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We investigate the phase behavior of a system of hard equilateral and right-angled triangles in
two dimensions using Monte Carlo simulations. Hard equilateral triangles undergo a continuous
isotropic-triatic liquid crystal phase transition at packing fraction ¢ = 0.7. Similarly, hard right-
angled isosceles triangles exhibit a first-order phase transition from an isotropic fluid phase to a
rhombic liquid crystal phase with a coexistence region ¢ € [0.733,0.782]. Both these liquid crystals
undergo a continuous phase transition to their respective close-packed crystal structures at high
pressures. Although the particles and their close-packed crystals are both achiral, the solid phases
of equilateral and right-angled triangles exhibit spontaneous chiral symmetry breaking at sufficiently
high packing fractions. The colloidal triangles rotate either in clockwise or anti-clockwise direction
with respect to one of the lattice vectors for packing fractions higher than ¢,. As a consequence,
these triangles spontaneously form a regular lattice of left- or right-handed chiral holes which are
surrounded by six triangles in the case of equilateral triangles and four or eight triangles for right-
angled triangles. Moreover, our simulations show a spontaneous entropy-driven demixing transition

of the right- and left-handed “enantiomers”.

I. INTRODUCTION

Chirality plays an important role in nature, chemistry,
and materials science. Chirality is present in cholesteric
phases, which are nematic liquid crystals with a helical
structure of the director field and which are frequently
used in optoelectronic applications [1]. Recently, chiral
nanostructured materials have also received much atten-
tion due to their intriguing optical properties such as a
huge optical activity, strong circular dichroism, photonic
band gaps, and negative refractive indices [2-4]. How-
ever, despite the huge amount of work devoted to chi-
rality, the underlying microscopic features of the build-
ing blocks responsible for the formation of chiral self-
assembled structures is extremely subtle and not well-
understood. Even the most basic question if particle
shape alone can lead to macroscopic chiral structures is
still unknown. It has been theoretically demonstrated
that an entropy-driven isotropic-cholesteric phase transi-
tion exists for hard helical particles, but these predictions
have never been verified experimentally or by computer
simulations [5-8].

An intriguing question would be whether or not achiral
particles can self-assemble into chiral structures. Very re-
cent experiments by Mason et al. on equilateral triangu-
lar colloidal platelets confined to two dimensions show an
entropy-driven phase transition from the isotropic liquid
to a triatic liquid crystal phase that displays three-fold
symmetric orientational order [9]. Surprisingly, at suffi-
ciently high densities, small domains of chiral dimer pairs
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that are laterally shifted in one or the opposite direc-
tion, appear spontaneously in the triatic phase. The au-
thors conjectured that the spontaneous local chiral sym-
metry breaking is due to an increase in rotational entropy
and may be explained by a simple rotational cage model
[9, 10]. However, a recent simulation study explained the
emergent chirality observed in these experiments by the
rounded corners of the particles which lead trivially to
two degenerate crystal lattices of chiral dimer pairs at
close-packing, thereby casting doubts on the role of rota-
tional entropy on the chiral symmetry breaking [11]. In
addition, these simulations showed that the chiral sym-
metry breaking is absent for perfect triangles, i.e., no
particle corner rounding, which is to be expected as the
close-packed structure of perfect triangles is an achiral
triangular lattice. These findings are also consistent with
a previous simulation study on perfect equilateral tri-
angles, which shows only a simple transition from the
isotropic to a liquid crystal phase at packing fraction
¢ = Nap/A = 0.57 with N the number of particles, A
the area of the simulation box, and a, the particle area
[12].

In this paper, we reexamine the phase behavior of
hard equilateral triangles in two dimensions by exten-
sive Monte Carlo simulations and free-energy calcula-
tions. Surprisingly, we find the spontaneous formation
of a novel chiral crystal phase, where the individual par-
ticles spontaneously undergo either a clockwise or anti-
clockwise rotation with respect to one of the lattice vec-
tors which give rise to a regular lattice of anti-clockwise
or clockwise chiral holes. We find a similar chiral crys-
tal phase in a system of right-angled triangles. More
surprisingly, we also observe a spontaneous entropy-
driven demixing transition of the “enantiomers” into left-
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handed and right-handed chiral phases. This paper is or-
ganized as follows. Section II introduces the model and
simulation techniques we use to study the phase behavior
of hard equilateral and right-angled isosceles triangles. In
Section III, we report the simulation results and discuss
the equation of states, free energy calculations and chi-
ral symmetry breaking. In section IV, we summarize the
results.

