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molecules calculated using time-dependent density functional theory (TD-DFT). The approach
is applied to a m-conjugated molecular system, azobenzene. The excitation energies for all the

molecules generated by the evolutionary design scheme were computed at TD-DFT level on mul-
tiple supercomputing clusters. A software developed in-house was used to automatically set up
the TD-DFT calculations and exploit the advantages of parallelization and thereby speed up the
process of obtaining results for the evolutionary de novo program. Our proposed optimisation
scheme is able to propose new azobenzene structures with significant decrease in excitation en-

ergies.

1 Introduction

Molecular and materials design using computers has been in prac-
tice for many years and has evolved over time. The increased
availability of high performance computing resources has facili-
tated the design of novel materials without the need to perform
experiments . However, the task of discovering new molecules
that satisfy multiple criteria still remains a challenge. In recent
years many research groups have performed quantum chemical
calculations on massively networked computing systems to accel-
erate the discovery of new materials. For instance, Hachmann
et al. 2 have developed a virtual high-throughput screening al-
gorithm to create a large database of molecules for potential
use as materials in photovoltaic cells. In the project, extensive
quantum chemical calculations for more than 2 million struc-
tures (combinatorially generated from a set of building blocks)
were performed on a grid computing network to evaluate prop-
erties related to the power conversion efficiency. Using a similar
strategy, de Jong et al. > implemented a scheme to calculate the
elastic properties of inorganic crystalline compounds using den-
sity functional theory (DFT) methods and developed a database
of such molecules. In a recent article, Korth* investigated the
performances of semi-empirical, DFT and wave function based
methods for applications to screen a large number of molecular
structures relevant for battery electrolytes. In a related study, Qu
et al. > computed the ionisation potentials and electron affinities
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of about five thousand molecules using DFT methods, relevant
for battery electrolyte systems. These applications of DFT based
high-throughput virtual screening (HTVS) methods were primar-
ily aimed at development of a database of molecules for access to
the scientific community.

The search for structures with desired properties is often based
on various global optimisation algorithms such as genetic algo-
rithms®!! (GA) and particle swarm optimisation !2 (PSO) tech-
niques. These methods have been used extensively in computer-
aided drug design '*>-17 and protein ligand-docking 18-2°
Both of these optimisation routines are metaheuristic and require
many iterations to reach acceptable solutions. The central theme
in these optimisation routines is to generate new structures from
a pool of molecules discovered in earlier iterations. Since evo-
lutionary routines (such as GAs) rely on the property estimates
, 1.e. fitness of known/discovered molecules, it is essential to
estimate the fitness as accurately as possible. While property esti-
mates using experimental methods would be the most accurate, it
is extremely time consuming and expensive®. In computer-aided
molecular design (CAMD), the fitnesses are generally estimated
using knowledge-based21=23 scoring functions or empirical2+-26,
In knowledge-based scoring functions, commonly employed in
protein-ligand docking studies, the interaction energies are com-
puted as inverse formulation of the Boltzmann law. The technique
is used to identify atom-pairs that are preferred while penalising
atom-pairs that exhibit repulsive interaction. Empirical scoring
functions are obtained by using supervised regression techniques
where, experimentally observed property measures are approx-
imated as a function of certain chemical or structural features
of the molecule. Although these methods are fast and compu-
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tationally cheap, they do not always provide a reasonably accu-
rate estimate of the true fitness?’. To address this, we present
a more reliable DFT based fitness evaluation algorithm that is
fully automated and scalable, designed to leverage on the pro-
cessing power of multiple computers on a distributed network.
Owing to this, the algorithm allows for fitness calculations of
many molecules simultaneously. All aspects of the fitness eval-
uation, starting from generation of the input files, parsing of the
output data and launching required computations are automati-
cally managed by our software.

We apply this high-throughput (HT) fitness evaluation scheme
in the evolutionary de novo design of molecules with lower ex-
citation energies. The lowest energy of excitation (here defined
as the Ayqy), is an important property in many fields of appli-
cations, such as organic electronics and photovoltaics. For in-
stance, in dye sensitised solar cells (DSSCs), research has shown
that dyes with a A, closer to the infra-red region tend to have
higher power efficiency?8-34. In areas like organic light emitting
diodes (OLEDs) and sensor applications, it is oftentimes desirable
to have the HOMO-LUMO energy levels within a narrow range
in order for the molecule to be suitable candidates for applica-
tions3>~37. A design scheme that allows for fine control of the
these energy levels is therefore desirable.

