.
142	R1 group received only a mixture of co-substrates based on a percentage of the "safe"
143	organic loading rate (OLR) at 3.0 g VS/L/d (g volatile solids per reactor volume per day)
144	as a control, according to the optimized results of our preliminary assessment. ⁶ R2
145	group received a mixture of co-substrates as well as different FOG contents (4, 6, 8 and
146	10 mL in 4 period) as a test. R3 group received equivalent amounts of co-substrates and
147	FOG contents as R2. But HRT of R3 (15 days) was shorter than R2 (20 days), in order
148	to increase FOG load indirectly from the HRT aspect. The selection of FOG test
149	contents and HRT was based on the fresh FW ingredients ratio (FW: FOG=1.7:1, m/m)
150	and the fact that most of Chinese anaerobic digestion facilities are currently operated at
151	a HRT of 15-18 days. Both in R2 and R3, the VS proportion of FOG to feeding were
152	33%, 42%, 49% and 55% for period I, II, III, and IV, respectively, as shown in Table 2.

153	All reactors were constantly mixed by magnetic stirrers (RW 205DS1, IKA Works, Inc.,
154	USA) at a uniform speed of 200 rpm and running program was set with 1 h on then 2 h
155	off. Reactors were immersed and controlled at water bath within the range of 35 ± 1 °C
156	using bolt electric heating rods, plastic film was also applied on the top to minimize
157	heat loss. The pH value during this study was not adjusted. Effluent samples were
158	carried out every 2 days for the subsequent anaerobic digestion performance and
159	microbial EPS analysis. Biogas production was measured on a daily basis.
160	2.3 Digestion performance analysis
161	Feeding and effluent samples were centrifuged at 8000 g for 10 min, then the
162	supernatant were filtered through disposable Millipore filter units (0.45 μ m pore size)
163	for the analysis of pH, volatile fatty acid (VFA), alkalinity (Alk), soluble chemical
164	oxygen demands (sCOD) and total nitrogen. pH was determined using pH meter
165	(Mettler Toledo FE 20). VFA, Alk, total solids (TS), volatile solids (VS), density, sCOD
166	and total nitrogen were quantified according to the Standard Methods. ²⁰ VFA were
167	measured by titration with H_2SO_4 . VFA = (volume (mL) of H_2SO_4 from pH 5.0 to pH
168	$4.4 \times 1.66) \times 500$. Alk represented as mg/L CaCO ₃ . All above sample analyses were
169	performed in triplicate. Daily biogas from each reactors were collected with acidified
170	water displacement method under standard conditions (25 °C, 1 atm). The composition
171	of biogas (CH ₄ and CO ₂) was determined by a gas chromatograph (GC 2010, Shimadzu)
172	using a thermal conductivity detector equipped with a 2 m \times 3 mm stainless-steel
173	column packed (Porapak Q, 80/100 mesh). Oven temperature was maintained at 40 $^{\rm o}{\rm C}$
174	during analysis. Injector and detector temperatures were 150 °C and 250 °C, respectively.

8

RSC Advances Accepted Manuscript

175	The results were reported at standard temperature and pressure (STP, 101.325 kPa,
176	273.15 K). The biogas production was reported as the volume of biogas produced per
177	gram of VS_{added} (mL/g VS_{added}).
178	2.4 EPS extraction and analysis
179	EPS are composed of loosely bound EPS (LB-EPS) and tightly bound EPS
180	(TB-EPS) fractions based on the extraction methodology. The ingredients and quantities
181	of EPS are strongly dependent on the sample source, the extraction process and the
182	items of analysis conducted. ²¹ In this study, EPS extraction was carried out using a
183	modified heating extraction method similar to that of Li et al. ²² Briefly, 35 mL digested
184	sample was centrifuged (5810R, Eppendorf) at 8000 g for 10 min in order to remove the
185	supernatant firstly. Without any delay, the residue was resuspend with preheated 50 $^{\circ}$ C
186	PBS solution (0.01 mol/L, $pH = 7.4$) to original volume and vortex (Vortex-GenieH 2,
187	Mo Bio) at 200 rpm for 1 min. The mixture was centrifuged at 8000 g for 15 min with
188	the bulk solution and solid phase collected separately. The organic matter in the bulk
189	solution was collected as LB-EPS. Next, the sludge pellet was rewash and resuspend to
190	35 mL again with aforementioned buffer solution and placed in a water bath at 60 $^{\circ}$ C for
191	30 min. The sludge mixture was centrifuged again at 8000 g for 15 min with sediment
192	discarded. The organic matter in the bulk solution was considered as the TB-EPS. Both
193	TB-EPS and LB-EPS were extracted in duplicates for each sample. After all the EPS
194	fractions being extracted, 0.45 μ m Millipore filter units were used to remove the
195	particulates and low molecular weight metabolites. LB-EPS and TB-EPS contents were
196	analysis immediately. In this study, the sum of the amounts of polysaccharides (PS),

