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Université de Lyon, CNRS/UMR 5672, 46 allée d’Italie, 69007 Lyon, France
3The Martin Fisher School of Physics, Brandeis University,

415 South Street, Waltham, Massachusetts 02454, USA
(Dated: October 7, 2015)

The depletion interaction mediated by non-adsorbing polymers promotes condensation and assem-
bly of repulsive colloidal particles into diverse higher-order structures and materials. One example,
with particularly rich emergent behaviors, is the formation of two-dimensional colloidal membranes
from a suspension of filamentous fd viruses, which act as rods with effective repulsive interactions,
and dextran, which acts as a condensing, depletion-inducing agent. Colloidal membranes exhibit
chiral twist even when the constituent virus mixture lacks macroscopic chirality, change from a cir-
cular shape to a striking starfish shape upon changing the chirality of constituent rods, and partially
coalesce via domain walls through which the viruses twist by 180◦. We formulate an entropically-
motivated theory that can quantitatively explain these experimental structures and measurements,
both previously published and newly performed, over a wide range of experimental conditions. Our
results elucidate how entropy alone, manifested through the viruses as Frank elastic energy and
through the depletants as an effective surface tension, drives the formation and behavior of these di-
verse structures. Our generalizable principles propose the existence of analogous effects in molecular
membranes and can be exploited in the design of reconfigurable colloidal structures.

I. INTRODUCTION

Suspensions of particles with hard-core repulsive inter-
actions form equilibrium phases that minimize the sys-
tems’ free energy by maximizing their entropy. Since en-
tropy is conventionally associated with disorder, it might
be expected that hard-particle fluids form structures that
lack long-range order. However, extensive experimen-
tal work and theoretical models have repeatedly demon-
strated the counterintuitive notion that entropy alone is
sufficient to stabilize ordered phases of ever-increasing
complexity. Among other examples, it has been shown
that entropy can drive formation of 3D bulk crystals in
suspensions of hard spheres [1–3], nematic and smectic
liquid crystalline phases with hard rods [4, 5], and more
exotic binary crystals and diverse microphase-separated
states in mixtures of hard particles [6–8].
Recent work has demonstrated that a mixture of

monodisperse micron-long filamentous bacteriophages
and non-adsorbing polymers assemble into 2D one-
rod-length-thick colloidal monolayer membranes [9, 10].
Colloidal membranes exhibit an exceedingly rich phe-
nomenology. They support a myriad of defects including
twist domain walls and linear arrays of pores [11]. In-
creasing chirality induces a transition of flat 2D mem-
branes into 1D twisted ribbons, and mixing rods of
multiple lengths leads to formation of finite-sized col-
loidal rafts that are evocative of similar structures ob-
served in conventional lipid bilayers [12, 13]. All of

∗ lkang@mail.med.upenn.edu

these complex mesoscopic behaviors arise from very sim-
ple microscopic interactions between constituent parti-
cles. Filamentous viruses interact only through an effec-
tive hard-rod repulsion. Similarly, the uncharged dex-
tran molecules act as effective Asakura-Oosawa penetra-
ble spheres [14, 15]. From this perspective, the virus par-
ticles and dextran molecules comprise a gas of hard rods
and hard spheres, and the structures found in colloidal
membranes must be stabilized by entropic, hard-core in-
teractions [16]. We formulate a theoretical model based
purely on such entropic considerations. Our model ex-
plains many known structural features of colloidal mem-
branes and directly relates them to the known entropic
interactions in rod/polymer mixtures. Furthermore, it
makes a number of new predictions that are directly ver-
ified by new experimental results.

Colloidal suspensions are a quintessential model sys-
tem in soft condensed matter physics. They are not only
interesting in their own right but also provide new in-
sights into the structure and dynamics of diverse phases;
these insights only depend on the symmetries of the con-
stituent particles and are thus relevant on all length-
scales. For example, engineering colloidal shapes and
interactions makes it possible to mimic many processes
found in atomic and molecular systems, including liquid-
gas phase separation, wetting, thermal capillary waves,
crystal nucleation, and the glass transition [3, 17–21]. In
stark contrast to molecular systems, the size of model col-
loids makes it is possible to directly track the positions
of all the constituent particles, thus yielding important
information about universal physical processes in vari-
ous condensed matter systems. Conventional fluid mem-
branes, assembled from permanently-linked hydrophobic
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and hydrophilic components, are another interesting and
important soft matter system and play an essential role
in biology [22]. However, due to our inability to di-
rectly visualize real-time dynamics of lipid bilayers at
the nanometer scale, many membrane-based processes
remain poorly understood. Intriguingly, the large-scale
elastic deformations of colloidal membranes are described
by the same continuum theories that are used to describe
conventional lipid bilayers. Based on this observation
and following the analogy between colloids and molec-
ular substances, we hope that colloidal membranes will
provide new understanding about universal membrane-
mediated behaviors. There have been some recent over-
tures in this vein. For example, colloidal membranes per-
mit direct visualization and quantitative characterization
of liquid raft-like clusters [13], a subject that remains con-
troversial in conventional lipid membranes [13, 23]. Even-
tual understanding of such complex structures requires a
theoretical model that relates mesoscopic properties of
colloidal membranes to the microscopic interactions of
their constituent building blocks.
The rest of the paper is organized as follows. In

Sec. II we briefly review the rich phenomenology of
colloidal membranes. In Sec. III, we introduce a new
entropy-based theoretical model of colloidal membranes
and compare our results to known properties of col-
loidal membranes, including static edge fluctuation data
[Figs. 5(b), 5(d), and 5(e)] and twist domain wall re-
tardance (Fig. 8) [11, 12]. Furthermore, we also dis-
cuss new predictions of our theoretical model, including
how the structure of the membrane’s edge depends on
membrane radius (Fig. 4) and dynamical edge fluctua-
tion data [Fig. 5(c)]. These predictions are tested against
new experimental data. Section IV explains the model in
complete detail and Sec. V describes experimental meth-
ods. Finally, we summarize our findings and discuss their
wider implications in Sec. VI.