As an application example we have chosen to apply our de
novo based design scheme to azobenzenes. We selected azoben-
zenes because they are small and often are structurally sym-
metric, making them tractable for DFT and TD-DFT computa-
tions. Additionally, numerous applications of azobenzenes ex-
ploiting its photoisomerisation behaviour have been reported in

38-46  Azobenzenes fall in an interest-

the scientific literature
ing class of molecules, that exhibit a change in their geometric
shape (cis-trans isomerization) when irradiated with light of ap-
propriate wavelength. This allows us to control certain physi-
cal properties of the molecule using light, and hence, making it
possible to control processes in vivo*’. Depending on the field
of application, the photoisomerisation property of azobenzenes
is exploited using light at appropriate wavelength. The tradi-
tional trial and error approach to discover structures with the de-
sired property, has mostly been time consuming and tedious 381,
Thus, a more rational design approach is needed to improve se-
lected properties. In an earlier attempt to identify such azoben-
zenes, Carstensen et al. 26 used GAs for design of azobenzenes
that could photoisomerise using commonly available lasers. The
UV-Vis absorbance spectra were computed using semi-empirical
methods. We expand on their work, by implementing a more ac-
curate DFT and TD-DFT based computation of the UV-Vis spectra
of the molecules. The goal in our evolutionary de novo design
is to discover azobenzenes that have A,,,, closer to the infra-red
region of the electromagnetic spectra, i.e low excitation energies.
Although we have chosen to maximise the A, (minimise the
excitation energy), the method could also have been used to fine-
tune the A4y to a target value.

In evolutionary design, the starting point of the optimisation
is generally a set of randomly generated molecules, called the
initial population. The algorithm improves the fitness (a figure
of merit for each molecule) of the molecules starting from this
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set of structures. A randomly generated initial pool may not have
fitness measures better than pre-existing molecules and is also
unlikely to include those molecules. Hence, starting the design
scheme from a random initial pool makes it a suboptimal strategy
for optimisation. In our de novo design scheme we, therefore,
use an evolutionary algorithm (EA) that allows for the inclusion
existing and known molecules in the initial population, such that
improvement in the fitness starts from existing molecules with
high fitness values.

2 Methods

2.1 Fragment based design

In chemistry, molecules can be viewed as a set of substructures
(fragments) linked to each other in a defined manner. One can
view the substituent groups attached to the common substructure
(scaffold) as the cause for the different physical property values.
For example, the red or blue shift of the UV-Vis absorbance peaks
in azobenzenes (see Figure 1), based on the substituent groups
attached to the scaffold. In ethanol, unsubstituted azobenzene
(Mol 1 in Figure 1) has its A, at 318 nm, while 4-[(E)-2-(4-
methanesulfonylphenyl)diazen-1-yl]-N,N -dimethylaniline (Mol2
in Figure 1), has its Ay at 445 nm. This means properties of
azobenzene (and its derivatives) can be tuned by modifying the
substituents bonded to the scaffold. This fragment based design
of molecules is the most common approach in computational ma-
terials and molecule design*®. Our de novo evolutionary program
follows this design routine to discover molecules with improved
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Fig. 1 Azobenzene derivatives, with a common scaffold (in green) and
substituent groups attached leading to a change in the observed 4,

2.2 Evolutionary de novo design

The de novo design process flow is shown in Figure 2. The de-
sign scheme begins by generating a set of random structures or
by including a set of pre-existing molecules (defined by the user)
in the initial population. New molecules are built by attaching
fragments to scaffolds that are randomly selected from a prede-
fined library. In the next step the fitnesses of all molecules in
the initial population are computed. The fitness evaluation step
is generally not required when an existing set of structures is in-
cluded in the initial pool that already have associated fitnesses.
Following this, all molecules in the population are ranked based
on their fitness measures. The algorithm then selects a subset of
the structures from the population to which evolutionary opera-

This journal is © The Royal Society of Chemistry [year]
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Fig. 2 Process flow of our evolutionary de novo design method. Steps in fitness evaluation is shown in the right.

tors such as crossover and/or mutation are performed. In con-
trast to standard genetic algorithms (GAs) 6,49 which uses a lin-
ear genetic material, our evolutionary de novo design approach
represents the molecules as graphs which are very similar to the
classical 2D graph representation of molecules in chemistry. In
this sense, the de novo method used here more resembles genetic
programming 7-11-50 (GP) than classical GAs.

