

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Adsorption of Cd(II) from aqueous solution by biogenic selenium
2	nanoparticles
3	Fanghui Yuan, Chao Song, Xuefei Sun, Linrui Tan, Yunkun Wang, Shuguang Wang*
4	Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental
5	Science and Engineering, Shandong University, Jinan 250100, China
6	
7	Corresponding author:
8	E-mail: wsg@sdu.edu.cn; Tel: +86 531 88365919; Fax: +86 531 88364513
9	

10 Abstract

11	Biogenic selenium nanoparticles (BioSeNPs), which were produced by aerobic granular sludge in
12	a sequencing batch reactor (SBR), were used to remove cadmium from aqueous solution. Batch
13	experiments were carried out to investigate the effect of contact time, initial solution pH and adsorbent
14	dosage on adsorption. Langmuir model was more suitable to describe the adsorption process than
15	Freundlich model with the monolayer maximum adsorption capacity of 59.7 mg/g for Cd(II) adsorption
16	by BioSeNPs. The isotherm data were also well described by the Temkin model, which further
17	supported that Cd(II) adsorption was a chemisorption process. The adsorption kinetics data were well
18	described by the pseudo-second-order kinetic model with r^2 values exceeding 0.999. The overall rate
19	process was influenced by both external mass transfer and intra particle diffusion, but was mainly
20	controlled by intra particle diffusion. The negative values of ΔG^0 and ΔH^0 indicated that the adsorption
21	process was spontaneous and exothermic. Energy dispersive X-ray spectrometry (EDS) analysis
22	confirmed that Cd(II) was adsorbed onto BioSeNPs. After loaded with Cd(II), the BioSeNPs had less
23	negative zeta potential values and no obvious change in the iso-electric point was observed. The
24	Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra
25	analysis indicated that the removal of Cd(II) was a complicated process, in which electrostatic
26	attraction and surface complex formation were involved. The results demonstrated that BioSeNPs
27	could be used to remove cadmium from aqueous solution with high efficiency.

28

29 Keywords: BioSeNPs; Cadmium; Adsorption; XPS; FTIR; Mechanisms

30

31 Introduction

Due to the fast development of the industry in recent decades, more and more heavy metals were emitted into the environment¹⁻³. Those metals are usually highly toxic, nonbiodegradable, carcinogenicity and can be accumulated through the food chain even in very low concentrations⁴.

35 Therefore, it is urgent and necessary to remove heavy metals from natural waters.

36 Cadmium (Cd) is one of those dangerous metals which is released into the environment through 37 metal production, electroplating, photography and the manufacturing of batteries⁵. It has been reported 38 that chronic exposure to Cd could lead to renal degradation, skeletal deformity, muscular cramps and 39 death in mammals and humans⁴. Thus, the UK Department of Environment has listed Cd in the red list 40 of priority pollutants and it also has been included in the black list of Dangerous Substance Directive in 41 European Economic Community³. According to the previous researches, there are many methods for 42 Cd removal from wastewater including chemical precipitation, coagulation-flocculation, membrane 43 filtration, ion exchange, electrolysis and adsorption¹. Compared with the other methods, adsorption is 44 more flexible and easy to operate, with low operational cost and high efficient in the removal of heavy metal ions from dilute solutions⁶. Various adsorbents such as activated carbon⁷, root cell walls⁸ and 45 46 bamboo charcoal³ have been studied in recent decades. However, those adsorbents are usually 47 inefficiency. It is still a long way to search for adsorbents with higher adsorption capacity, faster 48 kinetics and lower cost.

In recent years, the application of selenium nanoparticles (SeNPs) has attracted great attention. Previous studies have reported that SeNPs could be utilized as antimicrobials, fertilizers, semiconductors and sensors⁹. Recently, it was found that SeNPs could be used as adsorbent for the removal of heavy metals in solution due to its small size, large specific surface area and negative

53	surface charge ⁶ . Although chemically produced selenium nanoparticles (CheSeNPs) adsorb high
54	quantities of copper ¹⁰ , chemical production methods are costly and not environment-friendly due to the
55	use of toxic reagents, high temperature and high pressure. In contrast, SeNPs, especially the
56	biologically produced selenium nanoparticles (BioSeNPs), can be a potential adsorbent for heavy metal
57	cations such as zinc, copper and nickel ⁶ because they can be produced by an eco-friendly method under
58	ambient conditions. BioSeNPs produced by the anaerobic reduction of selenite in presence of anaerobic
59	granules sludge have been successfully used to remove zinc from water system. Compared with the
60	anaerobic granules sludge, aerobic granular sludge has attracted more attention due to its advantages
61	such as short start time, perfect ability in biological removal of nitrogen and phosphorus. However,
62	there is no information about using aerobic biologically produced SeNPs as an adsorbent so far. If
63	BioSeNPs were produced by aerobic granular sludge in a sequencing batch reactor (SBR), it may
64	provide a promising way for treating wastewaters which contain heavy metals and selenium oxyanions.
65	The present study investigated the feasibility of BioSeNPs which was first produced by aerobic
66	granular sludge to remove Cd(II) from wastewaters. The adsorption characteristics of Cd(II) onto
67	BioSeNPs were investigated under varying experimental conditions, such as contact time, initial
68	solution pH and adsorbent dosage. The adsorption kinetics and isotherm data, as well as Fourier
69	transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis, were
70	processed to understand the adsorption mechanism. This study would provide an overall understanding
71	for the Cd(II) adsorption by BioSeNPs.