II. OVERVIEW OF COLLOIDAL MEMBRANES

Filamentous fd viruses are monodisperse semi-rigid fil-
aments with 880 nm length, 7 nm diameter, and 2.8 µm
persistence length [24]. When suspended in an aque-
ous solution at increasing concentrations, they undergo a
transition to an aligned nematic phase characterized by
long-range orientational order. This isotropic-to-nematic
phase transition is quantitatively described by Onsager’s
theory, indicating that viruses repel one another via
hard-core and electrostatic interactions [4, 24, 25]. Fil-
amentous viruses are chiral and form a twisted nematic
(cholesteric) phase in which the director field rotates with
a well-defined handedness [26]. For wildtype fd virus,
the strength of cholesteric interactions is temperature-
dependent and continuously increases with decreasing
temperature. A single amino acid substitution in the ma-
jor coat protein leads to the Y21M virus whose cholesteric
phase has a handedness opposite to that of the wild-

type [24]. Mixing wildtype and Y21M viruses produces
cholesteric phases with intermediate twist pitches; at a
certain ratio, the mixture exhibits no macroscopic twist.

The addition of a polymer, such as dextran, in its
non-adsorbing regime [27] to a dilute isotropic fd suspen-
sion induces virus-virus attraction via depletion [14, 15].
The geometry of the constituent rods ensures that at-
tractive interactions are strongest for lateral associations,
causing the viruses to coalesce into one-rod-length-thick,
disk-shaped mesoscopic clusters [9]. They slowly sed-
iment to the bottom of the glass container, which is
coated with a polyacrylamide brush penetrable to dex-
tran in order to suppress depletion-induced virus-wall
attractions [28]. Over a certain range of depletant con-
centrations, protrusion fluctuations induce vertical re-
pulsion between clusters, suppressing their face-on as-
sociation [10]. Consequently, such clusters continue to
associate laterally, forming large equilibrium 2D col-
loidal membranes that can be millimeters in diameter
[Fig. 1(b)]. Single molecule tracking indicates liquid-like
order within a membrane. Twisting of constituent chi-
ral viruses is inherently incompatible with assembly into
a layered membrane-like structure [29]. Consequently,
twist can only penetrate into the membrane from the
edges and is expelled from the bulk. Unique proper-
ties of the colloidal membrane allow for direct visualiza-
tion of the twist field and quantitative measurement of
the twist penetration length ltwist [29]. When the mem-
brane radius is much bigger than ltwist ∼ 1 µm, the edge
adopts a surface-area-minimizing rounded shape with the
constituent rods significantly tilting into the membrane
plane [Fig. 1(b)]; when the membrane radius becomes of
the order of ltwist or smaller, the edge profile becomes
more square-like and rods do not significantly tilt away
from the membrane normal [Fig. 1(c)]. Due to thermal
excitations, membrane edges undergo ripple fluctuations
that can be visualized and precisely quantified [Fig. 1(d)].

When chirality-inverted Y21M viruses are used instead
of wildtype fd, rods at the edge twist with the opposite
handedness, and when the macroscopically achiral mix-
ture of wildtype and Y21M viruses is used, edge-bound
rods in each membrane have equal probability of twisting
with one handedness or the other [12]. The achiral mix-
ture exhibits spontaneous symmetry breaking, which has
been observed in Langmuir-Blodgett films [30, 31], an-
other class of two-dimensional structures with nanoscale
components, and which has been used in sensors of molec-
ular chirality [32]. Increasing the rod chirality raises the
free energy of interior untwisted rods while lowering the
free energy of edge-bound twisted rods, leading to chi-
ral control of edge line tension [12]. At sufficiently high
chirality, the edge tension approaches zero, and a flat 2D
disk spontaneously transitions into an array of 1D twisted
ribbons, called a “starfish” [Fig. 1(e)].

The twist associated with the membranes edge also
leads to unconventional pathways of membrane coales-
cence [11]. As two membranes of same chirality approach
each other laterally, the proximal membrane edges can

Page 2 of 17Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 3 of 17 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 4 of 17Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



5

TABLE I. Membrane parameters and their values.

