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We report the observation of the electrochemically generated nitrenium ions of 4,4’-dimethyoxydiphenylamine and di-p-
tolylamine in solution by mass spectrometry. This setup takes inspiration from desorption electrospray ionization mass

spectrometry to sample directly from the surface of a rotating waterwheel working electrode for mass spectrometric

analysis. Detection of the 4,4’-dimethyoxydiphenylamine nitrenium ion was expected based upon para-methoxy

resonance stabilization, whereas observation of the di-p-tolylamine nitrenium ion might be unexpected because

resonance stabilization from the para-substituted position is unavailable. However, the short timescale analysis of the

setup allows for the isolation of the di-p-tolylamine nitrenium ion, which is electrogenerated in solution and detected

mass spectrometrically.

Introduction

ions are reactive cation intermediates that are
-3 Understanding nitrenium ions
impacts not only organic synthesis but also has biological
significance due to their reactivities toward nucleobases.*”
Nitrenium ions can be formed in a number of ways including
chemically,“’8 photochemically,g_11 and electrochemically.u_15
Arylamines have been studied as model systems for formation
of the fleeting nitrenium species in solution.®*® Mass
spectrometry (MS) has been utilized to observe nitrenium ions
before via ion/molecule reactions,*®'*® however the mass
spectrometric characterization of these arylamine nitrenium
intermediates from electrochemical generation has been
scarce outside of the observation of the nitrenium ion of
clozapine.7'15'19 Herein we present the first application of
desorption electrospray ionization (DESI)ZO'21 MS in detecting
nitrenium ions generated electrochemically from arylamines.

Nitrenium
isoelectronic to carbenes.

Experimental

The experimental design in Figure 1 greatly resembles the
waterwheel setup previously reported,u’23 which employs a
round rotating platinum working electrode immersed in an
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Figure 1. Top: The setup used for detection of electrochemical
reaction intermediates, employing a rotating waterwheel
electrode. Wheel rotation is indicated by the curved arrow.

acetonitrile solution containing 1 mM lithium triflate as the
electrolyte. The distance between the MS inlet and the
working electrode surface is approximately 2 mm. As the
working electrode rotates, a thin layer of liquid film develops
on the electrode surface (approximately 1 mm in thickness). A
plain carbon cloth counter electrode and an Ag/AgCl reference
electrode are immersed in the reservoir of electrolyte solution.
A metal contact (not shown) rests against the platinum
working electrode to complete the three-electrode system. A
potentiostat (WaveNow, Pine Research Instrumentation,
Durham, NC) is used to apply a potential across the three
electrodes.

Above the rotating waterwheel system a custom spray
probe directs a stream of sample microdroplets to the surface
of the working electrode. Studies have shown that
electrospray ionization and DESI sources can function as an
electrochemical cell®*?” and so no high voltage is applied to
the sample spray to minimize in-source oxidation. The spray
droplets hit the surface of the thin film of electrolyte solution,
now thinner than 1 mm due to the N, nebulizing gas pressure,
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on the surface of the working electrode. Much like in DESI-MS
28-30 P

MS, tinier secondary
microdroplets are directed into the mass spectrometer“‘32 and
LTQ Orbitrap XL hybrid mass
spectrometer (Thermo Fisher Scientific, San Jose, CA) where

and easy ambient supersonic spray

are analyzed with an

the m/z ratio is determined utilizing the high mass accuracy

and high resolving power of the Orbitrap mass analyzer.33

Results and discussion
Electrogeneration of DMDPA nitrenium ion

4,4’-dimethoxydiphenylamine (DMDPA) was chosen as a
model system because nitrenium formation from DMDPA has
1416 DMDPA is proposed to be
electrochemically oxidized to the nitrenium ion by losses of

been extensively studied.

