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Identifying Lead Hits in Catalyst Discovery by 
Screening and Deconvoluting Complex Mixtures of 
Catalyst Components 

Eléna Wolf, Edward Richmond and Joseph Moran* 

A reaction-economic combinatorial strategy is described for lead hit identification in catalyst 
discovery efforts directed towards a specific transformation. Complex mixtures of rationally 
chosen precatalysts and ligands are screened against various reaction parameters to identify 
lead conditions in a small number of reactions. Iterative deconvolution of the resulting hits 
identifies which components contribute to the lead in situ generated catalyst. Application of 
this strategy rapidly uncovered a new mild in situ generated catalyst for the dehydrative 
Friedel-Crafts reaction as well as conditions for selective monoarylation in catalytic ortho-C-H 
arylation of unsubstituted N-(quinolin-8-yl)benzamide. 
 
 

Introduction	
  

Catalyst discovery is a complex multidimensional problem that 
often requires extensive experimentation to obtain a lead result. 
In a representative catalyst discovery scenario, precatalyst, 
ligand, solvent, acid/base additive or temperature may all be 
critical reaction parameters, and incorrect choice of any one of 
these may result in failure to observe an initial “hit” for the 
desired product. In response to this reality, many creative 
screening approaches have been developed for catalyst 
discovery, each with different purposes, strengths and 
weaknesses.1,2,3,4 Of those screening approaches that are 
directed towards discovering a specific new catalytic 
transformation or a new class of catalysts for an existing 
transformation, few are highly general and several require 
laborious synthesis of labeled starting materials. Though 
advances in analytical technology are decreasing the barriers to 
general reaction development approaches using high throughput 
experimentation,5 the large number of reactions necessary to 
thoroughly explore the intersection of just three or four reaction 
parameters might still deter chemists who do not have access to 
high throughput reactionware and instrumentation. 
Complementary approaches that can reduce the number of 
reactions required to obtain a lead result for a specific 
transformation and that do not require high throughput 
instrumentation are appealing. Towards this goal, we have 
devised an approach for the identification of lead results in 
catalyst discovery based on the assumption that precatalysts and 
ligands can be screened as mixtures and later deconvoluted.6 By 
employing a complex mixture of all precatalysts and ligands in 
every reaction, one or two additional reaction parameters (e.g. 
solvent, acid/base, etc.) are screened to identify a promising 
result. In this way, up to four reaction parameters can be 
surveyed at once in a single small block of reactions, 
effectively ‘front-loading’ the problem of catalyst discovery 
(Scheme 1, Step 1). The precatalysts and ligands that contribute 

most to catalysis are identified by iterative deconvolution of the 
mixture in a manner similar to that described by Breit for 
mixtures of self-assembling ligands (Scheme 1, Step 2).4 As the 
aim of this approach is to accelerate catalyst discovery, the 
primary goal is simply to detect product formation. Thus, the 
fact that different precatalyst/ligand combinations exhibit 
different binding constants only leads to false negatives if a 
component critical to catalysis is completely inhibited. Risks of 
encountering such catalyst poisoning scenarios can be 
rationally minimized by tuning the ratio of precatalysts to 
ligands during screening. Given these considerations, we 
anticipated that this screening approach could be useful for 
reactions that involve significant molecular recognition  
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Figure	
  1	
  Combinatorial	
  discovery	
  and	
  deconvolution	
  of	
  in	
  situ-­‐generated	
  boron	
  catalysts	
  for	
  the	
  dehydrative	
  Friedel-­‐Crafts	
  reaction. Conditions:	
  1.0	
  equiv	
  4	
  (0.2	
  M),	
  
3.0	
  equiv	
  5.	
  Yield	
  determined	
  by	
  1H	
  NMR	
  in	
  CDCl3	
  with	
  DMSO	
  (1	
  equiv)	
  as	
  internal	
  standard.	
  

 
between catalyst and substrate. Herein, we describe the 
successful application of this strategy to developing new 
catalysts for two completely different catalytic reactions. In the 
first example, a Friedel-Crafts reaction is used to discover a 
new powerful boron catalyst that arises by covalent assembly 
from a complex mixture of boronic acids and bidentate O-
ligands. In a second example, application of the strategy has 
uncovered a catalytic system for selective mono ortho-C-H 
arylation of N-(quinolin-8-yl)benzamide in the absence of 
blocking groups at the ortho or meta positions. Our collective 
results indicate that a rationally guided screening approach 
using complex mixtures of catalyst components, while not 
necessarily an analytical solution to a catalyst discovery 
problem, is a useful complementary strategy to rapidly 
identifying lead “hits” in a small number of reactions without 
the use of high throughput equipment. 

