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Coarse-graining atomic displacements in a solid produces both local affine strains and “non-affine” fluctuations. Here we study

the equilibrium dynamics of these coarse grained quantities to obtain space-time dependent correlation functions. We show how

a subset of these thermally excited, non-affine fluctuations act as precursors for the nucleation of lattice defects and suggest how

defect probabilities may be altered by an experimentally realisable “external” field conjugate to the global non-affinity parameter.

Our results are amenable to verification in experiments on colloidal crystals using commonly available holographic laser tweezer

and video microscopy techniques, and may lead to simple ways of controlling the defect density of a colloidal solid.

1 Introduction

While a large body of work has accumulated over many

decades on the physics of crystal defects1, the microscopic

causes of defect nucleation and yielding in solids remain ac-

tive areas of recent research2,3. A small external stress on

a crystalline solid at non-zero temperatures affects atomic

configurations in two ways: (1) an affine deformation char-

acterised by the elastic strain and (2) a modification of the

relative probabilities of thermally excited lattice defects4–6.

Within a linear response picture5 local strain fluctuations mea-

sured from particle coordinates determine the elastic moduli

of the solid, which in turn govern the magnitude of the affine

response6–10. It is therefore natural to ask the complementary

question viz. fluctuations of which quantity, derivable solely

from the configuration of the atoms, measure the susceptibility

of a crystalline solid to creation of defects? In this paper, we

pursue this issue by extending and generalising an approach

introduced in11 based on coarse-graining of atomic displace-

ments. Soft, precursor fluctuations which give rise to defects

appear as a natural outcome of this coarse-graining process.

We explore some of the interesting consequences of this con-

nection – such as the ability to engineer equilibrium defect

concentrations, at least in a colloidal crystal12, by subtly al-

tering the statistical weights of these precursors using dynamic

light fields13.

Consider a system consisting of i = 1 . . .N particles with

instantaneous positions {r} vibrating about a set of refer-
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ence coordinates {R}. To begin, we first elevate a mea-

sure of non-affinity introduced in14 to identify elastic hetero-

geneities in sheared amorphous solids, to the role of a fully-

fledged thermodynamic, collective coordinate. This variable,

X = N−1 ∑
N
i=1 χ(Ri), a scalar functional of both the instanta-

neous and the reference coordinates, measures the magnitude

of non-elastic deviations of the positions of all particles away

from their reference configuration coarse-grained over a refer-

ence volume Ω. The local χ(Ri) is a function of the instanta-

neous and reference positions r and R of the particles in the

neighbourhood Ω of a given particle i with reference particle

position Ri. We had earlier obtained the equilibrium statistics

of χ (spatial dependence suppressed for brevity), in crystals11

at finite temperatures. We had shown that under an external

stress ΣΣΣ, particles undergo both affine and non-affine devia-

tions, with χ always increasing as ΣΣΣ2 within the harmonic ap-

proximation.

In this paper, we go beyond Ref. [11] in several important

ways which we list below:

Firstly, an analysis of the vibrational modes contributing to

non-affine distortions of Ω reveals that most of χ arises from

two degenerate non-affine displacements that tend to replace

four 6 coordinated particles with two pairs of particles with 5

and 7 neighbours: an incipient, or precursor, dislocation-anti-

dislocation pair. We argue, therefore, that one should be able

to change defect probabilities by applying a field hX , thermo-

dynamically conjugate to the global non-affinity parameter X .

We show that, indeed, hX , unlike external stress ΣΣΣ, is a scalar

field that couples linearly to X . One can therefore increase

as well as decrease X (and, consequently, defect probabili-

ties) depending on the sign of hX , without introducing spatial

anisotropy.

Secondly, since X is given entirely in terms of the parti-
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cle coordinates and {R}, hX can be directly introduced into

the Hamiltonian and the dynamics of system calculated us-

ing standard molecular dynamics15. For a colloidal solid, it is

even possible to apply hX in the laboratory using laser tweez-

ers13,16. This allows us to propose a specific way in which

the properties of a soft solid may be tuned using a light field.

For example, one may be able to create novel colloidal crys-

tals that resist the formation of defects or reversibly dismantle

colloidal crystals by nucleating defects!

