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Journal Name

Nailing Quantum Nuclei with Perturbed Path Integral
Molecular Dynamics†

Igor Poltavskya and Alexandre Tkatchenkoa

The quantum nature of nuclear motions plays a vital role in the structure, stability, and thermo-
dynamics of molecules and materials. The standard approach to model nuclear quantum fluc-
tuations in chemical and biological systems is path-integral molecular dynamics. Unfortunately,
conventional path-integral simulations can have exceedingly large computational cost due to the
need of employing an excessive number of coupled classical subsystems (beads) for quantitative
accuracy. Here, we combine perturbation theory with Feynman-Kac imaginary-time path integral
approach to quantum mechanics and derive improved non-empirical partition function and esti-
mators to calculate converged quantum observables. Our perturbed path-integral (PPI) method
requires the same ingredients as the conventional approach, but increases the accuracy and ef-
ficiency of path integral simulations by an order of magnitude. Results are presented for thermo-
dynamics of fundamental model systems, empirical water model containing 256 water molecules
within periodic boundary conditions, and ab initio simulations of nitrogen and benzene molecules.
For all of these examples, PPI simulations with 4 to 8 classical beads recover the nuclear quan-
tum contribution to the total energy and heat capacity at room temperature within 3% accuracy,
paving the way toward seamless modeling of nuclear quantum effects in realistic molecules and
materials.

1 Introduction
The reliability, efficiency, and predictive capabilities of electronic
structure calculations for molecules and materials have been
steadily improving over the past decade,1,2 in particular with the
development of methods for the increasingly accurate description
of non-covalent interactions in the context of density-functional
approximations (DFA).3,4 State-of-the-art methods that treat the
quantum-mechanical many-body nature of non-covalent interac-
tions and tackle the self-interaction errors of DFA are nowadays
able to yield predictions within the so-called “chemical accu-
racy” of 1 kcal/mol for the binding energies of small molecules,
supramolecular systems, as well as stability and polymorphism of
molecular crystals.5 Such level of accuracy is essential for predic-
tive first-principles modeling in applications to pharmaceuticals,
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electronics, molecular sensing, and catalysis.6,7 However, at this
level of accuracy of electronic structure calculations another se-
rious issue arises, namely the need to accurately account for the
quantum nature of nuclear motions, which play a vital role in the
structure, stability, and thermodynamic properties of molecular
and condensed-matter systems.

The standard approach to take nuclear quantum fluctuations
(NQF) into account is the Feynman-Kac imaginary-time path in-
tegrals (PI).8,9 This method maps a quantum system into P copies
of classical subsystems (”beads”) interacting with each other
via harmonic springs.10 Incorporation of PI molecular dynamics
(MD) techniques into ab initio calculations offers a straightfor-
ward way to study NQF in different chemical and physical sys-
tems.11–27 Unfortunately, conventional PIMD simulations require
exceedingly large number of beads (P� h̄ω/kBT ) to accurately
capture NQF, resulting in considerable computational cost even
at room temperature due to the rather high internal vibrational
frequencies ω of many systems of interest.

The need for large P stems from the second-order expansion
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of the Boltzmann exp(−β (K̂ + V̂ )) operator utilized in conven-
tional PIMD simulations, where β is the inverse temperature, and
K̂ and V̂ are the kinetic and potential energy operators, respec-
tively. While for P→ ∞ convergence to full quantum statistics is
guaranteed, this is not the case for reasonable finite P. In this
case, the properties obtained in conventional PI simulations are
often far from the correct quantum result and effectively corre-
spond to semi-classical regime. More sophisticated and promising
approaches have been developed.11,15,22,28–32 However, most of
the higher-order approaches are inapplicable for molecular dy-
namics simulations. On the other hand, reweighting techniques
and colored-noise thermostats either require extensive parame-
terization or trade accuracy and sampling of the phase space,
which limits their applicability to realistic molecules and ma-
terials. Hence, the development of an accurate and efficient
parameter-free method for NQF of realistic molecular systems at
finite temperature would be highly desirable.