Parameter Variable Experimental value Reference(s) Theoretical fit value
Virus half-length t 440 nm [24] same
Temperature T 0–60 ◦C experimental same

Depletant concentration n 35–51mgmL−1 experimental same
Depletant radius a ∼25 nm [36–38]a 31 nm

Nearest-neighbor virus distance ξ 12 nm unpublishedb same
Frank elastic constant K 0.5 pN [26]c 2.8 pN

Preferred twist wavenumber q(T ) 0.5 µm−1
√

1− T/60 ◦C [12]c 2.5 µm−1
√

1− T/120 ◦C
Virus birefringence ∆n 0.0087± 0.0007 [29]d 0.0065

a Hydrodynamic radii for dilute solutions of 500 kDa dextran, whereas our experiments are in the semidilute regime.
b Unpublished data extracted from X-ray scattering.
c Measured in the bulk cholesteric phase with fd virus concentration 100mgmL−1, which is lower than the membrane virus

concentration 230mgmL−1 estimated from the experimentally-measured nearest-neighbor virus distance ξ.
d Assuming that the nematic order parameter in membrane is 1. Membrane virus concentration 230mgmL−1 estimated from the

experimentally-measured nearest-neighbor virus distance ξ.

proximation, the amplitude and transition temperature
of the temperature-dependent twist wavenumber q(T ),
and the virus birefringence ∆n. In our theory, we main-
tain the experimentally-measured square-root behavior
of q(T ) (see Supplementary Material of [12]). The Frank
elastic constant can be written in dimensionless form as
k(T ) ≡ K/natT , a ratio between the influence of Frank
elasticity and that of depletion. Presumably, K depends
on temperature in a complicated fashion, as measured
for a variety of lyotropic and thermotropic liquid crys-
tals [39–42], but we ignore this effect.

We first use our theoretical model to determine how
membrane structure depends on its radius. We use
cylindrical coordinates and assume circular symmetry
[Figs. 3(a) and 3(b)]. For convenience, we use the re-
verse radial coordinate ∆r, which originates at the mem-
brane’s edge and takes positive values towards the center
of the membrane. θ is the twist angle about the local ra-
dial axis. Figure 3(c) plots the vertical membrane profile
for membranes with very large radii and varying Frank-
to-depletion ratios k and twist wavenumbers q. For all
conditions, h ≈ t cos θ, indicating that θ is sufficiently
small to suppress rod height fluctuations. Thus, rod en-
tropy does not contribute significantly to the structure of
the membrane’s edge. First, consider the q = 0 profiles
in Fig. 3(c) corresponding to a macroscopically achiral
rod mixture. When k is greater than a critical value
kc = 1, the untwisted configuration with θ = 0 is fa-
vored. When k < kc, depletion drives spontaneous chiral
symmetry breaking into a twisted configuration with ei-
ther θ > 0 or θ < 0. In the k → 0 limit where only
depletion exists, the vertical edge profile is semicircular
to minimize the membrane surface area. Now, consider
the q = 2.2 µm−1 case in Fig. 3(c) corresponding to a
chiral rod mixture. Twisted configurations of one hand-
edness (here, θ > 0 for q > 0) become favored at all
k. In the depletion-dominated regime k ≪ 1, the ver-
tical edge profile again approaches a semicircle. In the
Frank-elasticity-dominated regime k ≫ 1, the rod twist
decays with penetration length ltwist ≈

√
k/t, in analogy

to the way that twist penetrates into a smectic phase.
Calculations of kc and ltwist are provided in Appendix A.

In addition to describing edges of large membranes,
our theoretical model also describes how edge profile
varies with decreasing membrane diameter. To test these
predictions, we measure the retardance of different-sized
membranes using quantitative LC-PolScope microscopy,
which directly reveals the twisting of rods away from the
membrane normal. When polarized light passes through
a birefringent material, the components corresponding to
the dielectric tensor eigenvectors—the ordinary and ex-
traordinary waves—propagate at different speeds. The
resulting phase difference between these components
multiplied by the wavelength of the light is the retardance
D. For a uniaxial crystal of constant thickness, retar-
dance can be calculated as D = 2∆nh sin2 θ [43], where
∆n is the birefringence. For membranes of various radii,
we calculate D(∆r) with the fit values given in Table I
and the approximation h = t cos θ, since our results in
Fig. 3(c) demonstrate that rod fluctuations b are insignif-
icant for membrane edges. We use the same parameter
values for all membrane sizes; only the radius changes.
The radially-averaged edge retardance profiles measured
for membranes of various radii match well with our theo-
retical predictions [Fig. 4(b)]. These results demonstrate
that rods are less tilted at the edges of smaller mem-
branes compared to those of larger membranes [insets of
Fig 4(b)], consistent with observations that larger mem-
branes appear on side-view to have rounded edges while
smaller membranes have squared-off edges [Figs. 1(b) and
1(c)].

With detailed understanding of the membrane’s edge
structure, we next study its fluctuations, which are
clearly visible and easily quantified with optical mi-
croscopy [Fig. 1(d)]. In the large membrane limit, we
ignore curvature of the edge and, with Cartesian coor-
dinates, place the very edge at x = 0 [Fig. 5(a)]. θ is
now the twist angle about the x-axis. Using the previ-
ously discussed model, we first calculate h(x) and θ(x)
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FIG. 7. Vertical π-wall profiles and their dependence on Frank elasticity and chirality. (a) Perspective and (b) cross-section
schematics showing parametrization of π-wall profile and Cartesian coordinate system. (b) shows rods that intersect the light
blue plane in (a). h is the membrane half-thickness and θ is the rod tilt angle. t is the half-length of the rods. (c) Calculated
vertical π-wall profiles for various Frank-to-depletion ratios k from left to right and preferred twist wavenumbers q from top to
bottom. In all cases, h (blue) is almost indistinguishable from t cos θ (cos θ in red) away from x = 0. Near x = 0, h approaches
a finite mid-wall value while cos θ approaches 0. Insets highlight the profile near x = 0. Experimental conditions listed in
Table I are closest to k = 0.85 and q = 2.2 µm−1.
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FIG. 8. π-wall retardance. (a) 2D LC-PolScope birefrin-
gence map of two circular membranes joined through a π-
wall with retardance represented as pixel brightness. The
dotted green line approximately corresponds to the range of
x’s plotted in (b). Scale bar, 4 µm. (b) Retardance values
D. The points indicate experimental data averaged along the
π-wall at temperature T = 22 ◦C and depletant concentration
n = 45mgmL−1. The lines indicate theoretical results cal-
culated with these parameter values and those described in
Table I.