197	proteins (PN) and humic acid substances (HS) were used to represent the EPS. DNA
198	was used to assess the extraction efficiency and quality by ranging from 2% to 15% of
199	the total amount EPS during extraction. ²³ PS in LB-EPS and TB-EPS were measured by
200	the anthrone method with glucose as the standard. ²¹ PN were measured according to the
201	Bradford reagent test kit. HS were measured by modified Lowry method with humic
202	acid as the standard. ²⁴ DNA were analyzed by the diphenylamine reagent colorimetric
203	method using calf thymus DNA as the standard. ²⁵ All above sample chemical analyses
204	were conducted in triplicate and using chemicals of analytical grade. The results of
205	assays were expressed as mean value \pm standard deviation.
206	3. Results and discussion
207	3.1 Process stability
208	A widely acceptable pH condition, ranging from 6.5 to 7.5, is required for the
209	ACoD process. Especially, methanogens are extremely sensitive to environmental pH
210	and may exhaust under limit for a long time, making for the digestion system becomes
211	acidification and irreversible with over-accumulated VFA. Fig. 1 shows pH in R1
212	remained almost constant equal to 7.5 during 120 days operation, whereas this was not
213	the case for R2 and R3. The corresponding values dropped to 6.8 were noticed with
214	FOG addition during period I and II, then recovered to the steady state levels without
215	any artificial arrangement around 60 day. It might be that increased OLR presented in
216	daily FOG addition resulted in slight acidification on acidogenesis stage. However,
217	

FOG condition spontaneously accompany with the digestion microbial community

matured. Meanwhile, the pH fluctuation was associated with a marked variation in the
VFA/Alk ratio, a reliable indicator of process stability. It is generally recognized that a
stable unit is achieved when this ratio is less than 0.3-0.4. As can be easily seen from
Fig. 1, after a short acclimation (1-10 d) to the mixed substrates, VFA/Alk in R1
decreased to 0.2 gradually around 40 day, which means a rather stable digestion system
was established without any FOG addition. Moreover, this ratio practically maintained
below 0.4 during the entire operation even on the start-up stage. The result revealed that
ACoD system expressed higher process stability under lower OLR was also
demonstrated by Fernández. ²⁶
Simultaneously, along with FOG adding to R2 and R3, a substantial increase in the
VFA/Alk ratio was observed during period I. When FOG addition increased to 42% (on
a VS basis), this ratio rapidly raised up to the peak values of 0.47 and 0.56 for R2 and
R3 on day 31. These values close to the threshold indicated that poor system stability
and an unfavorable balance between acidogenic and methanogenic microorganisms
emerged, resulting in an acidifying digester. The nutrition balance condition with FOG
addition depends on the faster hydrolysis and acidogenesis steps, which might generate
large amounts of VFA and dropped in pH. Excessive VFA production can reportedly
inhibit digestion process. ²⁷ However, accumulated VFA were gradually utilized by
predominant methanogens in the following days. This ratio was well above the limit
range and dropped to 0.2 without artificial adjustment until day 60. Typically, this ratio
in R3 was slight higher than R2 during day 1 to day 60. One of the reasons might be
that shorter HRT in R3 induced the more washout of active methanogens in effluent

RSC Advances Accepted Manuscript

241	removal then OLR increased indirectly when received equal load.						
242	Fluctuation in pH and VFA/Alk ratio revealed that FOG might disturb systems						
243	stability, and a longer accommodation period was required (60 days in R2 and R3 >40						
244	days in R1). On period III and IV (FOG VS $\%$ on 49% and 55%), no major variations in						
245	pH and VFA/Alk may explained by the fact that the FOG load in this study was						
246	acceptable and a higher treatment potential could be explored.						
247	3.2 General performance						
248	Based on the experimental results from Table 3, the trend of VS concentrations						
249	were very similar to that of sCOD. VS and sCOD contents showed minor changes in R1						
250	control digester when received MWS+FW only. VS and sCOD concentrations in R2 and						
251	R3 reached peaks when FOG adding up to 42% (VS %). However, with a 60 days						
252	adaptation, VS and sCOD in R2 and R3 dropped to R1 levels in period III and IV						
253	accompany with the optimal operation of the digester. The data proved that the readily						
254	decayed solid organic materials were rapidly degraded by the microorganisms, as it can						
255	be also demonstrated by the elevated VS/TS ratio. VS and sCOD concentrations in R3						
256	were practically lower than that of R2. By taking into account that the two experimental						
257	systems operated at the same OLR, it is anticipated that shorter HRT (R3) outflowed						
258	much more VS in effluent.						
259	Furthermore, the final percentage of sCOD removal efficiency in R2 and R3						
260	reached 77% and 75% when compared with 61% on R1. Two FOG enhanced digestions						
261	obtained higher sCOD removal rates dramatically, which were consistent with the other						
262	studies reported that high-organic materials have a positive effect on co-digestion						