II. MODEL AND SIMULATION METHODS

Hard equilateral and right-angled isosceles triangles
tile the space in infinitely many ways as the rows and the
columns of these triangles can be shifted without affect-
ing their maximum packing density. At finite pressures
hard triangles may form liquid crystal phases with ori-
entational (quasi)-long-range order or solid phases with
orientational and translational (quasi)-long-range order.
To determine the phase behavior of hard equilateral and
right-angled triangles, we perform Monte Carlo (MC)
simulations and free-energy calculations. We use the
separating axis theorem to detect particle overlaps [13].
We perform variable-rectangular-box isothermal-isobaric
(NPT) Monte Carlo simulations [14, 15], in which we fix
the number of particles, N = 3000 — 13000, the pres-
sure P, and the temperature T'. We compress the system
from a low-density isotropic fluid phase to a solid phase
by slowly increasing the pressure. We observe that a sys-
tem of equilateral triangles undergoes a transition from
an isotropic fluid phase to a triangular lattice with two
particles in the unit cell as shown in Fig. la. On the
other hand, right-angled triangles never crystallized in
our compression runs within the simulation times that we
considered, but only small rhombic crystalline domains
with either two particles or four particles in the unit cell
as shown in Figs. 1(b, ¢) appeared spontaneously in the
system. The presence of two competing crystal struc-
tures with comparable free energies hampers most likely
the crystallization of the right-angled triangles.

In order to determine the most stable thermodynamic
phase of the two candidate crystal structures for right-
angled triangles, we employ the Frenkel-Ladd method as
described in Refs. [16-18] to compute the free energies
of both rhombic phases at packing fraction ¢ = 0.91.
For more details regarding the implementation of this
method, we refer the reader to Refs. [16, 19]. We show
few +1log N/N as a function of 1/N in Fig. 2 for both
candidate crystal structures. Here fo, = F../NkpT is
the excess free energy per particle, kg denotes Boltz-
mann’s constant, N the number of particles, and T the
temperature. We find in agreement with Ref. [20] that
fex + In N/N is a linear function of 1/N with the inter-
cept at 1/N = 0 corresponding to the excess {ree energy
for infinite system size. If we extrapolate the excess free
energy to the thermodynamic limit (N — o), we ob-
serve that the rhombic lattice with four particles in the
unit cell has a lower free energy than the one with two
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(a)

Figure 1. Candidate close-packed crystal structures: (a) Equi-
lateral triangles with two particles in the unit cell forming a
hexagonal dimer lattice or a triatic crystal. Right-angled tri-
angles with a rhombic lattice with two and four particles in
the unit cell in (b) and (c), respectively. We show four unit
cells for all the candidate close-packed crystal structures and
we used red to indicate a single unit cell.
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Figure 2. fez + log N/N of the two candidate crystal struc-
tures for right-angled triangles as a function of 1/N at packing
fraction ¢ = 0.91. Here fey = Feo /NkgT = (F'— F;q)/NkgT
is the excess free energy per particle, F' is the Helmholtz free
energy and Iyy the free energy of an ideal gas at the same
packing fraction. We observe that the rhombic lattice with
four particles in the unit cell has a lower free energy compared
to the rhombic lattice with two particles in the unit cell.

particles in the unit cell.