IV. THEORETICAL DEVELOPMENT

A. Membrane parametrization and free energy

We treat the membrane as a continuous medium com-
posed of rods at constant density, and we fix the num-
ber of rods in the membrane by fixing the membrane
volume. The coarse-grained rod twist angle θ(x), rod
height fluctuation amplitude b(x), and membrane half-
thickness are related by h(x) = t cos θ(x) + b(x), where t
is the half-length of the virus. We will first develop the
model assuming a circularly-symmetric membrane of ra-
dius R and using cylindrical coordinates in which h(r),
b(r), and θ(r) only depend on the radial coordinate.
We model the rods as liquid crystals whose orientations

are described by a Frank elastic free energy [33]. In a
circular geometry, the rods point in the z-direction but
can tilt with angle θ in the azimuthal direction [Figs. 3(a)
and 3(b)]. Using the one-constant approximation, the
free energy is:

FFrank = K

∫

d2xh
[

(∇ · n)2 + (∇× n)2

− 2qn ·∇× n
]

(1)

= 2πK

∫ R

0

dr h

[

r(∂rθ)
2 + sin 2θ ∂rθ +

sin2 θ

r

− 2qr∂rθ − q sin 2θ

]

. (2)

K is the 3D Frank elastic constant and q is the preferred
twist wavenumber associated with intrinsic chirality of
the constituent rods. n(r) = sin θ(r)φ̂ + cos θ(r)ẑ is the
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nematic director. The q term breaks chiral symmetry,
such that for q > 0, twisted membranes with ∂rθ > 0
have lower energy than those with ∂rθ < 0. When q =
0, the total free energy is invariant under the chirality
inversion θ → −θ.
The depletant polymers act to minimize the volume

excluded to them by the membrane. For polymers small
compared to the dimensions of the membrane, this ex-
cluded volume is approximately V0 + aA, where V0 is
the volume of the membrane, A is the surface area of
the membrane, and a is the characteristic depletant ra-
dius [45] [see Fig. 2(a)]. V0 is constant, so depletion serves
as an effective surface tension. Consequently, the free en-
ergy is given by:

Fdep = 2nakBT

[
∫

d2x
√

1 + (∇h)2 +

∫

dl h

]

(3)

= 4πnakBT

[

∫ R

0

dr r
√

1 + (∂rh)2 +Rh(R)

]

,(4)

where n is the depletant concentration, T is the temper-
ature, and kB is the Boltzmann constant.

∫

dl indicates
an integral over the membrane edge boundary.
Finally, we allow rods to fluctuate perpendicularly to

the membrane plane. In general, these fluctuations have
complicated, non-linear effects on the free energy, but
for simplicity, we only consider fluctuations of single rods
and ignore their interactions and correlations [10]. When
a single rod at small tilt angle θ protrudes by a small per-
pendicular distance z above a flat coarse-grained mem-
brane surface, it introduces an additional spherical cap
of volume πaz2 that is excluded to the depleting poly-
mers [see Fig. 2(c)]. Note that the protrusion also re-
duces the excluded volume at the opposite surface of the
membrane, but in the mean-field limit of flat membrane
surfaces, this reduction is of order z3 or higher and can be
ignored. Meanwhile, protrusions are entropically favored
by the rods. For a distribution of vertical rod displace-
ments p(z), the fluctuation free energy for a single rod is
a sum of depletant and rod entropy contributions:

Fsingle = πnakBT

∫

dz p(z)z2 + kBT

∫

dz p(z) log p(z).

Minimizing this free energy yields p0(z) =
(2πb20)

−1/2 exp(−z2/2b20), where b0 = (2πna)−1/2.
If all rods were to fluctuate with the preferred am-

plitude b0, then the membrane half-thickness h and rod
angle θ would be exactly related as h = t cos θ+b0. How-
ever, in certain structures such as the mid-planes of π-
walls, the Frank and depletion free energies favor pro-
files h(x) and θ(x) that significantly deviate from this
relationship. To properly describe these structures and
account for the energetic cost of h 6= t cos θ + b0, we
calculate the free energy of Gaussian rod fluctuations
of amplitude b 6= b0. Using the distribution p(z) =
(2πb2)−1/2 exp(−z2/2b2), the single-rod free energy be-
comes Fsingle = 2πnakBT (b − b0)

2 to leading order in
b − b0. To coarse-grain this expression, we multiply by

the rod density and integrate over the membrane area.
For simplicity, we assume the rods are packed hexago-
nally and maintain a constant perpendicular distance ξ
between nearest-neighbors. In the small θ limit, the area
occupied by each rod is

√
3ξ2/ cos θ. Our final expression

for the rod fluctuation free energy is

Frod =
8π2nakBT√

3ξ2

∫ R

0

dr r cos θ (h− t cos θ − b0)
2
, (5)

where we have written b in terms of h and θ. This term
allows h to deviate from t cos θ+b0 with an energy penalty
corresponding to the magnitude of the deviation. Heuris-
tically, the energy penalty is proportional to cos θ because
at higher θ, the rods are spaced farther apart in the plane
of the membrane, so height fluctuations of individual rods
induce less roughness at the membrane surface [Fig. 2(c)].