Results	
  and	
  discussion	
  

We first applied the catalyst discovery strategy to the selection 
of an in situ generated boron catalyst from a complex mixture 

of boronic acids and bidentate O-ligands.7,8 The dehydrative 
Friedel-Crafts reaction9 between p-methoxybenzyl alcohol (4) 
and mesitylene (5) to give diarylmethane  (6) was chosen as a 
target reaction since it can be triggered by strong Brønsted or 
Lewis acids but is not enabled by boronic acids10 or carboxylic 
acids. Twelve boron precatalysts were chosen for screening, 
including eleven electronically diverse boronic acids and boric 
acid. Twelve bidentate O-ligands were chosen with the goal of 
maximizing their structural diversity,11 including diols, 
catechols, hydroxyacids and diacids. Screening a mixture of all 
boron precatalysts (1 mol% each) and all O-ligands (2 mol% 
each) against 14 different solvents at 22 °C resulted in 77% 
yield of 6 in MeNO2, 26% in MeCN, 3% in CH2Cl2 or DCE and 
<1% in the ten other solvents after 2.5 h (Figure 1, Step 1). 
Thus, a lead result was identified in a three-dimensional screen 
requiring just 14 reactions, though the identities of the most 
active components were not yet known. Control experiments 
showed negligible reactivity when boronic acids alone or O-
ligands alone were employed as catalysts. To facilitate the 
deconvolution process in MeNO2, the boron compounds were 
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Figure	
  2	
  Combinatorial	
  discovery	
  and	
  deconvolution	
  of	
  in	
  situ-­‐generated	
  catalysts	
  for	
  C-­‐H	
  monoarylation	
  of	
  unsubstituted	
  benzamide	
  7.	
  Conversion	
  determined	
  by	
  1H	
  
NMR	
  of	
  the	
  crude	
  mixtures	
  in	
  CDCl3.	
  2,6-­‐DMBA	
  =	
  2,6-­‐dimethoxybenzoic	
  acid.	
  

arbitrarily divided into two groups (1a-1f and 1g-1l). The O-
ligands were also divided into two groups (2a-2g and 3a-3e). 
The four possible combinations of groups were screened with 1 
mol% of each boron precatalyst and 2 mol% of each O-ligand 
present in the reaction at the same time (Figure 1, Step 2a). The 
best result was found to come from the mixture of boron 
precatalysts 1a-1f and O-ligands 2a-2g, which went to 
completion after 2.5 h. The winning boron precatalysts were 
broken up into three arbitrary groups, 1a-1b, 1c-1d and 1e-1f. 
Likewise, the winning O-ligands were divided into three 
groups, 2a-2b, 2c-2d and 2e-2g. The most rapid of the nine 
reactions was that containing a mixture of 1a-1b and 2a-2b, 
which went to completion after 1 h (Figure 1, Step 2b). The 
remaining four combinations were tested individually. 
Impressively, mixing 1 mol% of 1a with 2 mol% of 2a led to 
95% yield of 6 after 15 min at room temperature (Figure 1, Step 
2c).  As expected, the time for reaction completion decreased 
with each deconvolution step as the optimal catalyst is present 
in higher concentration. Only 31 reactions were required to 
screen and deconvolute three reaction parameters, with eventual 
success foreshadowed in Step 1 by a block of just 14 reactions. 
In contrast, screening the same three reaction parameters one at 
a time would require 2016 reactions, with no indication of 
success at the outset. Indeed, traditional linear screening arrives 
at the same result (see SI). Remarkably, the catalytic effect of 
1a + 2a is faster than benchmark boron catalysts BF3�THF and 
B(C6F5)3�H2O12, which gave 80% and 20% yield, respectively, 
with the remainder being starting materials under identical 
conditions and time. In contrast, addition of 1 mol% 1a or 2 
mol% 2a in isolation led to <5% product after 4 h in both cases. 
Though the covalent assembly of boronic acids with oxalic acid 