Subsequently, we determine the equations of state
(EOS) from compression runs using the isotropic fluid
phase as initial configuration in NPT Monte Carlo sim-
ulations with a variable box shape. Similarly, we obtain
the EOS by expanding the stable close-packed crystal
structures in NPT Monte Carlo simulations. To char-
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Figure 3. (a,b): Equations of state for hard equilateral and right-angled triangles, respectively. Both compression and expansion
runs are obtained for a system size of N = 3200 particles for equilateral triangles and N = 1600 particles for right-angled
triangles using NPT simulations with a rectangular box. (c¢): Six-fold bond-orientational (1/12;30) and molecular orientational
( g/lo) order parameters as a function of packing fraction ¢ for a system of hard equilateral triangles. Both the order parameters
show a transition around ¢ ~ 0.7 indicating a phase transition between the liquid and triangular crystal phase. (d): Eight-fold
bond-orientational ¥£® and molecular orientational ¢}!© order parameters as a function of packing fraction ¢ for right-angled
triangles. The coexisting densities calculated using free energies for the right-angled triangles are ¢ = 0.733 and 0.782, and are
indicated by the dotted vertical lines. Figures (e,[) show the phase diagram for the two particle shapes using different colors
as indicated. TLCP and RLCP represent the triatic and rhombic liquid crystal phase while T, and R, represent their chiral
triangular and rhombic crystal structures, respectively. The white region between the fluid and the RLCP in Fig. 3(f) indicates
the coexistence region.
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acterize the phases at high density, we determine the rameter reads
positional and orientational order at different packing
fractions ¢. To this end, we measure the n-fold bond-

orientational and molecular orientational order parame-

ters. The n-fold bond-orientational order parameter is
given by
N nn
$BO = < N ZZexp (ind;;) > . (1
i=1 j=1

where 0;; is the angle between the vector, connecting
particle ¢ and its nearest neighbor j, and an arbitrary
reference axis. Here nn = 3, is the number of nearest
neighbors. The n-fold molecular orientational order pa-

01O = <‘}Vzexp (1n0;) > , @

where 0; is the angle between particle i and a fixed ref-
erence axis. Here we use the z-axis as the reference
axis. Depending on the local symmetry of neighboring
particles around a single particle in their corresponding
close-packed structures we set n = 6 for equilateral tri-
angles and n = § for right-angled triangles. We calculate
these order parameters at varying packing fractions using
Monte Carlo simulations of N = 12800 triangles in the
canonical ensemble, i.e., the area A of the simulation box
is kept fixed. Additionally, we measure the spatial corre-
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lation functions for the translational, bond-orientational
and molecular orientational order, i.e., g(r), g&°(r), and
g0 (r), respectively, for various packing fractions in or-
der to determine whether the isotropic phase transforms
into a liquid crystal or a crystal phase. The translational
correlation function is given by

g(?‘)=p—2<zz5(r—I(ri—rj)|)>7 3)

i=1 j#i

where p = N/A is the 2D particle density and r; and r;
are the positions of particle ¢ and j, respectively. The six-
fold bond-orientational orientational correlation function
is defined as [21]

N
95°(r) = <Z s (ro) s (ro+ 7“)> ; (4)
=1

where ¢p§2(r) = nn™' Y1 exp(i66;;) is the six-fold lo-
cal bond orientational order, r( is the position of the cen-
tral particles. The six-fold molecular orientational corre-
lation function is defined as

N
960 (r) = <Z o5 (ro) o6y (ro + 7“)> ; (5)
=1

where gbé\ﬂo (r) = exp(i66;) is the six-fold local molecular
orientational order.

ITITI. RESULTS
A. Equilateral triangles

We first discuss our results for equilateral triangles. In
Figs. 3(a,c), we show the equation of state (EOS) along
with the bond orientational and molecular orientational
order parameters as a function of packing fraction ¢.
Fig. 3(a) displays the EOS as obtained from both the
compression and expansion runs. We observe that the
system undergoes a continuous phase transition from an
isotropic fluid phase to an ordered phase with three-fold
symmetric orientational order upon compression. In ad-
dition, we observe that the close-packed triangular crys-
tal melts continuously in an isotropic fluid phase during
our expansion runs. In Fig. 3(c), we plot the 6—fold
bond-orientational order parameters ¥ and molecu-
lar orientational order parameters ¥§1° as a function of
packing fraction ¢. Fig. 3(c) clearly shows that the sys-
tems develop bond-orientational and molecular orienta-
tional order for ¢ > 0.7 indicating a continuous phase
transition from an isotropic fluid to a triatic phase. We
note that the bond order parameter value z/}go is always
lower than that for the molecular order ¥}!© at all pack-
ing fractions.