We minimize the total free energy with volume-
conserving Lagrange multiplier λ

F = Fdep + FFrank + Frod + λ

[

V0 − 4π

∫ R

0

dr rh

]

(6)

over h(r) and θ(r) to obtain the edge profile. The bound-
ary conditions are h(0) = t+ b0 and θ(0) = 0; h(R) and
θ(R) are free.

Equation 6 simplifies for large membranes when R is
much greater than the penetration depth of edge twist
ltwist; the edge becomes essentially straight. We can then
study the profile of a twisted membrane formed from
an untwisted rectangular membrane of length Ly → ∞
along the y-direction and length 2Lx ≪ Ly along the x-
direction. We allow the membrane profile to vary along
the x-direction and impose reflection symmetry about
the midline x = Lx where the rods are perpendicular
to the membrane (analogous to r = 0 for the original
circular geometry). We are interested in the edge pro-
file at x = 0. In this setup, each free energy integral
becomes its Cartesian version, with FFrank losing bend
distortion terms that arise from a circular geometry. In-
stead of a Lagrange multiplier term, however, volume
conservation can be directly enforced in the following
way. The volume of the half of the untwisted membrane
between x = 0 and x = Lx is V0 = 2(t + b0)LxLy. The
change in volume brought about by a varying h(x) is

∆V = 2Ly

∫ Lx

0
dx [h(x) − (t + b0)]. To compensate for

the lost volume, we introduce extra volume at the mem-
brane midline where h(x) = t + b0 by adding a width
∆Lx of untwisted rods; volume conservation requires

∆Lx = −∆V/[2(t + b0)Ly] =
∫ Lx

0
dx [1 − h(x)/(t + b0)].

This extra width increases the half-membrane’s surface
area by ∆A = 2Ly∆Lx and, since depletion free energy
is proportional to surface area, contributes the additional
term nakBT∆A to Fdep. Ignoring a constant term pro-
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portional to LxLy, the total free energy becomes

F

2nakBTLy
=

∫ Lx

0

dx

(

√

1 + (∂xh)2 −
h

t+ b0

)

+ h(0)

+
kt

2

∫ Lx

0

dxh
[

(∂xθ)
2 + 2q∂xθ

]

+
2π√
3ξ2

∫ Lx

0

dx cos θ(h− t cos θ − b0)
2,(7)

where again, k = K/natkBT . Strictly speaking, the in-
tegrals in the last two terms should extend from 0 to
Lx+∆Lx, but the contributions to the integrals from Lx

to Lx + ∆Lx are zero because ∂xθ = 0, θ = 0, and h =
t+b0 in the interior of the membrane. Comparing Eqs. 6
and 7, the additional surface area term is analogous to
a Lagrange multiplier with value nakBT/(t+ b0), the ef-
fective osmotic pressure exerted by the depletants on the
membrane. Also, since this Cartesian parametrization
implicitly inverts the membrane orientation compared to
the cylindrical parametrization (instead of decreasing r,
increasing x moves into the interior of membrane), the
q-term in Eq. 7 has the opposite sign of the q-terms in
Eq. 2.
For membrane edges calculated in Fig. 3(c), h ≈ t cos θ,

which means rod height fluctuations b are strongly sup-
pressed. This motivates simplification of the free energy
by taking the infinite coupling limit in which Frod en-
forces h = t cos θ + b0 and therefore disappears from
the free energy. Using values in Table I, we calculate
b0 ≈ 0.03t and make the further approximation that
these protrusion fluctuations contribute only a small frac-
tion to the membrane thickness and can thus be ne-
glected: b0 = 0. Numerical calculations of all edge
properties fixing h = t cos θ are indistinguishable from
those using the full theory. Thus, the precise form of
Frod—whose derivation required many assumptions such
as θ ≪ 1, which is clearly violated by membranes calcu-
lated in Fig. 3(c)—does not matter for membrane edges
as long as it strongly couples h to t cos θ. The strong
coupling of h to t cos θ permits derivation of some analyt-
ical results, including an investigation into spontaneous
chiral symmetry breaking for q = 0, which are given in
Appendix A.
For π-walls, we use Eq. 7 without the boundary de-

pletion term proportional to h(0) because x = 0 is the
middle of the wall and no longer an edge boundary. The
rods there must lie in the membrane plane, so we gain
the extra boundary condition θ(0) = π/2. Now θ is fixed
at both boundaries, so if h were enforced to be a func-
tion of θ like h = t cos θ, the q-term could be integrated
to a constant and the profiles would not depend on q.
However, unlike their counterparts at edges, h and θ are
independent near x = 0, where calculations show that
the vertical mid-wall profile satisfies h ≫ t cos θ; thus,
the membrane structures depend slightly on q [Fig. 7(c)].
This independence arises due to the angle-dependent cou-
pling strength of Frod, which has a factor of cos θ in the
integrand (Eq. 5). Away from the middle of the wall,

cos θ ≈ 1 and deviations from h = t cos θ + b0 are costly
for Frod. As cos θ approaches 0, these deviations cost less
energy in Frod, so other terms such as Fdep (Eq. 4 without
the boundary term) gain influence on the profile config-
uration. The competition between Frod, which prefers h
to decrease with cos θ towards the middle of the wall, and
Fdep, which prefers a constant h, sets the mid-wall thick-
ness. Since Frod was derived in the small-angle limit,
it is not strictly valid at the middle of the π-wall when
θ ≈ 1 and h is decoupled from t cos θ, so even though
our model quantitatively predicts the experimental re-
tardance profile in Fig. 8(b), the results in Fig. 7(c) may
not be quantitatively accurate for all parameters k and
q.