In this article, we propose to combine quantum-mechanical
perturbation theory with the Feynman-Kac imaginary-time path
integrals to calculate converged thermodynamic averages from
semi-classical (small P) PI simulations. Our method requires
the same ingredients as the conventional PI simulations, but de-
creases the required number of classical beads by roughly an or-
der of magnitude. A considerable advantage of the developed ap-
proach is that it can be incorporated with any kind of thermostat
or barostat, as well as any phase-space sampling technique. The
proposed method has been applied to study the thermodynamics
of a quantum harmonic oscillator and double-well potential, as
well as q-TIP4P/F water model containing 256 water molecules
within periodic boundary conditions and ab initio PIMD simula-
tions for N2 and C6H6 molecules at room temperature. This se-
lected set of applications demonstrates the broad applicability of
our developments to realistic molecules and materials described
by complex interaction potentials. For all the studied systems, P
= 4 to 8 is enough to recover the NQF contribution to the total en-
ergy and heat capacity within 3% of the fully converged quantum
result within the developed approach.

2 Method
We start by noting that the free energy of an arbitrary quan-
tum system can be written as an expansion in powers of reduced
Planck’s constant h̄33,34

F = Fc +
h̄2

β 2

24 ∑
i

〈
f 2
i
〉

mi
+o(h̄3) , (1)

where Fc is the classical free energy, mi is a particle mass, fi is
the i-th force component, β = 1/kBT is the inverse temperature,
and 〈. . .〉 means thermodynamic averaging. Index i runs over all
degrees of freedom in the system. The first non-vanishing non-
classical term in Eq. (1) is the Wigner correction35,36 which is

proportional to h̄2 and does not depend upon the statistics of par-
ticles being equally applicable to both bosonic and fermionic sys-
tems. It is also proportional to

〈
f 2
i
〉
, which means that in strongly

interacting systems the NQF can be important even at relatively
high temperatures. In fact, for many real molecules the inter-
atomic forces are rather strong. Thus, employing only the quasi-
classical term in Eq. (1) without account for higher-order o(h̄3)

terms, which are unknown in general case, usually leads to an
overestimation of the free energy and, as a result, to wrong ther-
modynamic averages obtained from it.

The situation can be greatly improved by generalization of Eq.
(1) to the case of imaginary-time path-integral approach. The
auxiliary system which is constructed in the PI method has a tem-
perature P times larger than the equilibrium temperature, where
P is the number of beads. In the limit P→ ∞ the quantum ef-
fects are fully recovered, while at finite P they are captured only
partially. The contribution from the o(h̄3) terms decreases as P
grows, so an expression akin to that in Eq. (1) should become in-
creasingly more accurate. This allows us to treat the PI auxiliary
system as a semi-classical one and use an analogue of Eq. (1) to
calculate its free energy, partition function and, as a result, all the
thermodynamic averages.

To explain our proposal, we consider a quantum system consist-
ing of a single particle in an external potential U . The PI partition
function can be written as:

ZPI = A
∫

dq1 . . .dqP e−βUeff({~qs}) , (2)

where A is a normalization constant and Ueff is the effective po-
tential

Ueff({~qs}) =
P

∑
s=1

mω2
P(~qs+1−~qs)

2

2
+

1
P

P

∑
s=1

Us , (3)

where ω2
P = P/β 2 is the chain frequency,~qs and Us are the particle

coordinate vector and the potential energy for the beads, respec-
tively.

As it follows from Eqs. (1) and (3), the quantum correction to
the partition function can be written in a form

Zq = exp(−βFq) = exp

{
−h̄2

β 3

24P3

P

∑
s=1

1
m

〈
~fs 2
〉}

, (4)

where the averaged square forces
〈
~fs 2
〉

are those of the conven-

tional PI approach.

The multiplier P−3 in Eq. (4) appears due to the fact that the
PI effective temperature is PT . The force ~f in Eq. (4) is the same
as in Eq. (1). It does not include the coupling term arising from
Ueff. Indeed, such term gives non-zero coupling forces even for
non-interacting particles. Thus, its inclusion into ~f in Eq. (4)
would lead to wrong non-zero free-energy correction for a non-
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interacting system as well as wrong translational motion of the
center of mass of a multi-particle system in zero external field.