Figure 3 shows the evolutionary operators used in our de
novo design. In the crossover operation, fragments between
two molecules (usually, the best two molecules) are swapped,
whereas in the mutation operation, one or more fragment
group(s) in a molecule are either added, deleted or substituted
by a randomly selected fragment from the library. These changes
to the structures are brought about by taking synthetic compat-
ibility rules into account (discussed in section 2.3). These ge-
netic operations mimic natural evolutionary process and their
use is the key step in the design process. The process of mod-
ifying selected structures using genetic operators and obtaining
new molecules with improved property, is probabilistic. The new
molecules are then subject to the fitness evaluation, following
which, all molecules in the population are re-ranked based on
their fithess measures. This process of selecting structures and
performing genetic operations is repeated untill the number of
cycles defined (no. of generations) is completed.

o
V\©\" L : Mutation
Crossover

Fig. 3 Genetic operators schemes, mutation and crossover. The
substituent groups highlighted in grey are the fragments involved in the
respective genetic operation.

This journal is © The Royal Society of Chemistry [year]

2.3 Synthetic accessibility

To maximise the probability of the structures from the de novo de-
sign being synthesizable, specific rules to link fragment and scaf-
folds were established. These rules control which atoms in the
fragment group and scaffold can be linked. In addition, it also
specifies the associated reaction class to bring about the chemi-
cal modification. To generate synthetically realistic structures a
suitable fragment library was created. For all fragments in the
library, information about the attachment atom(s) on the sub-
structure, the bond order and the corresponding reaction class
were defined. The reaction class depends on the chemical envi-
ronment of the attachment atom. For example, all fragments hav-
ing a-hydrogens can theoretically undergo aldol condensation®!
reaction with an OH containing fragment, forming a C-C bond
at the a-carbon atom. Hence «-carbon atoms in all fragments
can have the same reaction class (aldol condensation). All re-
action classes and their mutual compatibility rules are specified
in a table, which is read by the evolutionary de novo software to
generate synthetically realistic structures.

The quality of the molecular fragments provided by the user
is equally important for successful search of realistic structures
with improved properties. One way to improve the quality of the
fragments is by fragmenting specific bonds in existing molecules,
to give synthetically realistic substructures. In this work, the frag-
ment library was customised for the molecular system being stud-
ied. To achieve this, specific bonds in about 300 existing azoben-
zenes were broken to obtain fragments and scaffolds. Figure 4
shows the fragmentation routine followed to generate the differ-
ent fragments. The molecules were fragmented using a Python
program developed in-house. Fragmenting existing molecules in
this fashion, allowed the generation of scaffolds with attachment
points that follow similar reactions. More precisely, attachment
atoms at ortho and para positions in the benzene rings generally
get assigned the same reaction class, which falls in line with the
theory of aromatic substitution reactions>!.
obtained were then added to the respective fragment and scaf-
fold libraries after a check for duplicates was done.

The substructures

However, having fragments only from existing structures may
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confine the search space. Hence, to ensure sufficient diversity,
the fragment library was augmented with additional 700 struc-
tures. These 700 structures were selected by applying a molecular
weight constraint (maximum of 150 g/mol) on a larger pool with
23,000 structures obtained from from the BRICS>2 (Breaking of
Retrosynthetically Interesting Chemical Substructures) fragment
database. Fragmenting molecules in this fashion also allowed for
inclusion of all three hundred azobenzenes in the initial popula-
tion.

Fragments Scaffolds

- I "
<G 4 9E

T 0
» N
o0 4 O

Fig. 4 Fragmentation of azobenzene molecule to give fragments and
scaffolds. Each group of atoms highlighted (in grey) form a fragment.
The rest of the atoms form the scaffold, retaining the same attachment
atom points. FA; and S4;, (i = 1,2) are fragment and scaffold attachment
atoms.