72 Materials and methods

73 Selenium nanoparticles production and purification

74 Selenium nanoparticles were produced by aerobic granular sludge in a SBR with an initial mixed

75	liquor suspended solids (MLSS) concentration of 3,000 mg/L and sludge volume index (SVI) of 33.6						
76	mL/g. The SBR was operated at room temperature (22-25°C) and neutral pH (7.2-7.5). Sodium selenite						
77	was added as selenium source.						
78	The production of SeNPs were confirmed by the appearance of a red color both on the granular						
79	sludge and in the medium ¹¹ . The effluent was collected by simple decanting and then was concentrated						
80	by centrifuging at 5,000 rpm and 4°C. The pellet was re-suspended in distilled water and purified by						
81	the protocol described by Jain et al ⁶ . The obtained pellet was lyophilized and stored in drying vessel at						
82	room temperature.						
83	Characterization of the BioSeNPs						
84	The surface morphology and size of the BioSeNPs were characterized by Scanning Electron						
85	Microscope (SEM, JSM 6700F, JEOL, Japan). Energy dispersive X-ray spectrometry (EDS, Oxford,						
86	INCA X sight, OIMS, England) was used to analyze the elemental composition of the BioSeNPs before						
87	and after Cd(II) adsorption. The average particle size of the BioSeNPs was measured by dynamic light						
88	scattering (DLS, BI-200SM/BI-9000, Brookhaven Instrument Co., USA). The iso-electric point (IEP) of						
89	BioSeNPs was measured by a laser electrophoresis zeta potential analyzer (Zetasizer III, Malvern,						
90	USA).						
91	FTIR (Bruker Tensor 27 spectrometer, USA) was also used to analyze of the dried BioSeNPs						
92	samples before and after Cd(II) adsorption. The XPS (Thermo ESCALAB 250, USA) spectra of the						
93	BioSeNPs before and after Cd(II) adsorption were collected applying the energy source of						
94	monochromatic Al K α radiation (1486.6 eV) operated at 150 W. The wide scans were conducted from 0						
95	to 1200 eV with pass energy of 70 eV. The elements to be analyzed were scanned over different energy						

96 ranges with the pass energy of 30 eV. The binding energy of the spectra was standardized with the C 1s

97 peak at 284.8 eV.

98 **Preparation of solutions**

All the chemicals used in this study were of guaranteed analytical grade purchased from Sinopharm (Shanghai, China). The stock solution of Cd(II) with a concentration of 20 g/L was prepared by dissolving Cd $(NO_3)_2 \cdot 4H_2O$ in deionized water. The desired Cd(II) concentrations in latter experiments were prepared by diluting stock solution with deionized water.

103 Batch adsorption experiments

104 Adsorption experiments were performed in a thermo forma orbital shaker with shaking speed of 105 160 rpm at 30°C. A series of adsorption experiments were carried out in 50 mL conical flasks which 106 contained 20 mL Cd(II) solution at the required concentration and pH. Time-dependency studies were 107 carried out at pH 7.0 with the Cd(II) and BioSeNPs concentration of 50 mg/L and 1.0 g/L, respectively. 108 The samples were collected at different time intervals up to 24 h to determine the equilibrium time. 109 Single-point adsorption experiments were carried out to investigate the effect of initial solution pH on 110 the adsorption process. The initial Cd(II) concentration was 50 mg/L and the pH values of initial 111 solutions were adjusted in the range of 4.0-10.0 with HCl (0.1 M) or NaOH (0.1 M) solutions. Control 112 experiments were carried out to rule out the influence of precipitation. The effect of adsorbent dosage at 113 pH 7.0 was studied by varying the adsorbent dosage (0.5–5.0 g/L) with the initial Cd(II) concentration 114 in the range of 20-100 mg/L.

115 Adsorption kinetics experiments

118

Adsorption kinetics experiments were carried out with three different initial Cd(II) concentrations of 20, 50 and 100 mg/L, respectively. The pH was set at 7.0 and the adsorbent concentration was set at

1.0 g/L. Samples were collected at 0, 0.5, 1, 2, 4, 6, 9, 12 and 15 h for Cd(II) analysis.

119 Adsorption isotherm experiments

120 Cd(II) solutions with various concentrations (10-150 mg/L) were added to 50 mL conical flasks 121 for adsorption experiments. Then, a certain amount of BioSeNPs was added into each flask making the 122 concentration at 1.0 g/L. Those flasks were stirred at 160 rpm under five temperatures (293, 298, 303 123 308 and 313 K) for 10 h to reach the adsorption equilibrium. The samples were collected at 0 and 10 h 124 to quantify the initial and the equilibrium Cd(II) concentrations. 125 The obtained samples were first centrifuged at 8,000 rpm for 10 min, and then the supernatant 126 was filtered with 0.22 µm syringe filters. The residual Cd(II) concentration in filtrate was analyzed by 127 flame Atomic Absorption Spectrophotometer. Control experiments were carried out to discard the 128 possibility of adsorption of Cd (II) ions to the filter material and conical flasks. 129 The adsorption capacity was expressed as amount of Cd(II) adsorbed per mass unit of BioSeNPs

131
$$q_e = \frac{C_0 - C_e}{C_a}$$
 (1)

132 where C_0 is the initial Cd(II) concentration (mg/L), C_e is the final or equilibrium Cd(II) concentration

133 (mg/L), and the C_a is the concentration of BioSeNPs (mg/L).