As a result, the final expression for the perturbed path-integral
(PPI) partition function is

ZPPI = ZqZPI. (5)

We remark in passinga that the same expression (5) for the par-
tition function can be derived as a first-order cumulant expansion
of the Takahashi and Imada (TI) scheme28 (see supplemental ma-
terial). This fact, however, does not answer the question which
partition function, TI or PPI, is more accurate at finite number of
beads and finite temperature relevant for the modeling of molecu-
lar systems. Our derivation starting from textbook Eq. (1) unifies
quantum-mechanical perturbation theory with the PI methodol-
ogy in a transparent physical framework. As our applications will
show, the developed PPI approach is more accurate and more ef-
ficient than PI simulations based on the TI scheme. Moreover,
going to the second-order cumulant expansion of the TI parti-
tion function reduces the accuracy as compared to the proposed
PPI approach (see supplemental material) clearly demonstrating
the fundamental difference between the developed approach and
trivial cumulant expansion of the TI scheme.

From Eq. (5) one can derive estimators for any thermodynamic
quantity which can be computed using conventional PI trajecto-
ries, either during or a posteriori PI simulations. For the total
energy E one obtains

EPPI =−
∂ lnZPPI

∂β
= EPI +Eq , (6)

where

Eq =−
∂ lnZq

∂β
=

h̄2
β 2

8P3

P

∑
s=1

1
m

〈
~fs 2
〉

+
h̄2

β 3

24P3

P

∑
s=1

1
m

∂

∂β

〈
~fs 2
〉
.

(7)

The derivative of the average square force with respect to the
inverse temperature can be found using Eq. (2)

∂

∂β

〈
~fs 2
〉
=
〈
~fs 2
〉
〈ε〉−

〈
~fs 2

ε

〉
, (8)

where ε is the standard primitive energy estimator

ε =
3P
2β
−

P

∑
s=1

(
mω2

P (~qs+1−~qs)
2

2
− Us

P

)
. (9)

a We thank an anonymous referee for pointing out the connection of our PPI approach
to the cumulant expansion of the fourth-order Takahashi-Imada scheme.

Eqs. (7) and (8) give the following expression for the total
energy correction

Eq =
h̄2

β 3

24P3

P

∑
s=1

1
m

{(
3
β
+ 〈ε〉

)〈
~fs 2
〉
−
〈
~fs 2

ε

〉}
. (10)

The expression for the heat capacity Cq can be obtained as a
temperature derivative of Eq (see supplemental material).

In the general case, for an arbitrary function of coordinates
λ (~q), one can derive the improved estimator by using the fol-
lowing procedure. First the potential energy is rewritten as
Ui→Ui +αλ (~q). Then the thermodynamic average for λ is

〈λ 〉=− 1
β

[
∂ lnZPPI

∂α

]
α=0

(11)

Following the scheme of the derivation of the total energy one
obtains

〈λ 〉= 〈ξλ 〉+
h̄2

β 3

24P3

P

∑
s=1

1
m

(〈
~fs 2
〉
〈ξλ 〉

−
〈
~fs 2

ξλ

〉)
− h̄2

β 2

12P3

P

∑
s=1

1
m

〈
~fs

∂λ

∂~qs

〉
,

(12)

where ξλ is the standard primitive estimator for λ in the conven-
tional PI approach

ξλ =
1
P

P

∑
s=1

λs . (13)

The generalization to the case of multi-particle system is trivial
and requires a summation over all particles in the system.

In Eq. (12), a potential difficulty could lie in obtaining the
derivative ∂λ/∂~qs, contained in the last term. For some proper-
ties of interest this derivative could be inaccessible directly, and
might require approximations. In this work we concentrate our
attention on the total energy and heat capacity, which require
only the information about particle coordinates, forces, and po-
tential energies. Structural estimators, such as radial distribution
functions, can also be derived in a tedious, but straightforward
manner and will be published elsewhere.