263	process. ²⁸ These findings proved that co-digestion with FOG and longer HRT have more							
264	advantages in organic conversion, probably due to a balanced nutrient ratio with the							
265	mixed substrates and enhanced pH buffering capacity.							
266	3.3 Biogas production							
267	Appling the MWS as the mono-substrate has been limited to the successful							
268	implementation of biogas production due to the low C/N ratio contained in sewage							
269	sludge. This ratio in order of 6 to 16 (w/w) is regarded as a serious problem to the							
270	anaerobic digestion. It should range from 20 to 30 in order to ensure sufficient nitrogen							
271	supply for cell production and the degradation of the carbon present in the process. Fig.							
272	2 (a) presents the evolution of biogas daily production $(g^{-1} VS_{added})$ in 3 digestion units							
273	during 4 periods. The averaged biogas production in R1 equal to 540 mL/g VS_{added} as a							
274	control, and the corresponding C/N ration in co-substrate reached 21.9. In comparison,							
275	biogas production in two test units apparently fluctuated when received a mixture of							
276	elevated FOG contents. Along with FOG addition from 33% to 42% (VS %), biogas							
277	yield peaks (about 862 and 715 mL/g VS_{added}) were achieved for R2 and R3 around day							
278	44 and day 40. More specifically, the co-digestion of FOG at 42% (VS %) and OLR at							
279	5.2 g VS/L/d with HRT up to 20 days resulted in biogas yield promoted by 45%, which							
280	demonstrated that a delicate balance was achieved between the rates of							
281	hydrolysis/acidogenesis and methanogensis. However, a remarkable biogas production							
282	downhill was observed in two test units around day 60. Subsequently a reduction below							
283	R1 level at day 80 was recorded. The further increased FOG addition exerted a negative							
284	effect on the biogas yield. Biogas production were practically inhibited by 37.7% and							

285	40.3% for R2 and R3 during period IV with FOG progressively increased to $55%$							
286	(VS %), only 336.2 and 321.8 mL/g VS $_{added}$ was achieved. Thus, FOG addition at 42%							
287	(VS %) and an OLR of 5.2 g VS/L/d was found to be optimum for the maximal waste							
288	treatment capacity while still maximizing biogas yield from the process. The greater							
289	biogas output in the FOG enhanced process were also reported by Davidsson and							
290	Luostarinen. ^{9, 29} However, according to Luostarinen et al., ²⁹ an upper limited content (to							
291	the order of 55% on a VS basis) of FOG degradation is incomplete and biogas yield							
292	decreased. Martinez et al. also found that treating a mixture with a higher content of							
293	lipid-rich waste resulted in a decrease in specific methane production, although an							
294	adaptation period was applied to the reactor. ³⁰ Another reason why a lower gas yield							
295	obtained is the adsorption of FOG components onto sludge, which then would have							
296	precluded degradation by microorganisms. ³¹							
297	Moreover, Fig. 2 (b) presents the cumulative biogas in R1 during 120 days process							
298	was about 195 L. R2 and R3 were much higher than R1 level, 381 L and 351 L were							
299	obtained respectively. The promotion ratio of 95% (381 vs. 195 L) and 80% (351 vs.							
300	195 L) was similar to the mean value of relative OLR (85%) in 4 periods, which proved							
301								
	that organic loading presented in FOG significantly attribute to biogas production. In							
302	that organic loading presented in FOG significantly attribute to biogas production. In addition, a more efficient organic material conversion in R2 (95%) than R3 (80%) was							
302 303	that organic loading presented in FOG significantly attribute to biogas production. In addition, a more efficient organic material conversion in R2 (95%) than R3 (80%) was also in accordance with the aforementioned performance analysis. It was likely that the							
302 303 304	that organic loading presented in FOG significantly attribute to biogas production. In addition, a more efficient organic material conversion in R2 (95%) than R3 (80%) was also in accordance with the aforementioned performance analysis. It was likely that the increase in HRT would drive the performance improvements.							
302 303 304 305	 that organic loading presented in FOG significantly attribute to biogas production. In addition, a more efficient organic material conversion in R2 (95%) than R3 (80%) was also in accordance with the aforementioned performance analysis. It was likely that the increase in HRT would drive the performance improvements. Specifically, a higher biogas production (g⁻¹ VS_{added}) in R3 than R2 about 11.6% 							

14

307	was possible that R3 with a shorter HRT increased OLR indirectly, resulted in more						
308	biogas was harvested in temporary.						
309	Martinez et al. also reported an increase in biogas production with the decrease in						
310	HRT (increasing organic loading rate). This behavior may be rationalized by the low						
311	complex nature of the substrate, which allowed for its rapid conversion. ³¹						
312	After then, R2 turned over from day 14 and cumulative biogas ascended from day						
313	24, as black pointed out in Fig. 2. It was anticipated that a vigorous digestion system						
314	may prematurely exhaust and induce a reduction in biogas production, which was						
315	considered as a "doping".						
316	Furthermore, the evolution of biogas proportion in 3 reactors was characterized by						
317	GC. As revealed in Fig. 3, it was clear that CH ₄ dominated in biogas after co-digestion						
318	especially for the FOG addition systems, which increased to average 70.9% and 66.4%						
319	for R2 and R3. It was concluded that adaptation of biomass to FOG content was a rather						
320	gradual process. The enhanced biogas conversion efficiency supported that FOG had						
321	positive effects on the hydrolysis rate and methane potential, which were attributed to						
322	well-functioning methanogens, scavenging the organic acids formed by acidogenic						
323	bacteria. ³²						
324	3.4 Extracellular polymeric substances (EPS) variation						
325	3.4.1 Accumulation of total EPS						
326	Alterations a proportion of digester feed for FOG encouraged the activity of						

different microbial populations in the digestion systems, allowing the impact on EPSproducts and digestion performance to be assessed under controlled conditions. The