Finally, our work is relevant to some recent studies of

the mechanical response of soft amorphous solids17 and

glasses18. In such solids, it is impossible to define the kinds

of defect configurations encountered in crystals such as vacan-

cies, dislocations, stacking faults or grain boundaries19. How-

ever, given any reference configuration and a set of particle

coordinates, χ and much of everything else discussed in our

work can still be defined and computed. The precursor modes

in this case should be related to non-affine droplet fluctuations,

which have been extensively studied in recent years14,20–28.

Unlike crystals, however, the identification of defect precur-

sors with actual defects is much more problematic for amor-

phous solids due to the lack of a simple and unique reference

{R} and is, therefore, a subject of ongoing lively debate29–31.

We hope that some of the ideas discussed here may be useful

in illuminating this issue.

The rest of the paper is organised as follows. In section 2 we

set up the calculation and define the coarse-graining process

used to calculate spatio-temporal correlation functions. Parts

of this calculation have previously appeared in Ref. [11], but

we include the relevant aspects here for completeness and to

make the paper self-contained. While the treatment outlined in

section 2 is perfectly general and is applicable to any solid in

any dimension for which {R} and the interactions are known,

in 3 we present our results for the time dependent fluctua-

tions of χ and strain in the two-dimensional triangular lattice.

In 4 we identify defect precursors and obtain their statistics.

We also introduce the non-affine field hX and study its effect

on these precursor fluctuations. In section 5 we suggest how

hX may be produced in the laboratory using laser tweezers.

We discuss our results and conclude by giving indications of

future directions in section 6.

2 Coarse graining and dynamic correlation

functions

We begin by first extending the work reported in Ref. [11] to

time-dependent correlation functions for χ and strains at zero

stress. This part of our treatment is similar in spirit to that of

Vineyard32 where the dynamical density correlations are anal-

ysed in terms of a sum over harmonic degrees of freedom33.

On application of an external stress or as a result of thermal

fluctuations, particles i within a solid undergo displacements

ui = ri −Ri away from some chosen reference configuration

Ri to their displaced positions ri. In a homogeneous solid at

vanishing temperature, such displacements are affine, imply-

ing that they can be expressed as ui = DRi, where D= K−1ΣΣΣ

is the deformation tensor related to the external stress ΣΣΣ via the

tensor of elastic constants K. To derive the closest approxima-

tion to this simple zero temperature scenario in the presence

of thermal fluctuations we proceed as follows.

Consider a neighbourhood, Ω, larger than the unit cell,

around a central particle labelled 0 consisting of NΩ particles

i within a cut-off distance RΩ in a d dimensional lattice. The

reference, zero temperature lattice configurations are labelled

by Ri=0...NΩ
while the fluctuating atom positions are ri=0...NΩ

.

The particle displacements are then as before ui = ri − Ri.

Now define relative displacements, ∆∆∆i = ui − u0 = ri − r0 −
(Ri −R0) of particle i compared to particle 0. The “best fit”14

coarse-grained local deformation tensor D is the one that min-

imises ∑i[∆∆∆i−D(Ri−R0)]
2 with the non-affinity parameter χ

being the (positive definite) minimum value of this quantity.

In [11] we showed that the result of this minimisation pro-

cedure may be expressed as a projection of the particle dis-

placements ∆∆∆i into mutually orthogonal subspaces as defined

by two projection operators P and RQ. In terms of these,

χ = ∆∆∆T
P∆∆∆ while the elements of the affine deformation ten-

sor (strains and local rotation), Dαγ , arranged as a linear array

e = (D11,D12, . . . ,D1d ,D21, . . . ,Ddd), are given by e = Q∆∆∆.

Here ∆∆∆ is a column vector with Nd elements containing the

components of the ∆∆∆i. The projectors are given explicitly by

RQ = R(RTR)−1RT and P = I−RQ. The Nd × d2 matrix R

appearing here has elements Riα,γγ ′ = δαγ(Riγ ′ −R0γ ′) where

the Riγ ′ and R0,γ ′ are the components of the lattice positions

Ri and R0, respectively. Now define the correlation matrix

C with elements, Ciα, jγ = 〈∆iα ∆ jγ〉 where the angular brack-

ets 〈. . .〉 indicate an average over the equilibrium ensemble.