134 **Results and discussion**

135 Characterization of the BioSeNPs

The red BioSeNPs synthesized by the reduction of $SeO_3^{2^-}$ by aerobic granular sludge are primarily spherical in shape with the size in the range of 50-150 nm (Fig. S1). EDS analysis of the BioSeNPs indicated the presence of selenium (Fig. 1a). The presence of carbon, oxygen, phosphorus and sulfur may response to the presence of extracellular polymeric substances (EPS) which attached to the BioSeNPs. EDS analysis of the Cd-loaded BioSeNPs confirmed the existence of Cd(II). The

141	characteristic peak for Cd was at 3.20 Kev which was similar to the Cd(II) signal observed at the same						
142	energy in the Cd-loaded nZVI particles ¹² . The DLS analysis of BioSeNPs solution revealed that						
143	particles were in the size range of 98 nm to 131 nm with an average size of 113 nm (Fig. 1b) which was						
144	in agreement with the SEM finding. The polydispersity index (PDI) was 0.005, indicating high stability						
145	of BioSeNPs in solution ¹³ .						
146	As shown in Fig. 2, the IEP of BioSeNPs was at pH 4.1. Above pH 6.0, BioSeNPs suspensions						
147	were colloidally stable due to their intrinsic negative charge of $< -25 \text{ mV}^{14}$. Hence, BioSeNPs have a						
148	potential ability to combine with heavy metal cations. After loaded with Cd(II), the BioSeNPs has less						
149	negative zeta potential values especially at alkaline pH due to the combination of anion-cation,						
150	suggesting that the colloidal stability of BioSeNPs decreased after Cd(II) loaded on the surface of						
151	BioSeNPs. No appreciable change was observed in the IEP, this can be accounted for the relatively						
152	small amount of Cd(II) adsorption at pH 4.1.						
153	Batch adsorption experiments						
154	Effect of contact time						
155	The result in Fig. 3 shows that the adsorption capacity increased quickly in the first two hours and						
156	about half of total Cd(II) were adsorbed in 15 min. In the following 6 h, the adsorption capacity still						
157	increased but with a slow rate than before. The adsorption process was completed within 8 h and						
158	remained unchanged for longer contact time. Thus, all further experiments were carried out for 10 h to						
159	ensure adsorption equilibrium was achieved.						
160	Effect of initial solution pH						

161 Initial solution pH is an important factor in the adsorption process because it affects the existence162 form of the metal ions and the adsorption capacity of the adsorbent. Precipitation occurring at alkaline

163	environment masks the true extent of metal adsorption on adsorbent. To exclude the influence of
164	precipitation on adsorption capacity, control experiment without BioSeNPs added was carried out to
165	evaluate the effects of pH on soluble Cd(II) concentration and the results were shown in Fig. 4. It was
166	found that the Cd(II) concentration almost unchanged in the pH range of 4.0 - 7.5, indicating no Cd(II)
167	precipitation happened under those pH values. When pH was higher than 7.5, the residual
168	concentration (R.C) of the Cd(II) in solution decreased due to the precipitation. Therefore, pH ranged
169	from 4.0 to 7.5 were chosen to make sure that the decrease of Cd(II) concentration is only attributed to
170	adsorption. The adsorption capacity of adsorbents increased with increasing pH from 4.0 to 7.5, which
171	is consistent with the previous studies $^{2, 3, 15, 16}$. One possible reason is that higher concentration of H^+ in
172	the solution would compete with Cd(II) for the adsorption sites, leading to the reduced uptake ¹⁷ .
173	Another reason is that the surface charge of BioSeNPs changed under different pH values. As
174	mentioned in the zeta potential analysis, the BioSeNPs have an IEP at pH 4.1, the negative charge
175	increased from 0 to -40 mV with increasing pH from 4.1 to 7.5, which favored the adsorption of the
176	positively charged Cd(II). Therefore, it can be concluded that electrostatic attraction plays an important
177	role in the adsorption of Cd(II) by BioSeNPs.
178	Effect of BioSeNPs dosage

Adsorbent concentration is an important factor in an adsorption process, because it determines the availability of active sites which influences the adsorption capacity of the adsorbent. As shown in Fig. 5a, the removal efficiency first increased rapidly with the increasing adsorbent dosage, which can be attributed to the more available adsorption sites provided by the higher concentration of adsorbents¹. However, once almost all Cd(II) is adsorbed, the removal efficiency had no obvious increase with the increased adsorbent concentration. It could be explained that the adsorption process reached the point 185 where surface metal ions concentration and the solution metal ions concentration come to equilibrium 186 with each other¹⁸.

