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We investigate the phase behavior of a system of hard equilateral and right-angled triangles in
two dimensions using Monte Carlo simulations. Hard equilateral triangles undergo a continuous
isotropic-triatic liquid crystal phase transition at packing fraction φ = 0.7. Similarly, hard right-
angled isosceles triangles exhibit a first-order phase transition from an isotropic fluid phase to a
rhombic liquid crystal phase with a coexistence region φ ∈ [0.733, 0.782]. Both these liquid crystals
undergo a continuous phase transition to their respective close-packed crystal structures at high
pressures. Although the particles and their close-packed crystals are both achiral, the solid phases
of equilateral and right-angled triangles exhibit spontaneous chiral symmetry breaking at sufficiently
high packing fractions. The colloidal triangles rotate either in clockwise or anti-clockwise direction
with respect to one of the lattice vectors for packing fractions higher than φχ. As a consequence,
these triangles spontaneously form a regular lattice of left- or right-handed chiral holes which are
surrounded by six triangles in the case of equilateral triangles and four or eight triangles for right-
angled triangles. Moreover, our simulations show a spontaneous entropy-driven demixing transition
of the right- and left-handed “enantiomers”.

I. INTRODUCTION

Chirality plays an important role in nature, chemistry,
and materials science. Chirality is present in cholesteric
phases, which are nematic liquid crystals with a helical
structure of the director field and which are frequently
used in optoelectronic applications [1]. Recently, chiral
nanostructured materials have also received much atten-
tion due to their intriguing optical properties such as a
huge optical activity, strong circular dichroism, photonic
band gaps, and negative refractive indices [2–4]. How-
ever, despite the huge amount of work devoted to chi-
rality, the underlying microscopic features of the build-
ing blocks responsible for the formation of chiral self-
assembled structures is extremely subtle and not well-
understood. Even the most basic question if particle
shape alone can lead to macroscopic chiral structures is
still unknown. It has been theoretically demonstrated
that an entropy-driven isotropic-cholesteric phase transi-
tion exists for hard helical particles, but these predictions
have never been verified experimentally or by computer
simulations [5–8].
An intriguing question would be whether or not achiral

particles can self-assemble into chiral structures. Very re-
cent experiments by Mason et al. on equilateral triangu-
lar colloidal platelets confined to two dimensions show an
entropy-driven phase transition from the isotropic liquid
to a triatic liquid crystal phase that displays three-fold
symmetric orientational order [9]. Surprisingly, at suffi-
ciently high densities, small domains of chiral dimer pairs

∗ M.Dijkstra1@uu.nl

that are laterally shifted in one or the opposite direc-
tion, appear spontaneously in the triatic phase. The au-
thors conjectured that the spontaneous local chiral sym-
metry breaking is due to an increase in rotational entropy
and may be explained by a simple rotational cage model
[9, 10]. However, a recent simulation study explained the
emergent chirality observed in these experiments by the
rounded corners of the particles which lead trivially to
two degenerate crystal lattices of chiral dimer pairs at
close-packing, thereby casting doubts on the role of rota-
tional entropy on the chiral symmetry breaking [11]. In
addition, these simulations showed that the chiral sym-
metry breaking is absent for perfect triangles, i.e., no
particle corner rounding, which is to be expected as the
close-packed structure of perfect triangles is an achiral

triangular lattice. These findings are also consistent with
a previous simulation study on perfect equilateral tri-
angles, which shows only a simple transition from the
isotropic to a liquid crystal phase at packing fraction
φ = Nap/A = 0.57 with N the number of particles, A
the area of the simulation box, and ap the particle area
[12].

In this paper, we reexamine the phase behavior of
hard equilateral triangles in two dimensions by exten-
sive Monte Carlo simulations and free-energy calcula-
tions. Surprisingly, we find the spontaneous formation
of a novel chiral crystal phase, where the individual par-
ticles spontaneously undergo either a clockwise or anti-
clockwise rotation with respect to one of the lattice vec-
tors which give rise to a regular lattice of anti-clockwise
or clockwise chiral holes. We find a similar chiral crys-
tal phase in a system of right-angled triangles. More
surprisingly, we also observe a spontaneous entropy-
driven demixing transition of the “enantiomers” into left-
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lation functions for the translational, bond-orientational
and molecular orientational order, i.e., g(r), gBO

6 (r), and
gMO
6 (r), respectively, for various packing fractions in or-
der to determine whether the isotropic phase transforms
into a liquid crystal or a crystal phase. The translational
correlation function is given by

g(r) = ρ−2

〈

N
∑

i=1

∑

j 6=i

δ(r − |(ri − rj)|)