One can then easily obtain the statistics of χ and e in terms

of C. For example the probability distribution for the affine

distortions e is a d2 dimensional Gaussian with zero mean and

co-variance matrix QCQT whose elements are proportional to

the elastic moduli. On the other hand, χ is distributed as the

sum of the squares of NΩd−d2 independent Gaussian random

variables with variances given by the eigenvalues of PCP. A

comparison of the projected atomic displacements, i.e. eigen-

vectors of PCP and (1−P)C(1−P), that give rise to the χ
and e shows that while the latter consist of local volume, uni-

axial and shear distortions of Ω together with local rotations,

non-affine displacements, which contribute to χ , correspond

to small wavelength distortions of particles within Ω. Appli-

cation of an external stress, ΣΣΣ, shifts the strain probability dis-

tributions to non-zero mean strain in accordance with Hooke’s

law and fluctuation response relations but does not affect χ to

linear order. The lowest order variation of χ with ΣΣΣ is given
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by 〈χ〉ΣΣΣ = 〈χ〉ΣΣΣ=0 +ΣΣΣTQC[P,C]QTΣΣΣ, where [P,C] is a com-

mutator.

In order to calculate the spatio-temporal correlation func-

tions of the non-affinity χ and strains e, we need to consider si-

multaneously displacement differences in two neighborhoods

Ω and Ω̄ centered on lattice positions R0 and R̄0 at time t and

t ′ respectively. The vector ∆∆∆(t) is defined as the displacement

corresponding to the reference lattice position R0 at time t,

with an analogous definition for ∆̄∆∆(t ′). The local affine strain

e(R0, t) = Q∆∆∆(t) and non-affinity χ(R0, t) = ∆∆∆T(t)P∆∆∆(t) are

defined as before. For time t ′ and position R̄0 we have the

corresponding quantities e(R̄0, t
′) = Q∆̄∆∆(t ′) and χ(R̄0, t

′) =

∆̄∆∆
T
(t ′)P∆̄∆∆(t ′). The covariances may now be defined as

Ciα, jγ = 〈∆iα(t)∆ jγ(t)〉= 〈∆iα(0)∆ jγ(0)〉,

¯̄Ciα, jγ = 〈∆̄(t ′)iα ∆̄(t ′) jγ〉= 〈∆̄(0)iα ∆̄(0) jγ〉

C̄iα, jγ = 〈∆(t)iα ∆̄(t ′) jγ〉. (1)

Obviously the first two averages are identical and reduce to the

space and time independent second-order moments 〈∆∆∆∆∆∆T〉11;

the third quantity yields the required correlation functions. To

derive the expressions for the time-dependent strain and non-

affinity auto-correlation functions we use their definitions in

terms of the relative displacement projections. We obtain,

therefore,

Ce(R0, t, R̄0, t
′) = 〈e(R0, t)e

T(R̄0, t
′)〉

= 〈Q∆∆∆(t)∆̄∆∆
T
(t ′)QT〉

= QC̄QT. (2)

The correlation functions between any pair of affine strains

may now be obtained by taking appropriate linear combina-

tions of the elements of Ce. In the next section we focus on

one such component, viz, the shear strain ε . Similarly, the

correlation between χ(R0, t) and χ(R̄0, t
′) can be calculated

using Wick’s theorem as

Cχ(R0, t, R̄0, t
′) = 〈χ(R0, t)χ(R̄0, t

′)〉−〈χ〉2

= 2Tr(PC̄P)(PC̄P)T = 2∑
j

σ̄2
j (3)

where, in the final equation, the σ̄2
j denote the NΩ d −d2 non-

zero eigenvalues of the matrix (PC̄P)(PC̄P)T. Of course, in

a homogeneous solid in equilibrium, these correlation func-

tions are functions only of the relative coordinates R0 − R̄0

and times t − t ′. We will denote these simply by R and t in

what follows.

Note that so far we have not made any assumptions about

the structure and interactions of the particles i and all our

results apply equally well for any system in any dimension

as long as a well defined reference configuration {R} ex-

ists. Indeed, we believe that a fair fraction of our results

should apply even to amorphous solids with displacements

being measured from a set of particle coordinates obtained

from a zero temperature energy minimisation. To obtain an-

alytic results we need to evaluate the covariances and for the

rest of this paper we specialise to periodic lattices of particles,

whose interactions we may approximate as being harmonic.