In order to characterize the triatic phase in more detail,
we also measure the correlation functions for the trans-
lational, bond-orientational and molecular orientational

4

order for various packing fractions around the phase tran-
sition using Monte Carlo simulations of N = 12800 par-
ticles in the canonical ensemble. The results are shown
in Figs. 4(a,b,c). The radial distribution function g(r)
which indicates the correlations in the translational or-
der show exponential decay for packing fractions ¢ < 0.7,
which is to be expected as there is no long-range posi-
tional order present in liquid crystals. The 6-fold bond-
orientational g£©(r) and 6-fold molecular orientational
g5™©(r) correlation functions show quasi-long-range ori-
entational order for ¢ > 0.7 within the system sizes that
we used. The presence of (quasi) long-range bond or-
der and molecular orientational order and the absence of
long-range positional order for ¢ > 0.7 are characteristic
of liquid crystalline phases [9]. Hence, we find that a sys-
tem of equilateral triangles undergoes a continuous phase
transition from an isotropic fluid phase to a triatic liquid
crystal phase at packing fraction ¢ = 0.7. Upon further
compression, the triatic liquid crystal phase transforms
continuously into a crystal phase at a packing fraction
¢ > 0.87.

To corroborate our findings, we also compute the free
energies for equilateral triangles using the Frenkel-Ladd
method [17]. We use the Widom particle insertion tech-
nique to determine the chemical potential and hence the
free energy of the isotropic fluid phase at fixed den-
sity. Using thermodynamic integration of the equa-
tion of states we compute the free energy per particle
f =F/(NEkgT) as a function of packing fraction for the
isotropic fluid, triatic liquid crystal and triatic crystal
phases. Subsequently, we determine the phase behav-
ior. To this end, we first compute the chemical potential
u/kgT of both systems from the free energies and plot
the reduced pressure Pa,/kgT as a function of chemi-
cal potential in Fig. 5(a). The fluid and liquid crystal
branch do not cross in the case of equilateral triangles,
which supports our finding that the isotropic fluid-triatic
liquid crystal phase transition is continuous. In addition,
we find that the liquid crystal branch transforms con-
tinuously into the solid branch, indicating a continuous
triatic liquid crystal-triatic crystal transition.

B. Right-angled isosceles triangles

We now turn our attention to the right-angled isosceles
triangles. In Fig. 3(b), we present the equation of state
(EOS) as obtained from both the compression and expan-
sion runs. Upon compression of the isotropic fluid phase,
we observe no crystallization during out NPT simula-
tions, but only the spontaneous formation of small crys-
talline domains. In addition, we observe that the rhombic
crystal phase with four particles in the unit cell, which
is the stable crystal phase according to our free-energy
calculations, undergoes a first-order phase transition to
an isotropic fluid phase at sufficiently low pressures. The
8-fold bond orientational and molecular order parame-
ters, 5O and YO, as displayed in Fig. 3(d) show that
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Figure 4. Positional g(r), bond-orientational ¢2© (r) and molecular orientational ¢gi© (r) correlation functions at varying
packing fractions ¢ as labeled for equilateral and right-angled triangles. The left column contains the correlation functions
for equilateral triangles and the right column is for right-angled isosceles triangles. All the plots are on log-log scale. (a,d):
radial distribution function |g(r) — 1| decays algebraically for all the packing fractions. (b,e): n—fold bond-orientational order
correlation functions ¢=® (r) where n = 6 and n = 8 for equilateral and right-angled triangles respectively. (c,f) n— fold
molecular orientational order correlation functions gM© (r) with the same values of n as above.

the system develops bond-orientational and molecular-
orientational order for ¢ > 0.7. We note again that the
bond order parameter value SBO is always lower than
that for the molecular order ¥/{'© for all values of ¢.