329	difference of total EPS (LB-EPS and TB-EPS) were presented in Fig. 4. Total EPS
330	contents in 3 reactors showed a similar pattern which was described as an "n" shape.
331	This process was divided into three phase, the accommodation phase (1-20 d) followed
332	a vigorous phase (21-70 d) and an exhausted phase (71-120 d) along with running.
333	At the beginning (1-20 d) of feeding with different digestion substrates, a large
334	decrease of total EPS was observed. The decreased EPS fractions in 3 reactors probably
335	attributed to the fact that the microorganisms are facing a sudden stepwise increase of
336	organic loading, they overproduce hydrogen due to this change and afterwards they
337	re-adjust their operation based on the newly applied conditions slowing down their
338	metabolic operations. At the end of the accommodation stage (20-30 d), each system
339	arrived at EPS accumulation vigorous phase gradually from day 20 to day 70 due to the
340	major stimulation of the active digested microbial population against loading impact.
341	These results seemed to confirm that microorganisms were progressively acclimated to
342	the new co-substrates, which were demonstrated in the forehead performance analysis.
343	Specifically, with adding FOG to the two test units, a more remarkable EPS
344	accumulation was obtained. R2 and R3 reached EPS plateau stage in advance and
345	stayed longer (around 30-60 d) when compared with R1 (day 65 only). From the whole
346	120 days operation, total EPS concentration in test units was found to be increased by
347	19.4% and 5.2% for R2 and R3 in this study, averaged 503.6 and 443.9 vs. 422.0 mg/L.
348	EPS concentration peaked at day 39 (772.3 mg/L), day 55 (640.9 mg/L) and day 67
349	(648.5 mg/L) for R2, R3 and R1 successively. In fact, anaerobic digestion with high
350	loading is liable to cause the accumulation of soluble microbial products. ³³ Because

351	there are abundant microbial residuals in organic waste digestate following digestion,						
352	bring about the possibility of microbial EPS accumulation. ³⁴ Based on the operation						
353	mode of CSTR, same volume of digestion material were withdrawn and fed to keep a						
354	constant working volume of 2.0 L in each reactor. The effluent digestion samples						
355	collected were mutually independent. In this study, the substrates degradation and the						
356	microbe release are regarded as the 2 major sources of EPS contents. In fact, EPS						
357	variation from the substrates aspect was controlled identically by receiving the						
358	equivalent amounts of co-substrate (MWS+FW at 3.0 g VS/L/d) in all reactors. Thus,						
359	the fluctuation of EPS contents can be attributed to the cell lysis in active microbial						
360	population with response to FOG. The released intracellular organics which benefited						
361	microbial reproduction and produced more EPS in FOG enhanced systems. Ng et al. ³⁵						
362	also reported that biomass undergone endogenous respiration and cell lysis would occur						
363	at longer mean cell residence times, which would cause the further release of EPS into						
364	the bulk solution. Besides, R2 produced more EPS with a longer HRT than R3. Many						
365	researchers have found that the EPS in various microbial aggregates increases with an						
366	increasing HRT. ²² In addition, the sCOD loading also has a significant effect on the						
367	EPS accumulation. ³³ The relatively longer HRT in R2 and higher sCOD loading in the						
368	R2 and R3 (1,300-1,500 mg/L) might generate more EPS than that at a lower sCOD						
369	loading in R1 (550 mg/L). Hence, the specific increase in the R2 and R3 EPS were						
370	reasonable.						
371	It was interesting to note that unlike stable biogas yield condition, an EPS						

reduction in R1 from day 60 was observed without FOG interference. FOG enhanced

373	units of R2 and R3 even declined below the control unit around day 70. It could be
374	inferred that a long-term running (over 60 days) digestion unit might produce large
375	amounts of toxic metabolic products then restrained bacterium to generate EPS.
376	Enhanced digestion systems may exhaust prematurely due to the flush metabolism
377	accumulation, which was described as a "doping" phenomena before.
378	Nevertheless, the direct toxicity of excessive FOG on digestion microbial
379	community and the change of microbial metabolism also should be taken into
380	consideration. In fact, high FOG contents of organic wastes can lead to the
381	accumulation of inhibitory compounds such as long chain fatty acids (LCFAs). It is well
382	know that the accumulation of LCFAs may inhibit anaerobic digestion because of their
383	direct toxicity toward acetogens and methanogens, the two main groups involved in
384	LCFA breakdown. ³⁶ Another inhibiting mechanism is the adsorption of surface active
385	acids onto the cell wall, ³⁷ which affects the processes of transportation and protection.
386	As Sutherland et al. ³⁸ pointed out that the aggregations of microorganisms can provide
387	EPS as energy supplication and protective layer for the cells to against toxic substances
388	damage from harsh external environment. With the FOG content increasing, the
389	products of EPS were able to combine with LCFAs then greatly stimulated due to the
390	protective response of the microorganism.
391	3.4.2 Loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS)
392	The structure of microbial EPS is generally subdivided by a two layer model. ³⁹ The
393	inner layer is constitutive of tightly bound EPS (TB-EPS), which have a certain shape
394	and are bound tightly and stably with the cell surface. The outer layer, which consist of