It is worthwhile at this point to compare our theory
with an alternative one, which we will refer to as the KM
theory after its developers Kaplan and Meyer [11, 46],
that also produces results in very good agreement with
experimental observations. First, it should be empha-
sized that the philosophical approaches of the two the-
ories are different. Ours can be viewed as a minimalist
theory based directly on entropic interactions induced by
dextran depletants and to a lesser extent by the viruses
themselves. The KM theory, in the grand tradition of
liquid-crystal physics, is phenomenological at its core. It
introduces an order parameter Ψ, inspired by that de-
scribing order in a 3D smectic, that describes the transi-
tion from rods oriented predominantly perpendicular to
the membrane plane (“smectic” phase with Ψ 6= 0) to
rods oriented predominantly parallel to the plane of the
membrane (“cholesteric” phase with Ψ = 0). Though
the introduction of Ψ provides a useful and predictive
theory, it is not clear how it could be measured. The
KM theory also introduces terms in the free energy that
are not directly present in our theory: one measuring
the energy cost of surface curvature and two providing
a favored relative orientation of the surface normal N̂
and director n at the top and bottom membrane sur-
faces. However, the term proportional to −h/(t + b0)
in the Eq. 7 version of our theory provides a preference
of θ = 0, i.e., the director prefers to be parallel to the
layer normal. More generally, the Lagrange multiplier
term in Eq. 6 provides this preference. Naturally, the
KM theory has more free parameters than the five of
our theory: depletant size, Frank elastic constant, twist
wavenumber amplitude and transition temperature, and
virus birefringence (Table I). In spite of these differences
between the two theories, they share some common fea-
tures: They both employ the Frank free energy with a
term favoring twist to describe the energetics of director
deformations, and they both introduce a term favoring
h = t cos θ (when b0 can be ignored in our theory) with
a coefficient (cos θ in our case and |Ψ|2 in the KM case)
that vanishes at a π-wall when θ = π/2, importantly al-
lowing h to differ from t cos θ with no direct energy cost
at that point.

KM pursues a different approach to boundary condi-
tions than we do. They impose the condition θ(R) = π/2
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at the free edge of a circular membrane, whereas we al-
low the Euler-Lagrange equations of our theory to set the
conditions on θ and h at the edge. As a result, we are able
to capture the edge profiles of small membranes whose
rods are clearly not parallel to the membrane. Presum-
ably, KM theory is amenable to the same approach and
could thus calculate edge profiles of small membranes.
KM also view the membrane thickness at the π-wall as a
boundary condition determined by experiment, whereas
it is a prediction of our model once physical parameters
have been set.

The KM fits to edge and π-wall retardance data re-
ported in Refs. [11, 46] (e.g., Fig. 6 of Ref. [46]) are seem-
ingly better than the fits in Figs. 4(b) and 8(b) from our
theory. It should be noted, however, that we use one
set of parameters to fit data from all membrane radii,
whereas the KM fits only consider data from a single ra-
dius. Our fit to individual profiles are as good as those
of the KM theory.

B. Edge ripple fluctuations

Our free energy Eq. 7 can also be used to investigate
edge ripple fluctuations of large membranes. First, we
minimize the free energy over h(x) and θ(x) to obtain
the profile for the unperturbed membrane edge. We then
introduce a small edge ripple u(y) with corresponding
tangent angle α(y) ≡ ∂yu(y). We assume that the edge
profile completely propagates into the membrane inte-
rior, so h(x, y) = h(x−u(y)), and that the rod tilt follows
the tangent of u(y), so the nematic director changes from
n(x) = sin θ(x)ŷ+cos θ(x)ẑ to n(x, y) = sinα(y) sin θ(x−
u(y))x̂+ cosα(y) sin θ(x− u(y))ŷ+ cos θ(x− u(y))ẑ [for
a schematic of the ansatz, see Fig. 5(a)]. We have to red-
erive the depletion and Frank terms in Eq. 7 to allow for
gradient terms in the y-direction (expression not shown
here). We expand the ripple tangent angle in Fourier
components αp:

α(y) =
∑

p

√

2

Ly
αp cos py. (8)

p is the ripple wavenumber [12]. With the help of αp =
pup, where up’s are Fourier components for u(y), we can
write the free energy in terms of the small αp’s. The free
energy relative to the state without ripples becomes

∆F

Ly
=

1

2

∑

p

(

γ[h, θ] + κ[h, θ]p2
)

α2
p +O({αp}4), (9)

which describes a 1D interface with effective line tension
γ and line bending modulus κ. They are given by

γ[h, θ] = 2nakBT

[

∫ Lx

0

dx
(∂xh)