2.4 Fitness evaluation

As shown in figure 2, the fitness evaluation was performed in
four steps. To compute the A, the geometry of a molecule was
first optimised and then its UV-Vis absorbance spectrum was com-
puted. The first three steps relate to the geometry optimisation
of the molecule at different levels of theory. In the first step, a
search for the lowest energy conformer was done using molecu-
lar mechanics. This was followed by semi-empirical and DFT level
geometry optimisations (in gas phase) of the molecule in the sec-
ond and third step respectively. In the final step, the optimised
coordinates of the molecule was used to compute its absorbance
spectrum using TD-DFT calculations in the solvent phase.

The lowest energy conformer search of the molecule was done
using cxcalc®® (from the ChemAxon software package), based on
the Dreiding force field®*. The geometry of the lowest energy
conformer was then optimised using the Austin Model 1°° (AM1)
Hamiltonian, implemented in the MOPACS® software package.
This was followed by DFT level optimisation of the geometry in
gas phase using the NWChem software>”. The density functional
and basis set used in the DFT optimisation was Beckes three-
parameter and Lee-Yang-Parr hybrid (B3LYP) 58 and 6-31G(d,p) 59
respectively. Although, solvent phase geometry optimisation of-
fers the best chances of minimising errors, due to computational
difficulties associated with solvent-solute interactions, the opti-
misations were performed in gas phase. The optimised geometry
in gas phase was considered a sufficiently close approximation to
the solvated structure ®°. TD-DFT spectra computations were per-
formed in ethanol using Gaussian 09°! program. Solvation effects
were included by using the conductor-like polarisable continuum
model (CPCM)®52. The density functional and basis set used for
TD-DFT calculations were the PBEG®? and double-{-valence plus
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polarisation (DGDZVP)®* respectively.

2.5 Software framework for fitness evaluation

The de novo software was designed to accommodate indepen-
dent fitness evaluation routines in the optimisation. Here, the
first two steps in the fitness evaluation were performed on the
desktop computer where the de novo program was run. Compu-
tationally demanding DFT and TD-DFT calculations were done on
two supercomputing clusters. To automate this process, a dedi-
cated high-throughput (HT) fitness evaluation algorithm was de-
veloped and written in Python. The program allows DFT and TD-
DFT based fitness assessment of many molecules simultaneously.
The HT fitness program was designed to perform all the practical
tasks related to the process such as, to and fro transfer of files to
supercomputing clusters and execution of DFT and TD-DFT com-
putations. The input file for various steps in the fitness evaluation
scheme were prepared using Open Babel ©> application which was
called throught the Python program. The progress of these com-
putations on all the computing resources was monitored by the
Python script. All the required files from the remote computers
were retrieved once the jobs were completed. Figure 5 outlines

HPC1
Compute nodes - 1440
CPUs - 22460

3) DFT/4) TD-DFT
Dynamic node request

..
\é/"#u
1) Lowest energy
_conformer searchy,
2) Semi- empmcal ,
Optimisation om0

Desktop computer
CPUs - 8 (2.30 GHz)

HPC 2
Compute nodes - 518
CPUs - 9100

3) DFT/4) TD-DFT
Dynamic node req‘uesr

Fig. 5 Allocation of DFT/TD-DFT jobs to supercomputers based on the
number of compute nodes available on them.

the algorithm followed to automate the process of fitness evalua-
tion. The lowest energy conformer and semi-empirical optimisa-
tion steps were performed on a desktop computer. The remaining
steps in the fitness evaluation were performed on supercomput-
ers. The HT fitness program was designed to make optimal use
of the computing resources available. The decision to perform
calculations on a supercomputing cluster was made based on the
number of free compute nodes available. In addition, the num-
ber of nodes required for the tasks was decided on the fly. At
this point, it should be noted that the supercomputing clusters
are a shared resource and therefore, number of nodes available
on them changed. Once the jobs on the supercomputers were
launched, the Python routine checked for the status of a job every
The outputs of the DFT and TD-DFT program were
then copied back to the desktop computer. This system enabled
centralised control over all the computing resources used in this
study. If any of the steps in the fitness evaluation failed, the cal-
culations for that molecule were terminated and a new molecule

3 minutes.

was considered.