3 Results and discussion
To demonstrate the performance of the developed method for
both harmonic and anharmonic systems we carried out PIMD sim-
ulations for one dimensional (1D) quantum harmonic oscillator
(QHO) and double-well potential (DWP)

UQHO(x) =
kx2

2
,

UDWP(x) = ∆

[
1+

x2

d2

(
x2

d2 −2
)]

,

(14)
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where k is the stiffness of QHO, ∆ is the barrier height and 2d
is the distance between the two minima in DWP. At small and
moderate ∆/T ratios the DWP potential is strongly anharmonic,
thus the combination of these two model systems represents two
limiting cases of interest for real applications.

To avoid numerical errors due to the finiteness of the time step
in PIMD simulations we choose the value of the time step that
gives 200 points per period of classical oscillation within the in-
teraction potential. We use the following set of units and param-
eters for the QHO and DWP: h̄ = 1, kB = 1, and m = 1.
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Fig. 1 The relative error in the NQF contribution to the total energy
[(a),(b)] and constant volume heat capacity [(c),(d)] of 1D quantum
harmonic oscillator (QHO) and double-wall potential (DWP) at fixed
temperature. The results are shown as a function of the number of
beads with respect to the converged values. Blue circles are the results
of the conventional PIMD approach (PI), red triangles up correspond to
the developed method (PPI), and black triangles down are the results of
the Takahashi and Imada (TI) 28 Monte Carlo simulations. For both PI
and PPI calculations we use the same PIMD trajectories. The
parameters of simulations are: k = 1 and T = 0.2 for QHO, and ∆ = 1,
d = 0.5, and T = 1.2 for DWP.

Figure 1 shows the difference between the NQF contribution
to the total energy [(a), (b)] and the constant volume heat ca-
pacity [(c), (d)] obtained for QHO and DWP within our method,
conventional PIMD estimators, and TI simulations.28 The results
are shown as a function of the number of beads with respect to
the converged values. When using the developed estimators both
the total energy and heat capacity converge with a factor of eight
fewer beads compared to the standard PIMD approach. The de-
veloped method also demonstrate noticeably faster convergence
as compared to the high-order TI scheme.

The PPI approach is equally applicable to arbitrary large anhar-
monic systems described by complex intermolecular potentials.

To demonstrate this, we carried out PIMD simulations for the q-
TIP4P/F water model (which includes intermolecular Coulomb
and Lennard-Jones terms)37 containing 256 water molecules in a
periodic box at room temperature (300 K). We used the openMM
code38 with simulation time step of 0.5 femtosecond. The per-

4 16 32 48 64
P

0.3

0.4

0.5

E,
 e
V

PI
PPI

Fig. 2 The NQF contribution to the total energy (per molecule) of
q-TIP4P/F water model 37 containing 256 water molecules within
periodic box. The results are shown as a function of number of beads at
300 K. Blue circles are the results of the conventional PIMD approach
(PI) and red triangles show the performance of the developed method
(PPI). For both PI and PPI calculations we use same MD trajectories.

formance of both methods for the NQF contribution to the total
energy is shown in Fig. 2. The PPI approach recovers the correct
quantum result within a few percent for P ≥ 6. For instance, for
P = 6, the PI simulation underestimates the NQF contribution to
the total energy by 29% while the developed approach gives less
than 3% error. As demonstrated in Fig. 2, within the PPI method
we require that the conventional PI simulations capture only 60–
70 % of NQF. For only a few beads (P < 4), the PPI approach
would overestimate the energy, as expected for a quasi-classical
formula. This is not a problem in practice, since large PPI contri-
butions would simply indicate the need to increase P.