to give dioxaborolanediones is known,13,14 catalysis by the 
combination of those components or by the resulting covalent 
adduct has not been reported.15 
 To evaluate the catalyst discovery strategy in a more 
complex system, we elected to explore transition metal 
catalyzed C-H activation, a reaction class we hypothesized 
would be highly applicable to such a combinatorial approach 
owing to the significant molecular recognition between catalyst 
and substrate. Bidentate chelation assistance for directed C-H 
activation has found increasing application in the past decade 
owing to the desirability of functionalizing ‘inert’ C-H bonds.16 
Since the seminal report of Daugulis,17 the 8-aminoquinoline 
motif has proven effective as a directing group for C-H 
activation reactions in combination with Pd, Ru, Cu, Ni, Co and 
Fe catalyst systems.18 8-Aminoquinoline directed o-arylation of 
benzamides with aryl halides was described by Daugulis and 
coworkers under Pd catalysis17 and by Chatani and co-workers 
under Ru catalysis.19 In both cases, a blocking group at the 
ortho or meta position of the benzamide is required to avoid 
undesired products of bisarylation. As these were the sole 
reports of such a reaction, we felt the search for alternative 
catalytic systems represented an attractive challenge on which 
to refine our screening approach. After surveying the literature 
for metals and ligands employed in directed C-H activation 
reactions, four metal precatalysts and nine labile ligands were 
selected as potentially viable co-catalysts for such a 
transformation (Figure 2). The coupling of unsubstituted 
benzamide 7 with 4-iodoanisole (8a) was chosen as the target 
reaction. With a mixture of 10 mol% of each metal precatalyst 
and 5 mol% of each ligand present in all reactions, three 
solvents and three bases were screened at 140 °C in nine total 
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reactions (Step 1). Only the combination of Na2CO3 in 1,4-
dioxane gave moderate (10%) conversion to the desired o-
arylation product 9a. Thus, a lead result was identified in a 
four-dimensional screen in just nine reactions. Deconvolution 
of the metal salts revealed that Ni(acac)2 was the active catalyst 
precursor, whilst Fe(acac)3, CoCl2 and Cu(OAc)2 all exhibited 
no catalytic activity (Step 2a). Maintaining Na2CO3 as base and 
1,4-dioxane as solvent, the nine ligands were arbitrarily divided 
into groups of three, and evaluated in combination with 
Ni(acac)2 and NiCl2�dme. A significant enhancement of 
reaction efficiency was observed in the reactions employing 
PCy3, MesCOOH and dppf as ligand (Step 2b). Continued 
deconvolution established NiCl2�dme and MesCOOH as an 
efficient combination (Step 2c, 67% conversion). Further 
tweaking of the reaction conditions enabled the conversion to 
be increased to 75%. Surprisingly, the ratio of 9a to bisarylation 
product 10a was >20:1 by 1H NMR. Application of these 
reaction conditions with various aryl iodides allowed for the 
desired o-arylation products to be isolated in 59-76% yields, all 
with >20:1 selectivity for monoarylation (Table 1). 
 

Table 1 Reaction scope of monoarylation.a  

 

  
aIsolated yield after column chromatography. Q = 8-quinoline. 

 
 Whilst completing the deconvolution of this reaction 
system, Chatani and coworkers disclosed a closely related Ni-
catalyzed ortho-arylation system.20,21 Their system proceeds 
under Ni(OTf)2 catalyzed ligand-free conditions at 160 °C and, 
like existing Pd17 and Ru19 catalyzed methods, is typically not 
useful for unsubstituted phenyl benzamides due to the 
significant formation of bisarylation adducts. Indeed, reaction 
of 7 with 8a under Chatani’s conditions gave complete 
conversion to a 3:1 mixture of mono- and bisarylation products 
in our hands (Eq 1). In contrast, the system described herein 
exhibits a significant ligand effect,22 proceeds at 140 °C and 
furnishes >20:1 selectivity for monoarylation products 9a-9d. 
Four parallel screens requiring only 25 total reactions identified 
a selective set of conditions for directed monoarylation of 7. 
Using an inexpensive Ni(II) salt and 2,4,6-trimethylbenzoic 
acid, hitherto unreported biaryl products have been accessed in 
synthetically useful yields. 
 

  

Conclusion	
  

 In conclusion, we have described an approach for catalyst 
discovery using complex mixtures of potential catalyst 
components. Our “proof of concept” attempts to apply this 
strategy have uncovered a mild and novel boron catalyst for the 
dehydrative Friedel-Crafts reaction and new conditions for Ni-
catalyzed directed C-H arylation of benzamide that are highly 
selective for monoarylation in the absence of blocking groups. 
Initial hits for both cases were uncovered in 14 reactions or less 
and required a small number of additional deconvolution 
reactions to identify key catalyst components. The number of 
steps in the deconvolution process can be tailored to the 
preference of the user by adjusting the number of reactions used 
per deconvolution step. Though the approach’s generality and 
its ability to handle larger sets of catalyst components remains 
to be seen, screening approaches employing rationally chosen 
complex mixtures should be useful for chemists lacking the 
resources for high throughput experimentation, particularly for 
reactions involving significant molecular recognition between 
substrate and catalyst.  We anticipate this approach will also 
increase the chances of uncovering unexpected cooperative 
effects between catalytic components that would not otherwise 
be assayed in the same reaction vessel. 
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