In order to investigate the range of the positional
and orientational order of the rhombic phase, we calcu-
late the correlation functions for the translational, bond-
orientational and molecular orientational order as a func-
tion of packing fraction ¢. We present the correlation
functions in Figs. 4(d,e,f). Again, we find that the g(r)
shows exponential decay for ¢ < 0.79, and becomes only
quasi-long-range for ¢ > 0.79. The bond-orientational
g2€(r) and molecular orientational g¥©(r) correlation
functions show quasi-long-range orientational order for
¢ > 0.79 for the system sizes that we used. We thus find
that a system of right-angled triangles undergoes a first-
order phase transition from an isotropic fluid phase to a
rhombic liquid crystal phase, and shows subsequently a

continuous phase transition to a rhombic solid phase at

¢ = 0.89.

To determine the phase boundaries of the isotropic
fluid-rhombic liquid crystal phase transition, we deter-
mine the free energies of the two phases using the meth-
ods as described above in Sec. TIT A. Fig. 5(b) shows the
reduced pressure Pa,/kgT as a function of the chemi-
cal potential jt/kgT for the isotropic fluid, rhombic lig-
uid crystal, and rhombic crystal phase. We find a clear
crossover of the fluid and rhombic liquid crystal branch
corresponding to a first-order phase transition with a
coexistence region ¢ € [0.733,0.782]. Additionally, the
rhombic liquid crystal branch transforms continuously
into a rhombic crystal branch, and hence the transition
from a rhombic liquid crystal to a rhombic crystal is con-
tinuous.
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Figure 5. The reduced pressure Pa,/kpT as a function of
the chemical potential p/kgT for both the isotropic fluid and
triatic (liquid) crystal phase of equilateral triangles (a) and for
the isotropic fluid and rhombic (liquid) crystal phase of right-
angled triangles (b). The fluid and liquid-crystal branches
cross for right-angled triangles indicating a first-order phase
transition, whereas there is no crossover within the numerical
precision of our data in the case of equilateral triangles.

C. Chiral symmetry breaking

Finally, we investigate whether or not systems of equi-
lateral and right-angled triangles show chiral symme-
try breaking similar as was reported in the experiments
of Ref [9]. We perform Monte Carlo simulations of
5000 < N < 12000 triangles in the canonical ensem-
ble. We calculate the orientational distribution function
P(0), where @ is the angle that a triangle has with re-
spect to a fixed axis (x-axis) as shown in Figs. 6(b,c).
Since the probability distribution to find anti-clockwise
or clockwise orientational displacements should be sym-
metric, i.e., P(0) = P(—0), we average the distributions
for negative and positive 6 to get smoother probability
distributions. We plot P(6) as a function of # in Fig. 6(d)
for equilateral triangles and varying packing fractions ¢.
We clearly observe that the unimodal distribution at low
¢ splits into three distinct peaks at ¢, = 0.89 for equilat-
eral triangles. The central peak corresponds to particles
oriented along the lattice vector while the remaining two
peaks correspond to particles, which have either anti-
clockwise or clockwise orientational displacements.

6

Figure 6. Chiral symmetry breaking in the solid phase. (a):
Triangular lattice with triangles that display no orientational
displacement, resulting in an achiral crystal phase, and with
triangles that are shifted clockwise, yielding a triatic solid
phase with chiral holes. (b,c): Sign notation for anti-clockwise
and clockwise orientational displacements 6 of the triangles
with respect to a fixed lattice vector. The orientation of the
triangles are denoted by an arrow. The triangles that exhibit
no rotational shift are colored green. The particles that have
an anti-clockwise orientational displacement are colored blue
(4), and the particles with a clockwise orientational displace-
ment are colored red (—). (d): Probability distribution of the
orientational displacement 6 of equilateral triangles at vary-
ing packing fractions ¢ > 0.85 as labeled. For ¢ > 0.89, we
find that P(6) shows three distinct peaks.