395	loosely bound EPS (LB-EPS), are a loose and dispersible slime layer without an						
396	obvious edge.						
397	Fig. 4 depicted that the proportion of LB-EPS in microbial aggregates were always						
398	less than that of TB-EPS, which accounted for about 40% (LB-EPS) and 60% (TB-EPS)						
399	in 3 reactors during 120 days operation. Such a discrepancy may be attributed to harsh						
400	parameters in TB-EPS extraction procedure employed by heating in 60 °C water bath.						
401	Another reason might be that the loosely binding existed in LB-EPS, led to readily						
402	fluctuation during digestion process. The LB-EPS in sludge flocs would acting as the						
403	primary surface for cell attachment and sludge flocculation. In a recent study, the						
404	LB-EPS content were found to be more closely related to the performance of microbial						
405	activity, while no obviously correlation could be found between the TB-EPS						
406	concentration and the microbial aggregates. ²²						
407	3.4.3 Subfractions of EPS						
408	EPS are essentially a mixture of biomolecules, which can be treated as "soft matter"						
409	and their subfractions can be largely affected by the digestion operating conditions. EPS						
410	are comprised of a wide variety of organic compounds including polysaccharides,						
411	proteins, humic acid substances, DNAs (DNA), and so on. ⁴⁰ The different EPS						
412	subfractions extracted from 3 systems were shown in Fig. 5.						
413	For all 3 reactors, R2 and R3 obtained much higher EPS concentrations than R1 for						
414	both humic acid substances (HS) and proteins (PN). In addition, HS were the						
415	predominant components at the corresponding concentrations of 194, 254 and 221 mg/L,						
416	followed by PN at 110, 141 and 130 mg/L for R1, R2 and R3, respectively. PS were						

RSC Advances Accepted Manuscript

417	dispersed evenly, which accounted for a small but stable proportion to EPS amounts at
418	20-30% (in supporting info). It was noted that in the subfractions, a similar cumulative
419	peaks of HS took place in 3 reactors which were in accordance with the total EPS
420	variation feature as revealed in Fig. 4. These finding also indicated that the relative
421	contribution of cumulative EPS were mainly attributed to the HS components. One
422	concern is that there are many humic like substances produced from the degradation of
423	feeding substrates. In studying primary sludge digestion, Miron et al. ⁴¹ reported that the
424	hydrolysis of lipids and carbohydrates increased with increasing solid retention time,
425	whereas protein hydrolysis only occurred under methanogenic conditions.
426	According to previous reports, EPS plays an important role in microbial adhesion
427	and aggregation processes, promoting to the formation and stability of microbial
428	community structure. ^{16, 42} Each EPS fraction contains different components and
429	represents rather distinct chemical property. The polysaccharide and protein in TB-EPS
430	are independent of the influent carbon source and C/N ratio.43,44 However, the protein
431	content and the carbohydrate content in LB-EPS are related to the influent C/N ratio. ⁴⁴
432	Such differences indicated that the different EPS fraction had different components. ⁴⁵
433	3.4.4 Change degree of EPS subfractions
434	Considering the dedicate LB-EPS and TB-EPS subfractions characteristics inferred

by ACoD process largely depend on not only concentration but also fluctuation degree.

- 436 Consequently, 2 mathematical parameters (p and k value) were involved in to describe
- the change degree of different subfractions so as to better understand the complicated
- 438 evolution in this study. (The detailed results were presented in the Supplementary

440 The p value was determined as follows:

441
$$p_i^{a,b,c} = \frac{Cn_{i+1}^{a,b,c} - Cn_i^{a,b,c}}{Cn_i^{a,b,c}}$$
, i=1, 2, 3... 119; $p_0^{a,b,c} = 0$

442 where Cn represented EPS fraction concentration on the each day; a, b and c

444 Then, the indicator k was given by the absolute value of p together. The k value was

$$\mathbf{k}^{a,b,c} = \sum_{i=1}^{n=119} |\mathbf{p}_i^{a,b,c}|$$

A higher k value represented the increased EPS fluctuation degree. As can be seen 446 in Fig. 6, the k value disparity of PS and HS in TB-EPS were less significant than that 447 in LB-EPS, as black and grey oval pointed out. Besides, these findings also suggested 448 449 that the degree of change in LB-EPS subfractions appeared to be more obvious than that 450 in TB-EPS. Although the metabolism were considered capable of dissolving bound EPS to the supernatant in the meantime, the released TB-EPS from the inner cells were hard 451 to diffuse out of the sludge. The variation of LB-EPS observed in the this study under 452 FOG conditions was anticipated to be related more directly to different levels of 453 454 microbial EPS secretion as active responses to external environmental challenges. 455 Furthermore, compared to the variations in EPS subfractions with the changes in 456 process condition, the extent of the changes in PN was the most remarkable. The k values of PN were dramatically higher than other subfractions and there was a trend of 457 change in correlation with the operational condition, as red arrow pointed out. PN are 458 believed to play a crucial role in the structure, properties and functions of sludge 459