As shown in Fig. 5b, adsorption capacity, the amount of Cd(II) adsorbed per mass unit of BioSeNPs, decreased with the increasing adsorbent dosage. One possible explanation is that the available Cd(II) concentration is insufficient to cover the active sites at high adsorbent concentrations, resulting in low metal uptake¹⁹. Another explanation is that high adsorbent concentration will cause particle–particle aggregation and lead to a decrease of the total surface area which cause decreased adsorption¹⁷. Adsorption capacity increased with increasing initial Cd(II) concentration of solution and the increased q_e at higher initial concentration can be attributed to enhanced driving force³.

194 Adsorption kinetics

The kinetics of adsorption would help to understand the adsorption mechanisms and investigate the efficiency of adsorbent for the removal of pollutants²⁰. In this study, in order to evaluate the kinetics of the adsorption process, the pseudo-first-order, pseudo-second-order and intra particle diffusion models were used to analyze the experimental data.

199 The liner form of pseudo-first-order model¹² is expressed as:

200
$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t$$
 (2)

201 where $k_1 (s^{-1})$ is the pseudo-first-order rate constant, which can be calculated by plotting $log(q_e - q_t)$

206

by plotting t/q_t versus t.

203 The linear form of pseudo-second-order model¹² can be expressed as:

204
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
 (3)

where k_2 (g/mg s) is the rate constant of the pseudo-second-order adsorption, which can be calculated

10

207 The intra particle diffusion model is expressed as²¹:

208
$$q_t = k_{id} t^{0.5} + I$$
 (4)

209 where k_{id} is the intra particle diffusion rate constant (mg g⁻¹ h^{0.5}) and I is the intercept (mg/g), which

210 can be calculated by plotting q_t versus $t^{0.5}$.

Fig. 6a shows the pseudo-first-order kinetic plots between $log(q_e - q_t)$ versus t for Cd(II) adsorption at different initial metal concentrations. Kinetic parameters including the first-order rate constant (k₁), calculated equilibrium adsorption capacity (q_{e,cal}) and the regression coefficients (r²) were calculated and summarized in Table 1. The much difference between q_{e,exp} and q_{e,cal} and also the much lower regression coefficients (r²<0.92) indicated that the pseudo-first-order model is not appropriate to describe the adsorption of Cd(II) onto BioSeNPs.

Fig. 6b shows the pseudo-second-order kinetic plots between t/q_t versus t for Cd(II) adsorption at different initial metal concentrations and the obtained kinetic parameters were shown in Table 2. All the three regression coefficients (r^2) were higher than 0.999, suggesting the adsorption process follows the pseudo-second-order kinetics. Moreover, the theoretical q_e calculated from the pseudo-second-order kinetic model were in good agreement with those obtained experimentally, which also suggested that the pseudo-second-order model is more suitable for representing Cd(II) adsorption kinetics on BioSeNPs.

In order to identify the diffusion mechanism, the intra particle diffusion model was used to predict the rate-controlling step. From this study, multi-linearities were observed (Fig. 6c), indicating that there was three-stage diffusion of Cd(II) onto BioSeNPs. The first stage was from 0 h to 1 h, representing external mass transfer. The second stage included the adsorption period from 1 h to 8 h, representing intra particle diffusion. The last stage indicated adsorption–desorption equilibrium, including the period

RSC Advances Accepted Manuscript

229 from 8 h to 12 h^{15} .

230	Kinetic parameters (k_{id} and I) of the intra particle diffusion section were calculated and
231	summarized in Table 3. As the plots did not pass through the origin, intra particle diffusion is not the
232	unique rate-controlling step ¹⁵ . Due to the large intercepts of the second linear portion of the plots, the
233	external mass transfer is also significant in the rate-controlling step ²² . However, the ratio of the time
234	taken by external mass transfer to intra particle diffusion was about 1:7. So intra particle diffusion was
235	predominated over the external mass transfer.

236 Adsorption isotherms

Adsorption isotherms describe the adsorption mechanism of a solute adsorb on adsorbent surface which helps in optimizing the design of a specific adsorption process. In this study, the equilibrium data obtained for Cd removal using BioSeNPs were tested with three isotherm models available in the literature to reveal the best fitting isotherm⁵.

The Freundlich isotherm is applicable to describe the adsorption of metal occurs on a heterogeneous surface by multilayer adsorption. The linear form of Freundlich isotherm equation¹² is expressed as:

244
$$\log q_e = \log K_F + \frac{1}{n} \log C_e$$
(5)

where K_F and n are Freundlich isotherm constants which can be obtained from the plot of logq_e versus log C_e on the basis of the linear form of Freundlich equation. Those constants are also related to adsorption capacity and adsorption intensity, respectively. C_e is the equilibrium concentration (mg/L).

The Langmuir isotherm assumes monolayer adsorption on a homogeneous surface with a finite number of adsorption sites. After a certain time, the surface will eventually reach a saturation point and achieve the maximum adsorption. The linear form of the Langmuir isotherm model¹² is described as:

$$251 \qquad \frac{C_e}{q_e} = \frac{1}{K_L q_m} + \frac{C_e}{q_m} \tag{6}$$

where K_L is the Langmuir constant related to the rate of adsorption and q_m is the maximum adsorption capacity $(mg/g)^{12}$.