2

√

1 + (∂xh)2
+ h(0)

]

+ 2K

∫ Lx

0

dxh
[

(∂xθ)
2 + q∂xθ

]

, (10)

κ[h, θ] = 2K

∫ Lx

0

dxh sin2 θ. (11)

At thermal equilibrium, the ripple tangent angle compo-
nents take the equipartition values

〈

α2
p

〉

=
kBT

γ + κp2
. (12)

Note that the term proportional to the chiral twist
wavenumber q in Eq. 10 is negative for ∂xθ < 0. The
variation of its magnitude with temperature [q(T ) is
temperature-dependent] is the theoretical basis for the
chiral control of line tension presented in Fig. 5 and
Ref. [12]. All the other terms are positive-definite, so
this term must be responsible for the line tension becom-
ing negative at low temperatures, leading to the starfish
instability. It is analogous to the chiral line tension term
in the theory of Langmuir-Blodgett films, which if suffi-
ciently negative, can drive an instability transition from
a circular film to one with similarly extended arms [31].
Next we investigate the dynamics of ripple fluctua-

tions. We view the membrane edge as an effective 1D
viscous fluid described by the ripple profile u(y, t), which
can vary with time. We estimate the Reynolds number of
this motion to be very small ∼10−6–10−4, so the ripple
velocity v = ∂tu obeys overdamped 1D hydrodynamics:

−η1D∂
2
yv = fext = fdrag[v]−

δHT

δu
. (13)

η1D is the 1D edge viscosity and fdrag[v] is the viscous
drag force per unit length arising from membrane edge
motion relative to the bulk solvent [47]. Different mod-
els of membrane-fluid interactions lead to different ex-
pressions for fdrag; we see in Appendix B that it can
be largely ignored for ripple wavenumbers probed by our
experiments. In other words, dissipation of ripple excita-
tions occurs mainly through the membrane rather than
surrounding solvent since the membrane has much higher
viscosity. Using HT = ∆F/Ly − ∑

p fpup for the total

Hamiltonian density, where ∆F/Ly is given by Eq. 9
and the fp’s are an external field formally included to
calculate the response function, we obtain:

η1Dp
2∂tup = −

(

γp2 + κp4
)

up + fp.

This leads to the response function

χ−1
upup

(ω) =
∂fp(ω)

∂up(ω)
= −iωη1Dp

2 + γp2 + κp4.
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The fluctuation-dissipation theorem gives the autocorre-
lation function:

Supup
(ω) =

2kBT

ω
Imχupup

=
2kBT

η1Dp2
1

ω2 + ωp
2
,

where

ωp ≡ γ + κp2

η1D
(14)

is the autocorrelation decay rate. Indeed, temporal ripple
angle autocorrelations are given by

〈αp(t)αp(0)〉 =
∫

dω

2π
eiωtp2Supup

(ω) =
〈

α2
p

〉

e−ωpt,

(15)
with 〈α2

p〉 in Eq. 12.

V. EXPERIMENTAL METHODS

As model rod-like colloids, we use two strains of the fil-
amentous fd bacteriophage: wildtype (wt) and the Y21M
mutant [24]. As compared to fd -wt, fd -Y21M has a sin-
gle point mutation in which the 21st amino acid of the
major coat protein is changed from tyrosine (Y) to me-
thionine (M). Both viruses have the same contour length,
880 nm, and diameter, 6.6 nm; their persistence lengths
are 2.8 µm for fd -wt and 9.9 µm for fd -Y21M. They form
cholesteric phases with opposite handedness: fd -wt forms
left-handed cholesterics whereas fd -Y21M forms right-
handed cholesterics. Finally, the chirality of fd -wt is
temperature-sensitive whereas the chirality of fd -Y21M
is temperature-independent [12].
Both viruses are synthesized using standard biological

protocols [48]. After synthesis, we observe a small por-
tion of viruses that are very long—two and three times
the nominal length of the virus. We fractionated the
viruses through the isotropic-nematic phase transition;
only the isotropic fraction, enriched in nominal-length
viruses, is kept for this work [12]. These monodisperse
viruses are then dispersed with concentration cvirus =
1mgmL−1 in 20mM Tris buffer at pH 8.0 and 100mM
NaCl. Dextran (500 kDa, Sigma-Aldrich) is used as a
depletant agent.
Samples are prepared between glass cover slides and

coverslips in homemade chambers. A layer of unstretched
Parafilm is used as a spacer. Slides are coated with poly-
acrylamide brushes to prevent nonspecific binding of the
viruses with the glass slides and to suppress the deple-
tion interaction between viruses and the glass walls [28].
Samples are made airtight using UV-treated glue (Nor-
land Optical). Microscopy observations were performed
with the inverted microscope Nikon Eclipse Ti equipped
with an oil immersion objective (1.3 NA, 100x Plan-
Fluor). Data is acquired using a cooled CCD camera
(Andor Clara) for low acquisition rates (below 50Hz) and
Phantom v9.1 (Vision Research) for fast acquisition rates
(above 1000Hz).

Sample temperature is tuned between 4 and 60 ◦C
with a homemade Peltier module equipped with a
proportional-integral-derivative temperature controller
(ILX Lightwave LPT 5910). The temperature-controlling
side of the Peltier device is attached to a copper ring
fitted around the microscope objective, which heats or
cools the sample through the immersion oil. A thermis-
tor, placed in the copper ring adjacent to the sample, en-
abled the proportional-integral-derivative feedback nec-
essary to adjust the temperature. Excess heat is removed
using a constant flow of room-temperature water. Such
a device allows us to trigger the starfish instability as
shown in Fig. 1(e).