460

of a large quantity of exoenzymes, as suggested by Frølund et al.²⁴ The easy 461 degradation and uptake of readily biodegradable organic substrates, such as glucose and 462 acetate, gives rise to a high level of exoenzymes in the EPS matrix.⁴⁷ The higher k value 463 of PN rather than any subfractions proved that the substrates arising from the digested 464 materials were readily biodegradable. 465 466 4. Conclusions Mesophilic co-digestion of MWS with FW under proper FOG conditions led to 467 substrates better balanced and efficiently degradable. Biogas production and COD 468 reduction were enhanced significantly in the FOG test systems. But excessive FOG 469 addition disturbed process stability and restricted digestion performance. EPS variation 470 revealed that the microbial activity was affected by FOG. Each EPS subfractions play 471 different roles in microbial metabolize activities due to the distinct chemical property. 472 EPS analysis also indicated that the FOG enhanced systems may exhaust prematurely 473 due to the "doping" phenomena. In general, the complexity and extent of synergic 474 interactions in the microbial world during ACoD is greatly unexplored and further 475 research requires an essential step towards optimizing the digestion performance. 476 Acknowledgements 477 This study was sponsored by National Natural Science Foundation of China (Grant 478

No. 51378189, 51578223 and 51521006). Thanks to Li Zhou for the aid of polishing the 479 language. 480

22

481	References							
482	1.	M. T. Nguyen, N. H. M. Yasin, T. Miyazaki and T. Maeda, Chemosphere, 2014,						
483		117, 552-558.						
484	2.	N. B. o. S. o. China, China statistics press, Beijing, 2014.						
485	3.	J. H. Long, T. N. Aziz, F. L. d. l. Reyes Iii and J. J. Ducoste, Process Safety and						
486		Environmental Protection, 2012, 90, 231-245.						
487	4.	Q. Wang, L. Ye, G. Jiang, P. D. Jensen, D. J. Batstone and Z. Yuan,						
488		Environmental Science & Technology, 2013, 47, 11897-11904.						
489	5.	L. Björnsson, M. Murto and B. Mattiasson, Applied Microbiology and						
490		Biotechnology, 2000, 54, 844-849.						
491	6.	C. Gou, Z. Yang, J. Huang, H. Wang, H. Xu and L. Wang, Chemosphere, 2014,						
492		105 , 146-151.						
493	7.	P. G. Stroot, K. D. McMahon, R. I. Mackie and L. Raskin, Water Research, 2001,						
494		35 , 1804-1816.						
495	8.	K. Fricke, H. Santen, R. Wallmann, A. Hüttner and N. Dichtl, Waste						
496		Management, 2007, 27 , 30-43.						
497	9.	Å. Davidsson, C. Lövstedt, J. la Cour Jansen, C. Gruvberger and H. Aspegren,						
498		Waste Management, 2008, 28, 986-992.						
499	10.	C. Li, P. Champagne and B. C. Anderson, Bioresource Technology, 2011, 102,						
500		9471-9480.						
501	11.	C. Noutsopoulos, D. Mamais, K. Antoniou, C. Avramides, P. Oikonomopoulos						
502		and I. Fountoulakis, Bioresource Technology, 2013, 131, 452-459.						
503	12.	J. Moestedt, E. Nordell, Y. S. Shakeri, J. Lundgren, M. Martí, C. Sundberg, J.						
504		Ejlertsson, B. H. Svensson and A. Björn, Waste Management, 2015.						
505	13.	M. T. Madigan, Martinko, J.M., Brock, T.D.,, 2006.						
506	14.	N. Ganidi, S. Tyrrel and E. Cartmell, Bioresource Technology, 2009, 100,						
507		5546-5554.						
508	15.	B. Demirel and P. Scherer, Rev Environ Sci Biotechnol, 2008, 7, 173-190.						
509	16.	G. Sheng, H. Yu and X. Li, Biotechnology Advances, 2010, 28, 882-894.						
510	17.	S. Comte, G. Guibaud and M. Baudu, Enzyme and Microbial Technology, 2006,						
511		38 , 237-245.						
512	18.	Z. Yu, X. Wen, M. Xu and X. Huang, Bioresource technology, 2012, 117,						
513		333-340.						
514	19.	G. F. Bennett, Journal of Hazardous Materials, 2004, 106, 177.						
515	20.	APHA, American Public Health Association, Washington, DC, 2005.						
516	21.	B. Frølund, R. Palmgren, K. Keiding and P. H. Nielsen, Water Research, 1996,						
517		30 , 1749–1758.						
518	22.	X. Y. Li and S. F. Yang, <i>Water Research</i> , 2007, 41 , 1022-1030.						
519	23.	B. Q. Liao, D. G. Allen, I. G. Droppo, G. G. Leppard and S. N. Liss, Water Res,						
520		2001, 35 , 339-350.						
521	24.	B. Frølund, T. Griebe and P. H. Nielsen, <i>Applied Microbiology & Biotechnology</i> ,						
522		1995, 43 , 755-761.						
523	25.	Y. Liu and H. H. P. Fang, Critical Reviews in Environmental Science &						

