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2.6 Computational details

The evolutionary de novo design software has been developed
in-house and is written in Java using the CDK66 toolkit. The
crossover and mutation probabilities were set to 0.65 and 0.35

respectively. An additional constraint on the molecular weight
(max. 550g/mol) of molecules was added to restrict the size of
the molecules, thereby increasing the probability of the molecule
being synthesizable. The population size was set to 100 and the
number of offsprings to be produced in each iteration was set to
four. The maximum number of iterations (generations) was set to
100. In the TD-DFT spectra, for a transition to be considered sig-
nificant, the minimum oscillator strength cut-off was set to 0.1

67.
The de novo program was run on a desktop computer with eight
intel i7-3615QM CPU cores and each CPU core having maximum
clock speed of 2.30 GHz. The system specifications of the two su-
percomputer clusters HPC 1 and HPC 2 are shown in Figure 5.
HPC1 is an SGI Altix ICE X distributed memory system and has
1440 compute nodes68. All nodes in the cluster have two 8-core
Intel Sandy Bridge (2.6 Ghz) cores and 32 GB memory. HPC2 is
an HP BL 460c Gen 8 cluster having a total of 518 compute nodes
and 9132 Intel E5-2670 cpu cores each with 32 GB memory69.

3 Results and discussion

3.1 TD-DFT exchange functional and basis set

The absorbance spectrum of a molecule can be computed using
several quantum chemical methods like TD-DFT, complete active
space methods (CAS-PT2)70 and equation-of-motion coupled-
cluster scheme (EOM-CC)71. While CAS-PT2 and EOM-CC are
often more accurate than TD-DFT, their computational expense
is considerable and hence their applicability is limited60,72 in HT
screening. Challenges associated with these methods in the cal-
culation of the absorbance spectra are further amplified when sol-
vent phase computations are to be performed73. TD-DFT, on the
other hand, manages to produce comparable results at a much
lower computational cost even for solvent phase computations74.
However, a large variance can be seen in the TD-DFT calculated
spectra when using different density functional and basis-set com-
binations. The accuracy of the predicted spectra using a cer-
tain density functional and basis-set combination, varies with the
molecular system being studied60,75,76.

To determine the best density functional for the molecular sys-
tem in our study, the λmax was computed using three widely used
density functionals76. These estimates were then compared with
experimental data. The basis set, DGDZVP64 was used to com-
pute the UV-Vis absorbance spectra for all three functionals. The
three DFT functionals investigated were PBE0

63, B3LYP58 and
CAM-B3LYP77. The DFT functional with lowest mean absolute
error (MAE) in the λmax estimates was selected for the TD-DFT
absorbance spectra computation of molecules from the de novo

design. About 70 molecules (test) were chosen from a larger set
of around 300 azobenzenes with experimental λmax reported78.
The experimental λmax measures of the test set ranged from 322

nm to 575 nm (see ESI). The fitness evaluation routine described
in section 2.4 was followed to predict the spectra of the test
set molecules. In the final step, i.e, TD-DFT spectra computa-

tion was performed using three different functionals for the same
molecule. As shown in Figure 6, the MAE in λmax predicted by
PBE0

63 functional was 18 nm, while the same for B3LYP58 and
CAM-B3LYP77 functionals were 26 nm and 44 nm respectively.
Furthermore, the error in prediction using PBE0 functional was
nearly consistent in all three groups of molecules as shown in
Table 1. Based on this study, PBE0 density functional was cho-
sen as the best functional to calculate the TD-DFT spectra for the
azobenzenes in our study.

3.2 Azobenzenes with improved fitness

In an evolutionary design approach, the initial population forms
the basis for the subsequent generations. The selection of
molecules for evolutionary operators depends on the ranking of
the molecules in the initial population. In our de novo design im-
plementation the initial population can either be randomly gener-
ated by the GA or can be provided by the user. The latter method
is generally preferable when there exists a set of already discov-
ered molecules and their fitness property measure is known. In
this study, both approaches were implemented while all other pa-
rameters related to the genetic algorithm, such as the crossover
and mutation probability, the scaffold and fragment library and
restriction on the maximum molecular weight of the molecules,
were kept constant. To compare the performances of both the
methods, the maximum of the fitnesses in the initial population,
i.e. 575 nm, was used as the benchmark to assess the quality of
the initial population.