The Langmuir constant, (K_L) is adapted to calculate the dimensionless separation factor (R_L) , which determines the favorability of the adsorption process. The relationship between R_L and K_L can

be expressed as^{$$20$$}:

257
$$R_{L} = \frac{1}{1 + K_{L}C_{0}}$$
 (7)

where C_0 is the initial concentration. R_L value indicates whether the isotherm is favorable (0< R_L <1), linear (R_L =1), unfavorable (R_L > 1), or irreversible (R_L = 0).

260 The Temkin isotherm model assumes that the adsorption energy would decrease linearly with the 261 surface coverage due to adsorbent-adsorbate interactions. The linear form of Temkin isotherm model¹²

is given as:

263
$$q_e = \frac{RT}{b} \ln K_T + \frac{RT}{b} \ln C_e$$
(8)

where T is the absolute temperature in Kelvin and R is the universal gas constant, b (J/mol) is the Temkin constant related to the heat of adsorption and K_T (L/mg) is the equilibrium binding constant corresponding to the maximum binding energy, both b and K_T can be obtained from the plot of q_e versus ln C_e on the basis of the linear form of Temkin isotherm¹².

The adsorption studies were conducted at a fixed initial concentration of Cd(II) by changing temperature. The equilibrium data obtained from the isotherm studies were fitted to Freundlich, Langmuir and Temkin isotherm models to obtain the best fitting isotherm. The isotherms were shown graphically in Fig. 7 and the isotherm parameters were listed in Table 4. As shown in Table 4, the value

RSC Advances Accepted Manuscript

272 of K_F decreased with the increasing of temperature, which indicated the adsorption process of Cd(II)

273 onto BioSeNPs is exothermic.

274	According to the results, both Langmuir model and Temkin model were suitable to describe this
275	adsorption process with high linearity coefficients. Comparison of coefficients indicates that the
276	Langmuir isotherm fitted more precisely ($r^2 > 0.97$) than the Temkin isotherm ($r^2 > 0.95$). The basic
277	assumption of Langmuir adsorption isotherm is monolayer adsorption on a homogenous surface with a
278	finite number of adsorption sites, which means that the adsorption of Cd(II) onto BioSeNPs generates
279	monolayer formation ³ . The maximum adsorption capacity was 59.7 mg/g and it is much higher than
280	most other adsorbents reported in the previous literatures: bamboo charcoal $(12.08 \text{ mg/g})^3$, activated
281	guava leaves $(19.15 \text{ mg/g})^4$, MnO ₂ functionalized multi-walled carbon nanotubes $(41.6 \text{ mg/g})^{15}$,
282	modified algae (41.80 mg/g) ²³ , activated alumina (35.06 mg/g) ¹⁸ , untreated <i>Pinus halepensis</i> sawdust
283	$(7.35 \text{ mg/g})^5$, porous urea-formaldehyde $(3.12 \text{ mg/g})^{24}$, wheat stem $(11.16 \text{ mg/g})^{25}$. The calculated
284	values of R_L for the adsorbent at different temperatures are 0.23 (293 K), 0.25 (303 K), and 0.31
285	(313K). All the values of R_L are less than unity, which confirms the favorable adsorption process. The
286	basic assumption of Temkin adsorption isotherm is chemisorption process and the linear plots for
287	Temkin adsorption isotherm fit quite well with $r^2 > 0.95$ under all temperatures. This indicated that the
288	adsorption of Cd(II) onto BioSeNPs is a chemisorption process ¹² .

289 Thermodynamic Parameters

290 Temperature dependence of the adsorption process is associated with several thermodynamic 291 parameters such as Gibb's free energy change (ΔG^0), enthalpy change (ΔH^0) and change in entropy 292 (ΔS^0), which can be determined by using the following equations²⁰:

293
$$\Delta G^0 = -RT \ln(\frac{q_e}{C_e})$$
(9)

294
$$\ln\left(\frac{q_e}{C_e}\right) = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT}$$
(10)

295 The values of ΔH^0 and ΔS^0 can be calculated by plotting $\ln(q_e/C_e)$ versus 1/T (Fig. 8). All those 296 thermodynamic parameters for adsorption of Cd(II) by BioSeNPs were shown in Table 5. As shown in Table 5, the negative values of ΔG^0 indicate that the adsorption processes are 297 298 spontaneous at the studied temperatures. However, the increase in temperature lead to a less negative 299 value of ΔG^0 , indicating that the reaction becomes less spontaneous at high temperatures. This is 300 confirmed by the negative value of ΔH^0 , which revealed that the adsorption of Cd(II) on BioSeNPs is 301 an exothermic process. The negative values of ΔS^0 suggested there is a decrease in the randomness at 302 solid-liquid interface of Cd(II) onto BioSeNPs surface and no significant changes occur in the internal 303 structure of the adsorbent through the adsorption. Similar results for thermodynamic parameters were 304 also reported by the earlier workers for the adsorption of Cd(II) as well as other heavy metals from 305 aqueous solution¹⁷. 306 Adsorption mechanism 307 The FTIR spectra of BioSeNPs and Cd-loaded BioSeNPs in the range of 750 - 3750 cm⁻¹ are 308 shown in Fig. 9. The characteristic absorption peaks for BioSeNPs are summarized as follows²⁶: peak 309 at 3298 cm⁻¹ is related to N-H stretching vibrations of amine; peak at 2932 cm⁻¹ is attributed to C-H 310 stretching of aliphatic; peak at 1655 cm⁻¹ mainly represents the stretching vibration of C=O present in proteins (amide I); peak at 1540 cm⁻¹ corresponds to the N-H bending vibration in amide linkage of 311 312 proteins (amide II); the peak at 1387 cm^{-1} is most likely attributed to the -CH₃ umbrella mode in