This journal is © The Royal Society of Chemistry [year]

Page 4 of 9



Page 5 of 9

2.6 Computational details

The evolutionary de novo design software has been developed
in-house and is written in Java using the CDK®® toolkit. The
crossover and mutation probabilities were set to 0.65 and 0.35
respectively. An additional constraint on the molecular weight
(max. 550g/mol) of molecules was added to restrict the size of
the molecules, thereby increasing the probability of the molecule
being synthesizable. The population size was set to 100 and the
number of offsprings to be produced in each iteration was set to
four. The maximum number of iterations (generations) was set to
100. In the TD-DFT spectra, for a transition to be considered sig-
nificant, the minimum oscillator strength cut-off was set to 0.167.
The de novo program was run on a desktop computer with eight
intel 17-3615QM CPU cores and each CPU core having maximum
clock speed of 2.30 GHz. The system specifications of the two su-
percomputer clusters HPC 1 and HPC 2 are shown in Figure 5.
HPC1 is an SGI Altix ICE X distributed memory system and has
1440 compute nodes®8. All nodes in the cluster have two 8-core
Intel Sandy Bridge (2.6 Ghz) cores and 32 GB memory. HPC2 is
an HP BL 460c Gen 8 cluster having a total of 518 compute nodes
and 9132 Intel E5-2670 cpu cores each with 32 GB memory®°.

3 Results and discussion

3.1 TD-DFT exchange functional and basis set

The absorbance spectrum of a molecule can be computed using
several quantum chemical methods like TD-DFT, complete active
space methods (CAS-PT2)7° and equation-of-motion coupled-
cluster scheme (EOM-CC)7!. While CAS-PT2 and EOM-CC are
often more accurate than TD-DFT, their computational expense
is considerable and hence their applicability is limited ®%72 in HT
screening. Challenges associated with these methods in the cal-
culation of the absorbance spectra are further amplified when sol-
vent phase computations are to be performed”3. TD-DFT, on the
other hand, manages to produce comparable results at a much
lower computational cost even for solvent phase computations 4.
However, a large variance can be seen in the TD-DFT calculated
spectra when using different density functional and basis-set com-
binations. The accuracy of the predicted spectra using a cer-
tain density functional and basis-set combination, varies with the
molecular system being studied 67576,

To determine the best density functional for the molecular sys-
tem in our study, the A,,,x was computed using three widely used
density functionals7®. These estimates were then compared with
experimental data. The basis set, DGDZVP 64 was used to com-
pute the UV-Vis absorbance spectra for all three functionals. The
three DFT functionals investigated were PBE0®3, B3LYP58 and
CAM-B3LYP77. The DFT functional with lowest mean absolute
error (MAE) in the A, estimates was selected for the TD-DFT
absorbance spectra computation of molecules from the de novo
design. About 70 molecules (test) were chosen from a larger set
of around 300 azobenzenes with experimental A, reported’8.
The experimental A,,,, measures of the test set ranged from 322
nm to 575 nm (see ESI). The fitness evaluation routine described
in section 2.4 was followed to predict the spectra of the test
set molecules. In the final step, i.e, TD-DFT spectra computa-

This journal is © The Royal Society of Chemistry [year]
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tion was performed using three different functionals for the same
molecule. As shown in Figure 6, the MAE in A, predicted by
PBE0%3 functional was 18 nm, while the same for B3LYP>8 and
CAM-B3LYP77 functionals were 26 nm and 44 nm respectively.
Furthermore, the error in prediction using PBEO functional was
nearly consistent in all three groups of molecules as shown in
Table 1. Based on this study, PBEQ density functional was cho-
sen as the best functional to calculate the TD-DFT spectra for the
azobenzenes in our study.

3.2 Azobenzenes with improved fitness

In an evolutionary design approach, the initial population forms
the basis for the subsequent generations. The selection of
molecules for evolutionary operators depends on the ranking of
the molecules in the initial population. In our de novo design im-
plementation the initial population can either be randomly gener-
ated by the GA or can be provided by the user. The latter method
is generally preferable when there exists a set of already discov-
ered molecules and their fitness property measure is known. In
this study, both approaches were implemented while all other pa-
rameters related to the genetic algorithm, such as the crossover
and mutation probability, the scaffold and fragment library and
restriction on the maximum molecular weight of the molecules,
were kept constant. To compare the performances of both the
methods, the maximum of the fitnesses in the initial population,
i.e. 575 nm, was used as the benchmark to assess the quality of
the initial population.