〉

, (3)

where ρ = N/A is the 2D particle density and ri and rj

are the positions of particle i and j, respectively. The six-
fold bond-orientational orientational correlation function
is defined as [21]

gBO
6 (r) =

〈

N
∑

i=1

φBO
6,i (r0)φ

BO
6,i (r0 + r)

〉

, (4)

where φBO
6,i (r) = nn−1

∑nn

k=1 exp(i6θik) is the six-fold lo-
cal bond orientational order, r0 is the position of the cen-
tral particles. The six-fold molecular orientational corre-
lation function is defined as

gMO
6 (r) =

〈

N
∑

i=1

φMO
6,i (r0)φ

MO
6,j (r0 + r)

〉

, (5)

where φMO
6,i (r) = exp(i6θi) is the six-fold local molecular

orientational order.

III. RESULTS

A. Equilateral triangles

We first discuss our results for equilateral triangles. In
Figs. 3(a,c), we show the equation of state (EOS) along
with the bond orientational and molecular orientational
order parameters as a function of packing fraction φ.
Fig. 3(a) displays the EOS as obtained from both the
compression and expansion runs. We observe that the
system undergoes a continuous phase transition from an
isotropic fluid phase to an ordered phase with three-fold
symmetric orientational order upon compression. In ad-
dition, we observe that the close-packed triangular crys-
tal melts continuously in an isotropic fluid phase during
our expansion runs. In Fig. 3(c), we plot the 6−fold
bond-orientational order parameters ψBO

6 and molecu-
lar orientational order parameters ψMO

6 as a function of
packing fraction φ. Fig. 3(c) clearly shows that the sys-
tems develop bond-orientational and molecular orienta-
tional order for φ > 0.7 indicating a continuous phase
transition from an isotropic fluid to a triatic phase. We
note that the bond order parameter value ψBO

6 is always
lower than that for the molecular order ψMO

6 at all pack-
ing fractions.
In order to characterize the triatic phase in more detail,

we also measure the correlation functions for the trans-
lational, bond-orientational and molecular orientational

order for various packing fractions around the phase tran-
sition using Monte Carlo simulations of N = 12800 par-
ticles in the canonical ensemble. The results are shown
in Figs. 4(a,b,c). The radial distribution function g(r)
which indicates the correlations in the translational or-
der show exponential decay for packing fractions φ < 0.7,
which is to be expected as there is no long-range posi-
tional order present in liquid crystals. The 6-fold bond-
orientational gBO

6 (r) and 6-fold molecular orientational
gMO
6 (r) correlation functions show quasi-long-range ori-
entational order for φ > 0.7 within the system sizes that
we used. The presence of (quasi) long-range bond or-
der and molecular orientational order and the absence of
long-range positional order for φ > 0.7 are characteristic
of liquid crystalline phases [9]. Hence, we find that a sys-
tem of equilateral triangles undergoes a continuous phase
transition from an isotropic fluid phase to a triatic liquid
crystal phase at packing fraction φ = 0.7. Upon further
compression, the triatic liquid crystal phase transforms
continuously into a crystal phase at a packing fraction
φ > 0.87.
To corroborate our findings, we also compute the free

energies for equilateral triangles using the Frenkel-Ladd
method [17]. We use the Widom particle insertion tech-
nique to determine the chemical potential and hence the
free energy of the isotropic fluid phase at fixed den-
sity. Using thermodynamic integration of the equa-
tion of states we compute the free energy per particle
f = F/(NkBT ) as a function of packing fraction for the
isotropic fluid, triatic liquid crystal and triatic crystal
phases. Subsequently, we determine the phase behav-
ior. To this end, we first compute the chemical potential
µ/kBT of both systems from the free energies and plot
the reduced pressure Pap/kBT as a function of chemi-
cal potential in Fig. 5(a). The fluid and liquid crystal
branch do not cross in the case of equilateral triangles,
which supports our finding that the isotropic fluid-triatic
liquid crystal phase transition is continuous. In addition,
we find that the liquid crystal branch transforms con-
tinuously into the solid branch, indicating a continuous
triatic liquid crystal-triatic crystal transition.