313 aliphatic or O-H in-plane bending in carbohydrates; peak at 1054 cm⁻¹ is related to C–O–C stretching

314 arising from the carbohydrate groups. The presence of carboxylic groups is also evidenced by the peak

315 observed at 1726 cm⁻¹. The FTIR of Cd-load BioSeNPs had all the key features of original BioSeNPs

RSC Advances Accepted Manuscript

316	with minor shifts and changes in peak intensities. When Cd(II) were adsorbed on the BioSeNPs, peak
317	at 3298 cm ⁻¹ shifted to 3288 cm ⁻¹ ; 1655 cm ⁻¹ shifted to 1644 cm ⁻¹ ; 1540 cm ⁻¹ shifted 1530 cm ⁻¹ ,
318	respectively. Shifts in these peaks indicated that Cd(II) reacted with the function groups (C=O, N-H,
319	C-N) of BioSeNPs.
320	The XPS analysis was applied to characterize the function groups involved in the adsorption
321	process. The general spectra for BioSeNPs before and after adsorption are present in Fig. S2. The scan
322	spectra showed the presence of C 1s, O 1s, N 1s, Se 3d and Cd 3d signals. The presence of C 1s, O 1s
323	and N 1s signals may attribute to the existence of protein generated during BioSeNPs production ²⁷ , and
324	the presence of protein was also provided by the UV-vis spectrum of BioSeNPs (Fig. S3). Cd 3d signal
325	was observed after adsorption which proved the existence of Cd on BioSeNPs. The signal can be
326	resolved into two peaks with binding energies located at 404.76 eV and 405.40 eV, corresponding to
327	CdO and $Cd(OH)_2^{16}$. However, the Se 3d signal was very weak, which might be attributed to the
328	proteins coating on BioSeNPs ²⁷ .
329	As shown in Fig. 10a-d, the signals of C 1s, O 1s did not show any significant shift before and
330	after adsorption. The C 1s signal can be divided into three peaks with binding energies located at 284.6,
331	285.9 and 287.7 eV corresponded to C-(C, H), C-(C, N), and C=O groups, respectively ²⁸ . The O 1s
332	signal can be assigned to three peaks with binding energies located at 530.4, 531.3 and 532.2 eV,
333	corresponding to C-OH, C=O, and C-O groups ² . As shown in Fig. S4, the binding energy for N 1s is
334	centered at 399.5 eV and it may correspond to nitrogen containing groups such as amine and amide
335	groups ⁶ .
336	The relative contents of C and O in different groups on the surface of BioSeNPs before and after

337 Cd(II) adsorption are summarized in Table 6. From the relative contents of oxygen, the content of C-O

338	groups decreased from 38.1% to 29.9% after Cd adsorption, while the amount of C=O groups increased
339	from 33.4% to 40.6%. From the relative contents of carbon, the content of C=O groups increased from
340	6.9% to 7.5%, which was consistent with the finding from the relative contents of oxygen. The changes
341	of C-O and C=O groups suggested that these groups were involved in the adsorption of Cd(II) onto
342	BioSeNPs, which was in accordance with the FTIR analysis. The decrease of C-O groups after Cd
343	adsorption indicated the formation of Cd-O complex species ² , which was supported by the findings we
344	obtained in the XPS spectra of Cd 3d (Fig. 10g).
345	As shown in Fig. 10e-f, the signals of the Se 3d showed a little shift before and after adsorption.
346	The Se $3d_{5/2}$ peaks at 55.88 eV, 56.75 eV shifted to 56.26 eV, 57.08 eV, respectively ⁶ . It may be

explained as that Cd(II) adhered on the surface of the negatively charged BioSeNPs by the electrostatic
 attraction¹⁰ and attributed to the formation of Se-Cd complexes.

349 Conclusions

350 The removal of Cd(II) metal ions from aqueous solution by BioSeNPs was investigated. The 351 adsorption capacity increased with the increasing solution pH and decreased with the increasing 352 adsorbent dosage. EDS analysis confirmed that Cd(II) was adsorbed onto BioSeNPs. After loaded with 353 Cd(II), the BioSeNPs had less negative zeta potential values and no appreciable change in the IEP. 354 Langmuir model was more suitable to describe the adsorption process than Freundlich model isotherm. 355 The obtained monolayer maximum adsorption capacity was 59.7 mg/g for the adsorption of Cd(II) by 356 BioSeNPs. The equilibrium data were also well described by the Temkin model isotherm, supporting 357 that Cd(II) adsorption was a chemisorptions process. The kinetics of Cd(II) adsorption onto BioSeNPs 358 was accurately described by the pseudo-second-order kinetic model with r^2 values exceeding 0.999. 359 The overall rate process was influenced by both external mass transfer and intra particle diffusion, but