In the first run, a set of about 300 known azobenzene molecules
with their experimentally measured fitness (4,,,,) was supplied to
the GA program as the initial population. The fitness of this set
of molecules ranged from 318 nm to 575 nm. The first molecule
with a A,,,, above the benchmark (575 nm), was discovered in the
first generation. This was followed by two more such molecules
in the sixth generation and fourth and the final molecule with
a fitness measure higher than the benchmark, was discovered in
generation no. 53 with a A4, of 608 nm. The four molecules
(MOLI1-MOL4) discovered using this GA set up are shown in Table
2.

In the second run, the initial population of molecules were
randomly generated by the GA code. The highest A, in the
initial population, was computed to be 505 nm and the lowest
Amax computed was 332 nm. As expected, the results with this
de novo setting were quite different from the earlier setting. The
first molecule with a A,,,, absorbance peak above 575 nm was ob-
tained in generation no. 44. The next molecule obtained with
a Apqc above 575 nm was in generation no. 83, with a A, of
580 nm. The two molecules (MOL5-MOL6) discovered using this
method are shown in Table 2.

Table 3 shows the transitions of all the six molecules at their re-
spective absorbance peaks. Transitions of five molecules (except
MOL4) at their absorbance peaks is dominated by HOMO—LUMO
transitions (close to 100%), which shows that these peaks corre-
spond to their lowest excitation energies. From these results it
can be seen that, the first molecule with a A,,,, higher than 575
nm (the benchmark set) was discovered in the first generation in

Journal Name, [year], [vol.], 1-9 |5
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Fig. 6 Plots of Experimental A,,,. vs Computed 4,,,, of seventy one azobenzenes using different functionals (6a, 6b, 6¢). Squared correlation between
experimental A, and computed A,.., (R?), mean absolute error in prediction (MAE) and standard deviation in prediction error (Gpyeq.gror) for all
functionals are mentioned in the plots. The blue, green and red points indicate molecules with experimental 4,,,, ranging from 300-400 nm, 400-500 nm

and 500-600 nm respectively.

Table 1 Table below showing the variation in correlation coefficient between experimental A,,,, and computed A, (R%), mean absolute error in
prediction (MAE) and standard deviation in prediction error (6p,eq £0r) With different class of molecules. Based on the experimental 4,,,, measures, 71
molecules were grouped into three classes, exp. Auqx range 300-400 nm (22 molecules), 400-500 nm (31 molecules) and 500-600 nm (18 molecules).

ExXp. Ajnqy range 300-400 nm (22 Mols.)

S}

400-500 nm (31 Mols.)

500-600 nm (18 Mols.)

Rz MAE (Ill’l'l) OPpred.Error R MAE (IlIIl) OPred.Error R2 MAE (nm) OPred.Error
CAM-B3LYP 0.96 11.0 8.0 0.93 41.5 13.5 0.76 71 14.2
B3LYP 091 27.7 10 0.80 22 18 0.40 29 16
PBEO 0.92 16.3 8 0.85 13 10 0.46 20 18

the first run, while in the second run it was identified in the 44"
generation. It was observed that in the first run, 4 DFT and TD-
DFT computations were required to discover the first molecule
with an improved property. In the second run it took a signifi-
cantly larger number of DFT and TD-DFT calculations (460) to
identify the first molecule with desired property (i.e. Ayuqx > 575
nm). Also the number of molecules with improved measure of
property discovered in the first and second de novo runs were,
four and two respectively.

3.3 Discussion

In an evolutionary design scheme like ours, many parameters in-
fluence the outcome of the results. For example, the crossover
and mutation probabilities, in the GA set up can to some extent
control the diversity in population. In this study these parame-
ters were arbitrarily assigned. A high crossover probability can
lead to structures that are not very different from the existing
molecules, whereas a high mutation probability increases the di-
versity of the population. Optimal probabilities for these genetic
operators can be determined by many experiments. The results
in both the de novo design approaches, a plateauing effect of the
fitness was seen, from which the system seem unable to escape.
Possible reasons for this could be, non-optimal genetic operator
probabilities, restricted fragment diversity and inaccuracies in the
fitness estimates.