In the first run, a set of about 300 known azobenzene molecules
with their experimentally measured fitness (λmax) was supplied to
the GA program as the initial population. The fitness of this set
of molecules ranged from 318 nm to 575 nm. The first molecule
with a λmax above the benchmark (575 nm), was discovered in the
first generation. This was followed by two more such molecules
in the sixth generation and fourth and the final molecule with
a fitness measure higher than the benchmark, was discovered in
generation no. 53 with a λmax of 608 nm. The four molecules
(MOL1-MOL4) discovered using this GA set up are shown in Table
2.

In the second run, the initial population of molecules were
randomly generated by the GA code. The highest λmax in the
initial population, was computed to be 505 nm and the lowest
λmax computed was 332 nm. As expected, the results with this
de novo setting were quite different from the earlier setting. The
first molecule with a λmax absorbance peak above 575 nm was ob-
tained in generation no. 44. The next molecule obtained with
a λmax above 575 nm was in generation no. 83, with a λmax of
580 nm. The two molecules (MOL5-MOL6) discovered using this
method are shown in Table 2.

Table 3 shows the transitions of all the six molecules at their re-
spective absorbance peaks. Transitions of five molecules (except
MOL4) at their absorbance peaks is dominated by HOMO→LUMO
transitions (close to 100%), which shows that these peaks corre-
spond to their lowest excitation energies. From these results it
can be seen that, the first molecule with a λmax higher than 575

nm (the benchmark set) was discovered in the first generation in
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(b) R2 = 0.86, MAE = 26 nm, σPred.Error = 16 nm

●
●

●

● ●●●
●●●

●●
●●

●●
●● ● ●● ●

300 350 400 450 500 550 600

30
0

35
0

40
0

45
0

50
0

55
0

60
0

PBE0

Computed λmax (nm)

E
xp

er
im

en
ta

l λ
m

ax
 (

nm
)

●●
● ● ●●

●●
● ●●● ●● ● ●●

●●
● ●

●
●

●●
● ●● ● ●●

●
●●● ●

● ●
●● ●●

● ●
●

● ●●

●

(c) R2 = 0.92, MAE = 18 nm, σPred.Error = 18 nm

Fig. 6 Plots of Experimental λmax vs Computed λmax of seventy one azobenzenes using different functionals (6a, 6b, 6c). Squared correlation between

experimental λmax and computed λmax (R2), mean absolute error in prediction (MAE) and standard deviation in prediction error (σPred.Error) for all

functionals are mentioned in the plots. The blue, green and red points indicate molecules with experimental λmax ranging from 300-400 nm, 400-500 nm

and 500-600 nm respectively.

Table 1 Table below showing the variation in correlation coefficient between experimental λmax and computed λmax (R2), mean absolute error in

prediction (MAE) and standard deviation in prediction error (σPred.Error) with different class of molecules. Based on the experimental λmax measures, 71

molecules were grouped into three classes, exp. λmax range 300-400 nm (22 molecules), 400-500 nm (31 molecules) and 500-600 nm (18 molecules).

Exp. λmax range 300-400 nm (22 Mols.) 400-500 nm (31 Mols.) 500-600 nm (18 Mols.)
R2 MAE (nm) σPred.Error R2 MAE (nm) σPred.Error R2 MAE (nm) σPred.Error

CAM-B3LYP 0.96 11.0 8.0 0.93 41.5 13.5 0.76 77 14.2

B3LYP 0.91 27.7 10 0.80 22 18 0.40 29 16

PBE0 0.92 16.3 8 0.85 13 10 0.46 20 18

the first run, while in the second run it was identified in the 44
th

generation. It was observed that in the first run, 4 DFT and TD-
DFT computations were required to discover the first molecule
with an improved property. In the second run it took a signifi-
cantly larger number of DFT and TD-DFT calculations (460) to
identify the first molecule with desired property (i.e. λmax > 575

nm). Also the number of molecules with improved measure of
property discovered in the first and second de novo runs were,
four and two respectively.