Figure 7. Typical configurations of equilateral triangles at a

packing fraction ¢ = 0.97 (a) and ¢ = 0.98 (b). The color
coding of the particles is the same as in Fig. 6. Left-handed
enantiomers are colored blue while right-handed enantiomers
are colored red. The remaining particles are colored green. A
clear phase boundary can be seen separating the two coexist-
ing right- and left-handed chiral phases.
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Figure 8. Close-up of the chiral phases at a packing frac-
tion ¢ = 0.97. Top panel shows typical left-handed and
right-handed chiral phases of equilateral triangles and the bot-
tom panel displays the same for right-angled triangles. Left-
handed enantiomers are colored blue while the right-handed
enantiomers are colored red.
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Figure 9. Projection of the center-of-masses of the equilateral
triangles taken from 20 different equilibrium configurations at
¢ = 0.91. The hexagons are drawn to guide the eye to see
the inherent honeycomb lattice. We have carved this picture
from a larger system of N = 5000 for visual clarity.

In Fig. 7, we show typical configurations for a sys-
tem of equilateral triangles at ¢ = 0.97 and ¢ = 0.98.
The triangles with a negative 6, which are shifted anti-
clockwise, are colored blue, whereas the triangles with a
positive 8 are colored red. The particles with an orien-
tational displacement corresponding to the central peak
in P(0) are colored green. Surprisingly, we find a clear
phase separation between a phase with (blue) triangles
that are rotated anti-clockwise and a phase with (red)
particles that are twisted clockwise. The two coexist-
ing phases are separated by an interface of (green) par-
ticles that show no appreciable twist. We thus find an
achiral triatic phase at ¢ < 0.89, whereas the system
phase separates into left- and right-handed chiral phases
for ¢ > 0.89. Moreover, we find that the peaks cor-
responding to the two coexisting chiral phases become
more pronounced upon increasing ¢, and hence the in-
terfacial free energy increases with ¢. We thus find that
the phase behavior of hard triangles is remarkably simi-
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Figure 10. The critical order parameter distribution function
of the 2D Ising model P(m) as a function of the magneti-
zation (black) and the orientational distribution function of
triangles P(6) at a packing fraction ¢ = 0.94. Both distri-
bution functions are normalized to unit norm, variance and
zero mean. The height of the orientational distribution of the
triangles P(6) are rescaled to match P(m)

lar as that of the Ising model, that shows at sufficiently
low temperatures spontaneous magnetization and phase
coexistence between two magnetic phases. We therefore
compared the orientational distribution function of the
triangles with the probability distribution function of the
magnetization of the Ising model in order to investigate
if the demixing transition of triangles corresponds to the
Ising universality class. In Fig. 10, we show that the or-
der parameter distribution functions do not match, and
we conclude that the demixing transition of the enan-
tiomers should correspond to another universality class,
e.g., the six-state clock model. Finally, we wish to re-
mark that the value of the most likely rotational shift
0 decreases upon increasing ¢ as expected since the ro-
tational displacement equals zero for all triangles in the
achiral crystal phase at close-packing. A similar chiral
symmetry breaking and phase separation is also observed
for right-angled triangles (not shown). In this case, the
transition from an achiral to a chiral phase occurs at
¢y = 0.87.

In Fig. 8, we show a close-up look of these chiral con-
figurations for both the equilateral and right-angled tri-
angles. We observe that the collective orientational dis-
placements of the triangles lead to a hexagonal lattice
of clockwise or anti-clockwise chiral holes, which are sur-
rounded by six triangles in the case of equilateral trian-
gles. The appearance of these chiral holes due to the col-
lective rotation of six triangles is also illustrated schemat-
ically in Fig. 6(a). In the case of right-angled triangles
the collective orientational displacements lead to a square
lattice of chiral holes, which are surrounded by either
four of eight triangles. We used curved arrows to in-
dicate clockwise and anti-clockwise holes in Fig. 8. It
is worth mentioning that for long simulation times the
system should display either a pure left-handed or right-
handed chiral phase, as it costs interfacial free energy to
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have a phase-separated configuration with an interface.
Due to the long equilibration times the phase separated
system frequently remains within the simulation times of
our Monte Carlo runs. In order to investigate whether
or not the ”twisted” triangles are still positioned on a
regular lattice, we projected the center-of-masses of the
equilateral triangles as obtained from 20 different equili-
brated configurations at a packing fraction ¢ = 0.91 on
a plane in Fig. 9. We find that the center-of-masses of
the particles form a regular honeycomb lattice with long-
range positional order. In addition, we also computed
the lateral shifts between neighboring triangles at high
densities as also computed by the authors of Refs.[9, 11].
Our results are in agreement with the earlier simulation
results of Ref. [11] that there is no split in the proba-
bility distributions of these lateral shifts for perfect hard
triangles.