524		Technology, 2003, 33 , 237-273.
525	26.	A. Fernández, A. Sánchez and X. Font, <i>Biochemical Engineering Journal</i> , 2005,
526		26 , 22–28.
527	27.	A. Nordberg, A. Jarvis, B. Stenberg, B. Mathisen and B. H. Svensson,
528		<i>Bioresource Technology</i> , 2007, 98 , 104–111.
529	28.	H. M. El-Mashad and R. Zhang, <i>Bioresource Technology</i> , 2010, 101 , 4021–
530		4028.
531	29.	S. Luostarinen, S. Luste and M. Sillanpää, Bioresource Technology, 2009, 100,
532		79-85.
533	30.	E. J. Martinez, Redondas, V., Fierro, J., Gómez, X., Morán, A., Journal of
534		Residuals Science Technology, 2011, 8, 53-60.
535	31.	E. J. Martínez, J. Fierro, M. E. Sánchez and X. Gómez, International
536		Biodeterioration & Biodegradation, 2012, 75, 1-6.
537	32.	M. Ros, I. H. Franke-Whittle, A. B. Morales, H. Insam, M. Ayuso and J. A.
538		Pascual, Bioresource Technology, 2013, 136, 1-7.
539	33.	F. Lü, L. Hao, D. Guan, Y. Qi, L. Shao and P. He, Water Research, 2013, 47,
540		2297–2306.
541	34.	F. Lü, Q. Zhou, D. Wu, T. Wang, L. Shao and P. He, Chemical Engineering
542		Journal, 2015, 262 , 932-938.
543	35.	H. Y. Ng, T. W. Tan and S. L. Ong, Environmental Science & Technology, 2006,
544		40 , 2706-2713.
545	36.	K. Hanaki, T. Matsuo and M. Nagase, Biotechnology & Bioengineering, 1981,
546		23 , 1591–1610.
547	37.	M. M. Alves, J. A. Vieira, R. M. Pereira, M. A. Pereira and M. Mota, Water
548		Research, 2001, 35, 264-270(267).
549	38.	I. Sutherland, Microbiology, 2001, 147, 3-9.
550	39.	T. L. Poxon and J. L. Darby, Water Research, 1997, 31 , 749–758.
551	40.	G. Long, P. Zhu, Y. Shen and M. Tong, Environmental Science & Technology,
552		2009, 43 , 2308-2314.
553	41.	Y. Miron, G. Zeeman, J. B. van Lier and G. Lettinga, Water Research, 2000, 34,
554		1705-1713.
555	42.	H. C. Flemming and J. Wingender, Nature reviews. Microbiology, 2010, 8,
556		623-633.
557	43.	F. Ye, G. Peng and Y. Li, Chemosphere, 2011, 84, 1250-1255.
558	44.	F. Ye, Y. Ye and Y. Li, Journal of Hazardous Materials, 2011, 188, 37-43.
559	45.	C. S. Zhang Zhaoji, Wang Shumei, Luo Hongyuan, Appl Microbiol Biotechnol,
560		2011, 89 , 1563-1571.
561	46.	P. Le-Clech, V. Chen and T. A. G. Fane, Journal of Membrane Science, 2006,
562		284 , 17–53.
563	47.	D. T. Sponza, Enzyme & Microbial Technology, 2003, 32, 375–385.
564		

Figure captions

Fig. 1 pH and VFA/Alk ratio in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 2 Daily biogas per VS_{added} production (a) and cumulative biogas (b) production in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 3 Evolution of biogas proportion after anaerobic co-digestion with different operation strategies.

Fig. 4 Cumulative EPS concentrations and the proportion of LB-EPS and TB-EPS in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 5 Heatmap of EPS subfractions in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 6 Change degree of LB-EPS and TB-EPS subfractions in three group anaerobic co-digestion systems, which was described by k value.

Fig. 1 pH and VFA/Alk ratio in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 2 Daily biogas per VS_{added} production (a) and cumulative biogas (b) production in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 3 Evolution of biogas proportion after anaerobic co-digestion with different operation strategies.

Fig. 4 Cumulative EPS concentrations and the proportion of LB-EPS and TB-EPS in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 5 Heatmap of EPS subfractions in three group anaerobic co-digestion reactors during 120 days operation.

Fig. 6 Change degree of LB-EPS and TB-EPS subfractions in three group anaerobic co-digestion systems, which was described by k value.

Table List

 Table 1 Characteristics of the seed sludge and feed substrates in co-digestion

 experiments.

 Table 2 Operation strategies in three group mesophilic anaerobic co-digestion

reactors.

Table 3 Experimental results of the anaerobic co-digestion during 120d process.

RSC Advances Accepted Manuscript

Item	Type of raw materials					
	SS	MWS	FW	CoSub	FOG	
Density (g/mL)	0.9 ± 0.1	1.2 ± 0.1	1.0 ± 0.1	1.1 ± 0.1	0.9 ± 0.1	
pН	7.6 ± 0.1	7.4 ± 0.1	4.6 ± 0.1	6.3 ± 0.1	4.3 ± 0.1	
sCOD (g/L)	0.4 ± 0.5	17.9 ± 10	103.1 ± 20	51.1 ± 20	123.0 ± 20	
Moisture (%)	95.4 ± 0.1	75.0 ± 0.1	60.9 ± 0.1	69.5 ± 0.1	21.3 ± 0.1	
TS (g/L substrate)	40.6 ± 0.2	289.9 ± 0.2	402.4 ± 0.2	333.7 ± 0.2	724.5 ± 0.2	
VS (g/L substrate)	13.3 ± 0.2	113.6 ± 0.2	389.7 ± 0.2	221.2 ± 0.2	718.0 ± 0.2	
VS/TS (%)	31.0 ± 0.2	39.0 ± 0.2	96.0 ± 0.2	61.2 ± 0.2	99.0 ± 0.2	
VFA (mg/L)	617.8 ± 0.5	5118.2 ± 0.5	2965.0 ± 0.5	4278 ± 0.5	6371.2 ± 0.5	
Alkalinity (mg/L	1645.8 ± 0.5	736.7 ± 0.5	2664.6 ± 0.5	1488 ± 0.5	1136.4 ± 0.5	
as CaCO ₃)						
C/N (w/w)	5.6 ± 1.0	7.4 ± 1.0	37 ± 1.0	21.9 ± 1.0	15 ± 1.0	

Table 1			

Characteristics of the seed sludge and feed substrates in co-digestion experiments.