From the plots in Figure 6, it can be seen that PBEO/DGDZVP,

density functional and basis-set combination, generally tends to
underpredict the A, of molecules having an experimental A4y
above 520 nm. The average error in prediction using PBEO func-
tional for molecules with experimental A,,,, above 520 was 20
nm and it ranged from —60 nm to +15 nm. A majority of the
molecules in this group have a high negative prediction error (See
ESI). Erroneous fitness measures make it unlikely for potentially
promising candidates to be selected for genetic processes, which
is a key step in the design process.

From Table 1, it is evident that the best functional to pre-
dict the A, depends on the molecular structure. In about 70
molecules chosen to identify the best DFT functional, it was ob-
served there were many molecules for which, CAM-B3LYP func-
tional gave good estimates of the A,,,y, while PBEO and B3LYP
functionals were far from the true A,,,,. Furthermore, there were
sets of molecules for which PBEO or B3LYP functional specifically,
gave the best estimates of the A,,,,. This essentially means, rely-
ing on A4, predicted by a fixed DFT functional for all molecules
can be spurious. These errors can be minimised by either tuning
existing DFT functionals to suit the molecular system being stud-
ied or rely on machine learning algorithms such as, partial least
squares, support vector machines and random forests, to help pre-
dict the best DFT functionals for new molecules obtained from the
de novo design 8.

Some of the spurious results observed for the CAM-B3LYP func-
tional may be due to the fact that it does not incorporate a full
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Table 2 Structures of new discovered azobenzene molecules using the de novo design. Isodensity surfaces of the HOMO and LUMO orbitals (0.02
a.u.) of the structures are shown. TD-DFT spectra plots were made using GaussSum 7.

Dye HOMO LUMO Absorption Spectra

MOLI1 A0 - 636 N

N Q} ~

o 0
o,

MOL2 Ay - 608 nm

HO HO

MOL3 24 - 608 nm

d O
i

()

MOIL4 Aoy - 595 nm

&
o
LT

MOLS6 Ay - 580 nm

P S rElE

range separation. The functional has only 65% HF exchange at It has been shown®! that ensuring a 100% asymptotic HF ex-
long range instead of the correct 100% asymptotic HF exchange. change is very important for accurate description of valence ex-
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Table 3 Table below summarises lowest energy transitions of all six molecules shown in Table 2. The TD-DFT (B3LYP-DGDZVP) spectra was
computed in ethanol solvent. The oscillator strength (f) corresponding to the lowest energy transition, the generation at which the molecule was
discovered (Generation) and the transitions are also shown. The first four molecules were discovered when background knowledge was given to the
EA routine and the last two molecules were identified when starting population was randomly generated by the program.

Molecule Amax (nm) [eV] f Generation Major Transitions
MOLI1 636 [1.95] 0.2638 Gen001 H—L (98%)
MOL2 608 [2.03] 0.2644 Gen006 H—L (100%)
MOL3 608 [2.03] 0.3399 Gen053 H—L (96%), H—L-1 (2%)
MOL4 595 [2.08] 0.1253 Gen006 H-2—L (11%), H—L (79%)
MOL5 640 [1.94] 0.1682 Gen044 H—L (100%)
MOL6 580 [2.14] 0.1743 Gen083 H—L (100%)

citations in even relatively simple molecular systems. An alter-
native approach, would be to employ the many-body perturba-
tion theory GW method 82 in combination with the Bethe-Salpeter
equation (BSE) formalism 83 Recent results indicate that the GW-
BSE method is promising for accurate calculation of the excitation
energies of conjugated systems 84,

A fitness function evaluation that involves TD-DFT and DFT
computations, takes considerable time to complete. To speed
up the design process, an alternative approach would be to em-
ploy quantitative structure-property relationship models (QSPR)
to evaluate the fitness”-8. These models although are fast, they
tend to be only locally applicable, i.e. fitness estimates using these
methods can only be reliable if the molecule being evaluated, is
similar to molecules that were used to train the model. Statistical
measures8> can be used to infer the confidence intervals and help
us decide if the model predicted fitness can be trusted.

4 Conclusion

In this work, we have presented a method to design azobenzene
based structures with longer absorbtion wavelengths. A high-
throughput DFT and TD-DFT based fitness evaluation algorithm
that was integrated with the de novo based design strategy. The
algorithm was designed to take advantage of the processing capa-
bilities of multiple supercomputing clusters and distributed com-
puting networks to speed up the computations and also provide
reliable fitness estimates, which is essential to the design scheme.
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