B. Right-angled isosceles triangles

We now turn our attention to the right-angled isosceles
triangles. In Fig. 3(b), we present the equation of state
(EOS) as obtained from both the compression and expan-
sion runs. Upon compression of the isotropic fluid phase,
we observe no crystallization during out NPT simula-
tions, but only the spontaneous formation of small crys-
talline domains. In addition, we observe that the rhombic
crystal phase with four particles in the unit cell, which
is the stable crystal phase according to our free-energy
calculations, undergoes a first-order phase transition to
an isotropic fluid phase at sufficiently low pressures. The
8-fold bond orientational and molecular order parame-
ters, ψBO

8 and ψMO
8 , as displayed in Fig. 3(d) show that
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have a phase-separated configuration with an interface.
Due to the long equilibration times the phase separated
system frequently remains within the simulation times of
our Monte Carlo runs. In order to investigate whether
or not the ”twisted” triangles are still positioned on a
regular lattice, we projected the center-of-masses of the
equilateral triangles as obtained from 20 different equili-
brated configurations at a packing fraction φ = 0.91 on
a plane in Fig. 9. We find that the center-of-masses of
the particles form a regular honeycomb lattice with long-
range positional order. In addition, we also computed
the lateral shifts between neighboring triangles at high
densities as also computed by the authors of Refs.[9, 11].
Our results are in agreement with the earlier simulation
results of Ref. [11] that there is no split in the proba-
bility distributions of these lateral shifts for perfect hard
triangles.

IV. PHASE DIAGRAM AND CONCLUSIONS

In summary, we have studied a two-dimensional system
of equilateral triangles and right-angled isosceles trian-
gles using large-scale Monte Carlo simulations. We have
computed the equations of state, and bond-orientational
and molecular orientational order parameters as a func-
tion of packing fraction φ. In addition, we calculated
the free energies as a function of packing fraction for the
isotropic fluid phase, the liquid crystal phase, and solid
phase. We also measured the spatial correlation functions
for the translational, bond-orientational, and molecular
orientational order. We mapped out the phase diagram
of both equilateral triangles and right-angled triangles by
combining these results. In Figs. 3(e,f) we summarized
the phase behavior using different colors. We indicate
the different phase transitions by vertical dotted lines as
a guide to the eye across the different graphs. We show
that hard equilateral triangles and hard right-angled tri-
angles undergo a phase transition from an isotropic phase
to a triatic and rhombic liquid crystal phase, respec-
tively. The phase transition from the isotropic to triatic
liquid crystal phase is continuous for equilateral trian-
gles, whereas we find a first-order phase transition from
the isotropic fluid to the rhombic liquid crystal phase
for the right-angled triangles with a coexistence region

φ ∈ [0.733, 0.782]. With increasing pressure these liquid
crystal phases continuously transform to their respective
close-packed crystal structures. These close-packed crys-
talline phases exhibit at sufficiently high packing frac-
tions spontaneous chiral symmetry breaking as the trian-
gles rotate either in clockwise or anti-clockwise direction
with respect to a fixed lattice vector. We denote the chi-
ral triatic phase and the chiral rhombic phase by Tχ and
Rχ, respectively, in the phase diagram of Figs. 3(e,f). We
also observe a spontaneous purely entropy-driven demix-
ing of the ”enantiomers” resulting in phase coexistence
of the left- and right-handed chiral phase with a clear in-
terface. To the best of our knowledge, our work presents
the first observation of a spontaneous macroscopic chi-
ral symmetry breaking and entropy-driven demixing of
”enantiomers” of achiral building blocks. The chiral sym-
metry breaking in system of rounded hard triangles in-
volve an underlying lattice that is chiral [9, 11], however,
the chiral symmetry breaking in systems of equilateral
triangles and right-angled isosceles triangles occurs due
to the formation of chiral clusters of particles, which are
twisted around a common center. These chiral particle
clusters exhibit either a clockwise or a counter-clockwise
twist, and domains of these enantiomeric clusters form a
regular achiral honeycomb lattice.
Finally, we wish to remark that the isotropic-to-liquid-

crystal phase transition point in equilateral triangles as
determined in experiments and in an earlier simulation
study [9, 12] are 15% off from our simulation results.
Additionally, the EOS as shown in Fig. 1 of Ref. [12]
does not match with our EOS obtained from our isoten-
sic NPT Monte Carlo simulations. We attribute this
discrepancy with earlier simulation results [12] to the
fact that these molecular dynamics simulations were per-
formed with a fixed box shape, which may lead to non-
zero stress. We verified this by Monte Carlo simula-
tions of hard triangles in a fixed box shape, which indeed
show that the isotropic-to-liquid-crystal phase transition
happens at lower packing fraction compared to simula-
tions with a variable box shape. The mismatch with
the experimental [9] isotropic-liquid-crystal phase transi-
tion point is likely due to the fact that the particle inter-
actions in the experimental system cannot be described
by excluded-volume interactions, which may be caused
by the presence of depletants, charges, and polydisper-
sity [9, 22].
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