RSC Advances Accepted Manuscript

360	was mainly controlled by intra particle diffusion. The negative values of ΔG^0 and ΔH^0 indicate that the						
361	adsorption process was spontaneous and exothermic. The removal of Cd(II) was a complicated process,						
362	in which electrostatic attraction and surface complex formation were involved. Because BioSeNPs						
363	were produced by aerobic granular sludge in a SBR, this may provide a new way for treating						
364	wastewaters which contain heavy metals and selenium oxyanions.						
365	Acknowledgements						
366		This research was funded by the National Natural Science Foundation of China (51178254 and					
367	51208283), Research Award Fund for Outstanding Young Scientists of Shandong Province, China						
368	(BS2012HZ008) and China Postdoctoral Science Foundation (2015M570596).						
369	References						
370	1.	L. Zeng, Y. Chen, Q. Zhang, X. Guo, Y. Peng, H. Xiao, X. Chen and J. Luo, Carbohydrate					
371		Polymers, 2015, 130, 333-343.					
372	2.	Q. Li, L. Chai and W. Qin, Chemical Engineering Journal, 2012, 197, 173-180.					
373	3.	F. Y. Wang, H. Wang and J. W. Ma, Journal of Hazardous Materials, 2010, 177, 300-306.					
374	4.	O. Abdelwahab, Y. O. Fouad, N. K. Amin and H. Mandor, Environmental Progress & Sustainable					
375		Energy, 2015, 34 , 351-358.					
376	5.	L. Semerjian, Journal of Hazardous Materials, 2010, 173, 236-242.					
377	6.	R. Jain, N. Jordan, D. Schild, E. D. van Hullebusch, S. Weiss, C. Franzen, F. Farges, R. Hübner					
378		and P. N. L. Lens, <i>Chemical Engineering Journal</i> , 2015, 260, 855-863.					
379	7.	H. K. An, B. Y. Park and D. S. Kim, Water Research, 2001, 35, 3551-3556.					
380	8.	G. Chen, Y. Liu, R. Wang, J. Zhang and G. Owens, Environmental Science and Pollution Research,					

2013, **20**, 5665-5672.

- 382 9. Y. V. Nancharaiah and P. N. L. Lens, Trends in Biotechnology, 2015, 33, 323-330.
- 383 10. Y. Bai, F. Rong, H. Wang, Y. Zhou, X. Xie and J. Teng, Journal of Chemical & Engineering Data,
- 384 2011, **56**, 2563-2568.
- 385 11. W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao and D. Li, Colloids and Surfaces B: Biointerfaces,
- 386 2011, **88**, 196-201.
- 387 12. H. K. Boparai, M. Joseph and D. M. O'Carroll, *Journal of Hazardous Materials*, 2011, 186,
 388 458-465.
- 389 13. N. Srivastava and M. Mukhopadhyay, *Powder Technology*, 2013, 244, 26-29.
- 390 14. B. Buchs, M. W. H. Evangelou, L. H. E. Winkel and M. Lenz, *Environmental Science* &
- 391 *Technology*, 2013, **47**, 2401-2407.
- 392 15. C. Luo, R. Wei, D. Guo, S. Zhang and S. Yan, *Chemical Engineering Journal*, 2013, 225, 406-415.
- 16. L. Peng, Q. Zeng, B. Tie, M. Lei, J. Yang, S. Luo and Z. Song, Journal of Colloid and Interface
- *Science*, 2015, **456**, 108-115.
- 396 17. T. K. Sen and D. Gomez, Desalination, 2011, 267, 286-294.
- 397 18. T. K. Naiya, A. K. Bhattacharya and S. K. Das, Journal of Colloid and Interface Science, 2009,
- **398 333**, 14-26.
- 399 19. S. Malamis and E. Katsou, *Journal of Hazardous Materials*, 2013, 252–253, 428-461.
- 400 20. L. Cheng, L. Ye, D. Sun, T. Wu and Y. Li, *Chemical Engineering Journal*, 2015, 264, 672-680.
- 401 21. S. A. Singh, B. Vemparala and G. Madras, Journal of Environmental Chemical Engineering, 2015,
- **3**, 2684-2696.
- 403 22. L. Zhang, T. Xu, X. Liu, Y. Zhang and H. Jin, Journal of Hazardous Materials, 2011, 197,

- 404 389-396.
- 405 23. M. Harja, G. Buema, L. Bulgariu, D. Bulgariu, D. Sutiman and G. Ciobanu, Korean Journal of
- 406 *Chemical Engineering*, 2015, **32**, 1804-1811.
- 407 24. C. Li, H. Duan, X. Wang, X. Meng and D. Qin, Chemical Engineering Journal, 2015, 262,
- 408 250-259.
- 409 25. G. Tan and D. Xiao, Journal of Hazardous Materials, 2009, 164, 1359-1363.
- 410 26. R. Jain, N. Jordan, S. Weiss, H. Foerstendorf, K. Heim, R. Kacker, R. Hübner, H. Kramer, E. D.
- 411 van Hullebusch, F. Farges and P. N. L. Lens, *Environmental Science & Technology*, 2015, 49,
- 412 1713-1720.
- 413 27. T. Wang, L. Yang, B. Zhang and J. Liu, Colloids and Surfaces B: Biointerfaces, 2010, 80, 94-102.
- 414 28. C. Song, X.-F. Sun, S.-F. Xing, P.-F. Xia, Y.-J. Shi and S.-G. Wang, Environmental Science and
- 415 *Pollution Research*, 2014, **21**, 1786-1795.
- 416
- 417