IV. PHASE DIAGRAM AND CONCLUSIONS

In summary, we have studied a two-dimensional system
of equilateral triangles and right-angled isosceles trian-
gles using large-scale Monte Carlo simulations. We have
computed the equations of state, and bond-orientational
and molecular orientational order parameters as a func-
tion of packing fraction ¢. In addition, we calculated
the free energies as a function of packing fraction for the
isotropic fluid phase, the liquid crystal phase, and solid
phase. We also measured the spatial correlation functions
for the translational, bond-orientational, and molecular
orientational order. We mapped out the phase diagram
of both equilateral triangles and right-angled triangles by
combining these results. In Figs. 3(e,f) we summarized
the phase behavior using different colors. We indicate
the different phase transitions by vertical dotted lines as
a guide to the eye across the different graphs. We show
that hard equilateral triangles and hard right-angled tri-
angles undergo a phase transition from an isotropic phase
to a triatic and rhombic liquid crystal phase, respec-
tively. The phase transition from the isotropic to triatic
liquid crystal phase is continuous for equilateral trian-
gles, whereas we find a first-order phase transition from
the isotropic fluid to the rhombic liquid crystal phase
for the right-angled triangles with a coexistence region
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¢ € [0.733,0.782]. With increasing pressure these liquid
crystal phases continuously transform to their respective
close-packed crystal structures. These close-packed crys-
talline phases exhibit at sufficiently high packing frac-
tions spontaneous chiral symmetry breaking as the trian-
gles rotate either in clockwise or anti-clockwise direction
with respect to a fixed lattice vector. We denote the chi-
ral triatic phase and the chiral rhombic phase by T, and
Ry, respectively, in the phase diagram of Figs. 3(e,f). We
also observe a spontaneous purely entropy-driven demix-
ing of the ”enantiomers” resulting in phase coexistence
of the left- and right-handed chiral phase with a clear in-
terface. To the best of our knowledge, our work presents
the first observation of a spontaneous macroscopic chi-
ral symmetry breaking and entropy-driven demixing of
”enantiomers” of achiral building blocks. The chiral sym-
metry breaking in system of rounded hard triangles in-
volve an underlying lattice that is chiral [9, 11], however,
the chiral symmetry breaking in systems of equilateral
triangles and right-angled isosceles triangles occurs due
to the formation of chiral clusters of particles, which are
twisted around a common center. These chiral particle
clusters exhibit either a clockwise or a counter-clockwise
twist, and domains of these enantiomeric clusters form a
regular achiral honeycomb lattice.

Finally, we wish to remark that the isotropic-to-liquid-
crystal phase transition point in equilateral triangles as
determined in experiments and in an earlier simulation
study [9, 12] are 15% off from our simulation results.
Additionally, the EOS as shown in Fig. 1 of Ref. [12]
does not match with our EOS obtained from our isoten-
sic NPT Monte Carlo simulations. We attribute this
discrepancy with earlier simulation results [12] to the
fact that these molecular dynamics simulations were per-
formed with a fixed box shape, which may lead to non-
zero stress. We verified this by Monte Carlo simula-
tions of hard triangles in a fixed box shape, which indeed
show that the isotropic-to-liquid-crystal phase transition
happens at lower packing fraction compared to simula-
tions with a variable box shape. The mismatch with
the experimental [9] isotropic-liquid-crystal phase transi-
tion point is likely due to the fact that the particle inter-
actions in the experimental system cannot be described
by excluded-volume interactions, which may be caused
by the presence of depletants, charges, and polydisper-
sity [9, 22].
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