Alternately, the covariance matrix may also be obtained ex-

perimentally9 in the case of colloidal solids using video mi-

croscopy without any a priori assumption concerning the form

of the interactions. One may directly measure 〈uquT
−q′

〉 =

D̃−1(q)vBZδ (q− q′), where D̃(q) is the dynamical matrix,

and vBZ the volume of the Brillouin zone. Given the dynam-

ical matrix, C̄iα, jγ may be evaluated as follows. We substi-

tute for the relative displacements their expansion in terms

of the vibrational modes of the lattice viz., ∆∆∆i(t) = ui −u0 =
l v−1

BZ ∑s

∫

dquT
qas(q)as(q)(e

iq·Ri −eiq·R0)cos[ωs(q)t], into the

third of the equations (1) to obtain,

C̄iα, jγ =
l2

vBZ
∑
s

∫

dq asα(q)asγ(q)
cos[ωs(q)t]

ω2
s (q)

×

(eiq·Ri − eiq·R0)(e−iq·R̄ j − e−iq·R̄0). (4)

In the above expressions l is the lattice parameter and as(q)
and ωs(q) are the eigenvectors and eigenvalues (phonon fre-

quencies) respectively of the dynamical matrix corresponding

to the sth phonon branch. The q–space integrals are over the

Brillouin zone. Knowing C̄iα, jγ one can derive space-time cor-

relation functions for χ and the strains. The relaxation of any

observable arises from the gradual de-phasing of incoherent

phonon oscillations32,33.

3 Results for the 2d triangular crystal

The formulation for the spatio-temporal correlation functions

given in the previous section (section 2) is applicable for any

periodic crystal as long as the dynamical matrix D̃αγ is known.

In this section we present our results for the simple but impor-

tant case of a triangular network of N particles connected by

harmonic springs defined by the Hamiltonian,

Hharm =
N

∑
i

p2
i

2m
+

K

2
∑
(i j)

(ui −u j)
2, (5)

where ui, pi and m are displacement, momentum and mass of

the particle i respectively. The sum in the second term in (5)

runs over all bonds in the network, each with spring constant

K. The unit of distance will be the lattice parameter from now

on while time will be measured in units of
√

m/K. The tem-

perature may also be rescaled to unity without loss of general-

ity. Because of its simplicity, the harmonic triangular net has

been studied extensively and is known to be a good approxi-

mation for many real crystalline solids in two dimensions7–10.
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zero when j or k are outside the neighbourhood Ω around i.

Then

NX = ∑
i jk

(u j −ui)
TP j−i,k−i(uk −ui)

The force on particle i is Fi = −(∂/∂ri)(−hX NX). Direct

differentiation of the expression for X then gives

Fi = 2hX ∑
jk

[

P j−i,k−i(ui −uk)+Pi− j,k− j(uk −u j)
]

(11)

The first contribution comes from χi, the second from χ j with

j 6= i.

The fact that the above forces can be worked out from the

positions of the particles and their nearby neighbours (nearest

and next-nearest neighbours, if the coarse-graining volume Ω

contains exactly the nearest neighbours) suggests the follow-

ing algorithm for generating a uniform non-affine field hX for

a set of N colloidal particles:

1. At any instant obtain the coordinates of the N particles

through video microscopy.

2. Randomly choose a subset of M of these particles that

will have hX -forces applied to them.

3. For each of the M particles obtain the values of the nec-

essary forces from the coordinates of their neighbors.

4. Apply the forces by constructing a set of M laser traps.

The traps will need to be placed slightly away from the

respective present particle positions so that the particles

experience exactly the forces calculated from (11). The

exact displacements of the traps will depend on I(r) and

therefore vary with the specific apparatus and implemen-

tation.

5. In the next instant repeat steps 1−4 above, choosing an-

other random subset of M particles to track.

If these steps are repeated on a time scale much faster than

the typical diffusion time of colloids, then one should be able

to simulate a uniform field hX applied across all the N parti-

cles. It is possible to update dynamical traps at 200−600 Hz,

and set up at least M = 300 traps simultaneously for micron

sized colloidal particles using spatial light modulator (SLM)

technology13. This should be enough to generate a uniform

hX as long as the ratio of the dynamical timescale to the up-

date timescale is larger than N/M. Alternatively, one may also

look at the effect of a local hX which couples to the χ of a sin-

gle particle and can create local defect precursors. Statistics

of such local and non-uniform, dynamic, light fields may also

be computed, if desired, from the formalism outlined in this

work.