3.3 Discussion

In an evolutionary design scheme like ours, many parameters in-
fluence the outcome of the results. For example, the crossover
and mutation probabilities, in the GA set up can to some extent
control the diversity in population. In this study these parame-
ters were arbitrarily assigned. A high crossover probability can
lead to structures that are not very different from the existing
molecules, whereas a high mutation probability increases the di-
versity of the population. Optimal probabilities for these genetic
operators can be determined by many experiments. The results
in both the de novo design approaches, a plateauing effect of the
fitness was seen, from which the system seem unable to escape.
Possible reasons for this could be, non-optimal genetic operator
probabilities, restricted fragment diversity and inaccuracies in the
fitness estimates.

From the plots in Figure 6, it can be seen that PBE0/DGDZVP,

density functional and basis-set combination, generally tends to
underpredict the λmax of molecules having an experimental λmax

above 520 nm. The average error in prediction using PBE0 func-
tional for molecules with experimental λmax above 520 was 20

nm and it ranged from −60 nm to +15 nm. A majority of the
molecules in this group have a high negative prediction error (See
ESI). Erroneous fitness measures make it unlikely for potentially
promising candidates to be selected for genetic processes, which
is a key step in the design process.

From Table 1, it is evident that the best functional to pre-
dict the λmax depends on the molecular structure. In about 70

molecules chosen to identify the best DFT functional, it was ob-
served there were many molecules for which, CAM-B3LYP func-
tional gave good estimates of the λmax, while PBE0 and B3LYP
functionals were far from the true λmax. Furthermore, there were
sets of molecules for which PBE0 or B3LYP functional specifically,
gave the best estimates of the λmax. This essentially means, rely-
ing on λmax predicted by a fixed DFT functional for all molecules
can be spurious. These errors can be minimised by either tuning
existing DFT functionals to suit the molecular system being stud-
ied or rely on machine learning algorithms such as, partial least
squares, support vector machines and random forests, to help pre-
dict the best DFT functionals for new molecules obtained from the
de novo design80.

Some of the spurious results observed for the CAM-B3LYP func-
tional may be due to the fact that it does not incorporate a full

6 | 1–9

Page 6 of 9RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 7 of 9 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Table 3 Table below summarises lowest energy transitions of all six molecules shown in Table 2. The TD-DFT (B3LYP-DGDZVP) spectra was

computed in ethanol solvent. The oscillator strength ( f ) corresponding to the lowest energy transition, the generation at which the molecule was

discovered (Generation) and the transitions are also shown. The first four molecules were discovered when background knowledge was given to the

EA routine and the last two molecules were identified when starting population was randomly generated by the program.

Molecule λmax(nm) [eV] f Generation Major Transitions

MOL1 636 [1.95] 0.2638 Gen001 H→L (98%)
MOL2 608 [2.03] 0.2644 Gen006 H→L (100%)
MOL3 608 [2.03] 0.3399 Gen053 H→L (96%), H→L-1 (2%)
MOL4 595 [2.08] 0.1253 Gen006 H-2→L (11%), H→L (79%)

MOL5 640 [1.94] 0.1682 Gen044 H→L (100%)
MOL6 580 [2.14] 0.1743 Gen083 H→L (100%)

citations in even relatively simple molecular systems. An alter-
native approach, would be to employ the many-body perturba-
tion theory GW method82 in combination with the Bethe-Salpeter
equation (BSE) formalism83. Recent results indicate that the GW-
BSE method is promising for accurate calculation of the excitation
energies of conjugated systems84.

A fitness function evaluation that involves TD-DFT and DFT
computations, takes considerable time to complete. To speed
up the design process, an alternative approach would be to em-
ploy quantitative structure-property relationship models (QSPR)
to evaluate the fitness7,8. These models although are fast, they
tend to be only locally applicable, i.e. fitness estimates using these
methods can only be reliable if the molecule being evaluated, is
similar to molecules that were used to train the model. Statistical
measures85 can be used to infer the confidence intervals and help
us decide if the model predicted fitness can be trusted.

4 Conclusion

In this work, we have presented a method to design azobenzene
based structures with longer absorbtion wavelengths. A high-
throughput DFT and TD-DFT based fitness evaluation algorithm
that was integrated with the de novo based design strategy. The
algorithm was designed to take advantage of the processing capa-
bilities of multiple supercomputing clusters and distributed com-
puting networks to speed up the computations and also provide
reliable fitness estimates, which is essential to the design scheme.
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