Figure Captions

- Fig. 1 (a) EDS analysis of BioSeNPs and Cd-loaded BioSeNPs
 - (b) DLS analysis of BioSeNPs (avg. size: 113 nm)
- Fig. 2 Zeta potential measurements of BioSeNPs (a) and BioSeNPs exposed to 100 mg/L Cd(II) (b)
- Fig. 3 Effect of contact time on the adsorption of Cd(II) by BioSeNPs
- Fig. 4 Effect of initial solution pH on the adsorption of Cd(II) by BioSeNPs
- Fig. 5 Effect of BioSeNPs dosage on the adsorption of Cd(II) by BioSeNPs under different initial Cd(II) concentrations
- Fig. 6 Pseudo-first-order (a) Pseudo-second-order (b) Intra particle diffusion (c) kinetics of Cd(II) adsorption on BioSeNPs at various concentrations
- Fig. 7 Linearized Freundlich (a), Langmuir (b) and Temkin (c) isotherms for Cd(II) adsorption on BioSeNPs at different temperatures
- Fig. 8 Van't Hoff plot for adsorption of Cd(II) by BioSeNPs
- Fig. 9 FTIR spectra of BioSeNPs and Cd-loaded BioSeNPs
- Fig. 10 (a) C 1s (c) O 1s (e) Se 3d spectra of BioSeNPs and (b) C 1s (d) O 1s (f) Se 3d

(g) Cd 3d spectra of Cd-loaded BioSeNPs

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Table 1

Pseudo-first-order kinetic parameters for Cd(II) adsorption on BioSeNPs

Concentration (mg/L)	$q_{e,exp} \left(mg/L \right)$	Pseudo-first-order		
		$k_1 (\times 10^{-3} s^{-1})$	$q_{e,cal}$ (mg/L)	r ²
20	14.4	0.13	5.36	0.85
50	32.9	0.12	21.45	0.83
100	42.5	0.15	22.19	0.92

Pseudo-second-order kinetic parameters for Cd(II) adsorption on BioSeNPs

Concentration (mg/L)	$q_{e,exp} (mg/L)$	Pseudo-second-order			
		$k_2 (\times 10^{-4} \text{ g/mg s})$	$q_{e,cal}$ (mg/L)	h (g /mg s)	r^2
20	14.4	0.63	14.78	0.014	0.999
50	32.9	0.17	33.78	0.019	0.999
100	42.5	0.18	43.67	0.034	0.999

Intra particle diffusion kinetic parameters for Cd(II) adsorption on BioSeNPs

Concentration (mg/L)	$K_{id} \ (mg/g^{1} \ h^{0.5})$	Intercept values (I)	r ²
20	1.28	10.67	0.96
50	4.67	18.80	0.99
100	5.30	27.55	0.99

Freundlich, Langmuir and Temkin isotherm model parameters and correlation coefficients for adsorption of Cd(II) onto BioSeNPs

Isotherm	Temperature (K)	Parameters		r ²
		K _F	n	
Freundlich	293	5.71	1.85	0.773
	303	4.99	1.86	0.849
	313	3.70	1.73	0.861
Isotherm	Temperature (K)	Parameters		r ²
		q _m (mg/g)	K _L (L/mg)	_
Langmuir	293	59.70	0.066	0.971
	303	54.44	0.061	0.987
	313	51.52	0.045	0.978
Isotherm	Temperature (K)	Parameters		r ²
		K _T	b	-
Temkin	293	0.723	12.91	0.953
	303	0.639	21.08	0.972
	313	0.470	29.28	0.976

Thermodynamic parameters for adsorption of Cd(II) by BioSeNPs

Temperature (K)	ΔG^0 (kJ/mol)	ΔH^0 (kJ/mol)	ΔS^0 (J/mol K)
293	-1.94	-22.75	-70.91
303	-1.29	-22.75	-70.91
313	-0.52	-22.75	-70.91

Binding energy and relative content of C and O in adsorbents

Valence state	Proposed	Binding energy (eV)		Relative content%		
	components	BioSeNPs	Cd-loaded	BioSeNPs	Cd-loaded BioSeNPs	
			BioSeNPs			
C 1s	С-(С,Н)	284.64	284.68	60.5	51.8	
	C-(N,O)	285.90	286.01	32.8	40.7	
	С=О	287.73	287.68	6.7	7.5	
O 1s	С-ОН	530.42	530.69	28.5	29.5	
	С=О	531.25	531.65	33.4	40.6	
	C-O	532.15	532.48	38.1	29.9	

BioSeNPs, which were produced by aerobic granular sludge in a sequencing batch reactor, could be used to remove cadmium from aqueous solution with high efficiency.