6 Discussion and conclusions

In this paper we have calculated the space-time correlation

functions for thermally generated non-affine fluctuations and

elastic strains in a harmonic ideal crystal. The non-affine and

elastic strain fields were obtained by projecting atomic dis-

placements into orthogonal affine and non-affine sub-spaces

defined by coarse-graining over a fixed volume Ω. Our re-

sults show that these correlation functions decay to zero with

time and over distance although the relaxation to the late time

value is oscillatory rather than monotonic. The time correla-

tion functions for non-affine fluctuations and strains have not

been described so far in the literature though we feel that they

may be obtained easily for colloidal solids using video mi-

croscopy. This should allow verification of our results against

experimental data7,10. Note that the harmonic approximation

that we have used throughout has been demonstrated to de-

scribe colloidal solids rather well9.

In addition we have identified particular non-affine fluctua-

tions in the 2d triangular lattice which, we demonstrate, are

precursors to the production of dislocation- anti-dislocation

pairs and arise naturally from a systematic coarse-graining

procedure. We emphasise that the defect precursors sµ are not

themselves defects since the equilibrium average 〈sµ〉= 0.

In order to form dislocation pairs, these localised fluctua-

tions need to condense by escaping over a, possibly stress de-

pendent, barrier ∆ f , a process not describable within harmonic

theory35. Indeed, if the bond c-d in Fig. 4 were to form, a

Burgers circuit around particle 0 would yield a non-zero Burg-

ers vector. One can argue, as below, that the non-affine field

hX will actually greatly enhance the formation of such dislo-

cation dipoles in a real solid. The rate of barrier crossing is

proportional to exp(−β∆ f ) with a prefactor, the so called “at-

tempt frequency” which is a product of the characteristic fre-

quencies of oscillation of the system in its parent state and at

the saddle point35. Consider the neighbourhood Ω of a single

particle. In a solid with anharmonic forces between particles,

the free energy for producing a precursor fluctuation of am-

plitude sµ has the form f (sµ) = As2
µ −Bs4

µ +Cs6
µ , where A,B

and C are, possibly temperature (and stress) dependent, phe-

nomenological parameters. Note that, in the harmonic limit

B = C = 0 and A ∝ 〈s2
µ〉

−1. This form for the free energy

ensures that the ±sµ symmetry is preserved and a non-zero

barrier for the nucleation of a dislocation dipole (〈sµ〉 6= 0),

given by the saddle point value of f (sµ), exists. When hX is

turned on, this has the effect of increasing 〈s2
µ〉 (see (10)). This

has two consequences: it decreases both the attempt frequency

and ∆ f with the latter effect far outweighing the former and ef-

fectively causing an overall increase in the rate of production

of dislocation dipoles. For negative hX , on the other hand ∆ f

is increased and dislocation nucleation is suppressed.

To test this proposal we simulate a two-dimensional system
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tion 5, we outline an algorithm which, we believe, can be im-

plemented in practice. Similar ideas have been reported in the

literature16 where light fields have been used to create dislo-

cations and grain boundaries by manipulating individual col-

loidal particles. We believe our approach allows greater con-

trol by targeting, instead, defect precursor fluctuations. First

of all, one is able to both increase as well as suppress defect

densities in a crystal by an external light field. Also, if hX

is applied sufficiently slowly, the solid may be persuaded to

remain in thermodynamic equilibrium at a given temperature

throughout the process without producing unwanted stresses

and deformations. Finally, the specific dynamics of such pro-

tocols (switching hX off or on at some rate) can be computed

within the formalism discussed here. It is also, in principle,

possible to excite a local non-affine displacement or even a

specific non-affine mode, say s1, at a specific point using our

ideas. For the latter case, however, one needs to know be-

forehand the eigenvectors of the local PCP, which involves a

knowledge of the interactions embodied in the C matrix. This

introduces uncertainties that are not encountered while impos-

ing hX . For dusty plasmas12, the equations we have used for

the space-time correlation functions are immediately applica-

ble. For colloidal particles dispersed in a liquid, of course,

one needs to account for damping and Brownian noise terms in

the dynamical equation (4) to compare time-dependent quanti-

ties with experiments. Equilibrium predictions, though, would

continue to be valid. Also anharmonic interactions, always

present in real colloids, would lead to metastable defects at

positive hX . Our calculations are then directly valid for small

values of the field before such nucleation events actually take

place. We believe that in this case, our results will be of much

value for checking and validating the relevant experiments.
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