SS = Seed sludge; MWS = Municipal waste sludge; FW = Food waste; CoSub = co-substrates of municipal waste sludge with food waste at TS ratio of 1:1; FOG = Fat, oil, grease; VFA = volatile fatty acid.

Table 2									
Operation strategies in three group mesophilic anaerobic co-digestion reactors.									
Period	Group	Substrate	HRT	OLR	FOG %	Relative			
						loading			
		Units	(d)	(g VS/L/d)	(VS %)	(%)			
	R1 _(1,2,3)	CoSub	20	3.0	0	100			
I (1-30d)	$R2_{(1,2,3)}$	CoSub +FOG (4 ml)	20	4.5	33	150			
	R3 _(1,2,3)	CoSub +FOG (4 ml)	15	4.5	33	150			
	$R1_{(1,2,3)}$	CoSub	20	3.0	0	100			
II (31-60d)	$R2_{(1,2,3)}$	CoSub +FOG (6 ml)	20	5.2	42	170			
	R3 _(1,2,3)	CoSub +FOG (6 ml)	15	5.2	42	170			
	$R1_{(1,2,3)}$	CoSub	20	3.0	0	100			
III (61-90d)	$R2_{(1,2,3)}$	CoSub +FOG (8 ml)	20	5.9	49	200			
	R3 _(1,2,3)	CoSub +FOG (8 ml)	15	5.9	49	200			
	R1(100)	CoSub	20	3.0	0	100			
IV (01 120d)	$\mathbf{P2}_{(1,2,3)}$	CoSub + EOG(10 ml)	20	67	55	220			
1 ()1-120u)	$R_{3(1,2,3)}$	CoSub + FOG (10 ml)	15	6.7	55	220			
CoSub = co-substrates of municipal waste sludge with food waste (none FOG									

contents); FOG = fat, oil, grease; OLR = organic loading rate. Each reactor was paralleled in triplicates.

Table 3

Experimental results of the anaerobic co-digestion during 120d process.

Parameter	Period I			Period II			Period III			Period IV		
	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3
VS (g/L)	15.6 ± 0.7	20.1 ± 0.7	17.4 ± 0.3	16.1 ± 0.3	21.2 ± 0.7	19.6 ± 0.4	16.4 ± 0.3	18.8 ± 0.3	16.7 ± 0.2	15.6 ± 0.2	16.9 ± 0.2	14.9 ± 0.2
VS/TS (%)	36.9 ± 1.4	46.3 ± 1.5	44.3 ± 1.4	43.2 ± 1.9	53.0 ± 1.7	54.8 ± 1.6	48.8 ± 1.1	55.1 ± 1.9	51.8 ± 1.3	53.5 ± 1.3	54.0 ± 2.0	55.9 ± 1.8
sCOD (mg/L)	440.2 ± 13.2	1257.6 ± 31.5	1148.0 ± 27.7	553.8 ± 11.5	1533.5 ± 31.2	1302.1 ± 20.8	550.2 ± 11.9	725.6 ± 12.0	718.1 ± 9.3	552.2 ± 9.7	699.4 ± 8.4	689.8 ± 9.6
sCOD reduction (%)	61.8 ± 1.7	67.7 ± 1.9	63.8 ± 2.2	60.2 ± 2.4	69.6 ± 1.8	64.4 ± 2.0	61.0 ± 1.3	74.2 ± 1.9	70.9 ± 1.9	61.5 ± 1.7	77.1 ± 2.1	75.7 ± 2.2
Biogas yield (mL/d)	1504 ± 20.8	2698 ± 33.6	2552 ± 37.5	1672 ± 21.0	4181 ± 34.6	3493 ± 29.3	1690 ± 17.6	3604 ± 31.7	3550 ± 29.6	1618 ± 16.8	2219 ± 18.3	2123 ± 19.7
Biogas yield (mL/g VS _{added})	501.3 ± 6.9	611.3 ± 7.5	578.5 ± 8.4	557.5 ± 7.1	810.3 ± 6.7	677.2 ± 5.7	563.6 ± 5.9	613.0 ± 5.4	603.8 ± 5.0	539.3 ± 5.6	336.2 ± 2.8	321.8 ± 2.9
Biogas promotion (%)		21.9 ± 7.1	15.4 ± 7.3	_	45.3 ± 6.8	21.5 ± 5.9	—	8.8 ± 5.9	7.1 ± 5.3	_	-37.7 ± 4.7	$\textbf{-40.3} \pm 4.9$

Table of contents:

Relationship of extracellular polymeric substances and microbial activity were investigated in 3 group fat, oil, grease (FOG) enhanced ACoD reactors.