A very important aspect for PIMD simulations is the statistical
convergence of thermodynamic averages. Figure 3 demonstrates

P = 6 P = 12

Fig. 3 The deviation of the NQF contribution to total energy of
q-TIP4P/F water box containing 256 water molecules from the
converged results as a function of the number of simulation time for P =

6 and 12. For details see Fig. 2.

the convergence of the NQF contribution to the total energy of
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the q-TIP4P/F water model within the developed method as com-
pared to the conventional PIMD for six and twelve beads. To have
the same scale, we plot the difference between the results for the
total energy as a function of simulation time and the correspond-
ing converged result for both methods. Obviously, the main issue
with an increase in P is the convergence of the conventional virial
total energy estimator. As it follows from Figs. 2 and 3, for the
values of P required for an accurate account of NQF, the statistical
convergence of the developed method does not differ much from
that of the standard PIMD simulations. We remark that through-
out this work a simple white noise thermostat was employed to
compare between methods. The use of more sophisticated ther-
mostats is possible and this would yield faster statistical conver-
gence for both PPI and PI simulations.

Finally, we carried out ab initio PIMD simulations for N2 and
C6H6 molecules at room temperature. These were done using the
i-PI code39 coupled with the FHI-aims40 code for DFT calcula-
tions with the PBE functional.41 The calculations were done for P
= 4 and 8 using the time step dt = 0.2 femtosecond. The results
of the simulations are presented in Table 1.

Table 1 The NQF contribution to the total energy for N2 and C6H6
molecules at room temperature within the conventional approach (PI),
the developed method (PPI), and quantum harmonic approximation
(QHA). The accuracy of the simulations is approximately 0.5 meV per
atom

P N2 (in meV) C6H6 (in meV)
PI PPI PI PPI

4 59.4 124.6 1081.8 2019.5
8 94.7 121.5 1549.8 1936.6

QHA 120.0 1933.9

Clearly, within the developed approach even for P = 4 one ob-
tains results in good agreement with the quantum harmonic ap-
proximation (QHA), while conventional PIMD underestimates the
NQF contribution by approximately 50%. For the molecules stud-
ied herein, the rather high internal vibrational frequencies make
QHA a good reference for NQF at room temperature. For larger
molecules with many anharmonic degrees of freedom, it is ev-
ident that the PPI approach will be significantly more accurate
than QHA and more efficient than conventional PI methods.

4 Conclusions
In summary, the developed parameter-free PPI approach to model
nuclear quantum fluctuations considerably improves the effi-
ciency of path integral simulations. Using conventional PIMD tra-
jectories we are able to decrease the number of required beads by
roughly an order of magnitude. The proposed method is not a re-
weighting scheme and thus it does not suffer from statistical con-
vergence problem for large systems. It can also be systematically
improved either by employing higher-order corrections to the PI
partition function or by using a high-order PI partition function

as a starting point or both. The efficiency and accuracy of the PPI
method can extend the applicability of PIMD simulations to study
nuclear quantum fluctuations in increasingly realistic molecules
and materials.
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Z. Bac̆ić and M. E. Tuckerman, J. Chem. Theory Comp., 2014,
10, 1440–1453.

31 M. Ceriotti, G. Bussi and M. Parrinello, Phys. Rev. Lett., 2009,
102, 020601.

32 M. Ceriotti, G. Bussi and M. Parrinello, Phys. Rev. Lett., 2009,
103, 030603.

33 L. D. Landau and E. M. Lifshitz, Statistical Physics.,
Butterworth–Heinemann, Oxford, 1980.

34 H. J. C. Berendsen, Simulating the Physical World: Hierar-
chical Modeling from Quantum Mechanics to Fluid Dynamics,
Cambridge University Press, New York, 2007.

35 E. Wigner, Phys. Rev., 1932, 40, 749–759.
36 G. E. Uhlenbeck and L. Gropper, Phys. Rev., 1932, 41, 79–90.
37 S. Habershon, T. E. Markland and D. E. Manolopoulos, J.

Chem. Phys., 2009, 131, 024501.
38 P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer,

C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang,
D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts
and V. S. Pande, J. Chem. Theory Comp., 2013, 9, 461–469.

39 M. Ceriotti, J. More and D. E. Manolopoulos, Comput. Phys.
Commun., 2014, 185, 1019–1026.

40 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren,
K. Reuter and M. Scheffler, Comput. Phys. Commun., 2009,
180, 2175–2196.

41 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996,
77, 3865–3868.

6 | 1–6Journal Name, [year], [vol.],

Page 6 of 6Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t