two electrons and one proton, passing through a radical cation
intermediate (Figure 2). In this experiment, 100 uM of DMDPA
was prepared in 1 mM solution of lithium triflate (LiOTf) in
acetonitrile. When the analyte solution is sprayed at an
injection flow rate of 10 uL/min onto the working electrode
rotating at 1.0 rev/s, m/z 230.1175 is observed, ascribed to the
protonated DMDPA cation (Figure 3a, theoretical m/z
230.1176, error -0.2 ppm) as well as m/z 229.1098, attributed
to the DMDPA radical cation (Figure 3a, theoretical m/z
229.1097, error 0.0 ppm). When an oxidation potential of 1.5 V
is applied across the rotating working electrode the intensity
of 229.1097 increases almost ten-fold (Figure 3b), suggesting
that the DMDPA radical cation is formed through
electrochemical oxidation of DMDPA. A peak at m/z 228.1020
is also observed, which is ascribed to the DMDPA nitrenium
ion (Figure 3b, theoretical m/z 228.1019, error +0.5 ppm).
Upon CID, the DMDPA nitrenium ion gives rise to fragment
ions of m/z 213 and 197, corresponding to the losses of CH;
and CH3O radicals, respectively, consistent with its structure
(Figure S3, Supporting information). The MS signals of the
DMDPA radical cation and DMDPA nitrenium ion increase
greatly when an oxidizing potential is applied to the working
electrode, as is observed in the extracted ion chromatograms
(EIC) at specific m/z values (Figure 3c, 3d). This indicates that
these species are formed via electrochemical oxidation of
DMDPA and is the first electrogenerated nitrenium
observed with DESI-MS.

ion

Electrogeneration of DPTA nitrenium ion

The electrochemical oxidation of di-p-tolylamine (DPTA)
was also studied. DPTA is proposed to undergo nitrenium
formation by the same pathway as DMDPA (Figure 2), but each
system lacks the para-methoxy groups that can stabilize both
the radical cation and nitrenium species through resonance.
Because of this the half-life time of these species in solution is
estimated to be shorter compared to corresponding DMDPA
intermediates.

100 puM of DPTA was prepared in 1 mM solution of LiOTf in
acetonitrile. When the analyte solution is sprayed at an
injection flow rate of 10 uL/min onto the working electrode
rotating at 1.0 rev/s, a mass peak at m/z 198.1275 is observed,
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Figure 2. The general scheme for electrochemical generation of
nitrenium ions from secondary arylamines.

ascribed to the protonated DMDPA cation (Figure 4a,
theoretical m/z 198.1277, error -0.9 ppm). When an oxidation
potential of 3.0 V is applied across the rotating working
electrode the emergence of m/z 197.1199, corresponding to
the DPTA radical cation (Figure 4b, theoretical m/z 197.1199
error 0.0 ppm), is suggested to arise from electrochemical
oxidation of DPTA. The increase in the signal intensity of
196.1121, believed to be the DPTA nitrenium ion (Figure 4b,
theoretical m/z 196.1121, error 0.0 ppm) is also inferred to
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Figure 3. Positive-ion mode mass spectra of DMDPA. a) 0.0 V applied
to the working electrode; b) 1.5 V applied to the working electrode;
c) EIC for the 229.1097 peak as a function of the applied potential;
and d) EIC for the 228.1020 peak as a function of the applied
potential.
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stem from the electrochemical oxidation of DPTA. For DPTA,
the para-methyl groups provide hydrogens that are available
for elimination, leading to the formation of a constitutional
isomer of the desired amine. Performing the analysis on the
analogous d-14 labelled DPTA determined that both the
nitrenium ion and the elimination product are formed as a
function of an oxidative potential and is discussed further in
the Electronic Supplementary Information.
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Figure 4. Positive-ion mode mass spectra of DPTA. a) 0.0 V applied
to the working electrode; b) 3.0 V applied to the working electrode;
c) EIC for the 197.1199 peak as a function of the applied potential;
and d) EIC for the 196.1121 peak as a function of the applied
potential.

Upon CID, the DPTA nitrenium ion gives rise to a fragment
ion of m/z 181 by loss of a CH; radical, consistent with its
structure. The MS signals of the DPTA radical cation and DPTA
nitrenium ion increase greatly when an oxidizing potential is
applied to the working electrode, as is observed in the
extracted ion chromatograms (Figure 4c, 4d). This observation
indicates that these species are formed via electrochemical
oxidation of DPTA.
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Conclusions

The results show evidence for the

electrochemical generation of nitrenium ions through the

presented here

proposed radical cation intermediate. The short timescale of
electrogeneration and isolation allows for the observation of
the reactive intermediates. This study emphasizes the power
identifying reactive
intermediates in electrochemical processes.

of DESI-MS as an analytical tool in
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