The local tilt of the rods with respect to the optical axis
of the microscope is determined using an LC-PolScope
(Cambridge Research and Instrumentation) [49]. LC-
PolScope produces images in which the intensity of each
pixel is the local retardance D of the membrane. Such
images can be quantitatively related to the tilting of
the rods away from the membrane normal (the z-axis
in Fig. 1). Rods in the bulk of a membrane are aligned
along the z-axis, and LC-PolScope images appear black
in that region. By contrast, for sufficiently large mem-
branes, the bright birefringent ring along the membranes
periphery indicates local rod tilting as shown in Fig. 4(a).
In Fig. 8(a), the LC-PolScope image of a π-wall indicates
that the structure contains twist.

The time-independent analysis of thermal edge ripple
fluctuations with DIC optical microscopy yields the line
tension and the bending rigidity of the edge [12, 50]. The
acquisition is performed at 1Hz so that the edge fluctu-
ations are decorrelated. Intensity profile cuts along the
perpendicular to the edge are fitted by a Gaussian and
yield the conformation of the edge with subpixel accu-
racy. Each conformation is described in terms of the
Fourier amplitudes αp (Eq. 8). Averaging over a suffi-
cient number of uncorrelated images gives a fluctuation
spectrum as shown in Fig. 5(b), where the mean-square
amplitude

〈

α2
p

〉

is plotted as a function of the wavenum-
ber p. The dynamical analysis of thermal edge ripple
fluctuations with DIC optical microscopy yields the auto-
correlation decay timescale. The acquisition is performed
at 3000Hz. The autocorrelation decay timescale 1/ωp at
a given wavenumber p is obtained by fitting the temporal
autocorrelation function of the Fourier amplitudes by a
simple exponential (Eq. 15). Measurements over a suffi-
ciently long time give 1/ωp as a function of p as shown
in Fig. 5(c).

Colloidal membranes can be manipulated using optical
tweezers. The laser tweezers setup is built around an in-
verted Nikon TE-2000 microscope. A 1064 nm laser beam
(Compass 1064, Coherent) is projected onto the back fo-
cal plane of an oil-immersion objective (Plan Fluor 100x,
NA = 1.3) and subsequently focused onto the imaging
plane. Using custom LabVIEW software, multiple trap
locations were specified and used to stretch and manip-
ulate membranes. Above 2W of laser power, one can rip
off smaller membranes from a larger membrane to pro-

Page 13 of 17 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



14

duce membranes between 0.5 to 5 µm in diameter. This
technique is used to study small membranes as shown in
Fig. 1(c).

VI. DISCUSSION

The microscopic building components required for as-
sembly of colloidal membranes are monodisperse rod-
like viruses, non-adsorbing dextran polymer, and poly-
electrolytes to screen electrostatic repulsion. Despite
their relative simplicity, these building blocks can as-
semble into a myriad of complex structures. Our theory
demonstrates how their rich properties can emerge from
hard rods and depletants through three simple entropic
considerations: depletant excluded volume, rod fluctu-
ations perpendicular to the membrane, and rod twist-
ing as described by the Frank free energy. For example,
the curved membrane edge with chiral rods arises from
the competition between depletion, which prefers a cir-
cular vertical edge profile, and Frank elasticity, which
prefers an exponential edge twisting profile (Fig. 3 and
Appendix A). If depletion is strong enough compared to
the Frank contribution, achiral virus mixtures will also
form twisted membranes through spontaneous symmetry
breaking. Furthermore, our theory predicts that smaller
membranes, with less distance over which rods can twist,
have more squared-off edge profiles; this prediction was
verified by additional experimental data (Fig. 4). De-
creasing the temperature increases the preferred twist
wavenumber and consequently decreases the energy of
the membrane edge, where the twist is greatest. Thus,
ripple fluctuations, which lengthen the membrane edge,
increase in amplitude (Fig. 5). Eventually, at low enough
temperatures, edges are energetically preferred and rip-
ples are stabilized in a twisted starfish configuration
(Fig. 6). Besides explaining the properties of the mem-
brane edge, our theoretical model can also explain the
structure of π-walls. Along membrane edges, a high
depletion concentration strongly suppresses rod fluctu-
ations perpendicular to the membrane (Fig. 3). Along
the middle of π-walls, however, large rod fluctuations,
which can be interpreted experimentally as rod stacking,
decreases the depletants’ excluded volume and are thus
favored (Fig. 7). This stack of rods with finite thick-
ness physically connects the two partially coalesced mem-
branes and, through depletion, keeps them together.
All variables in our theory have direct physical mean-

ing. We directly manipulate two of these parameters—
temperature and depletant concentration—and measure
several independent physical properties—membrane re-
tardance (Figs. 4 and 8) and edge fluctuation spectra
(Fig. 5). Theoretical calculations of these properties
demonstrate respectable agreement with experimental
measurements while using physically reasonable param-
eter values (Table I). We use values for the hard-sphere
depletant size a and fd virus birefringence ∆n that are
within ∼25% of the reported values. We require the

preferred twist wavenumber q(T ) to have its measured
square-root behavior. We can compare the single Frank
elastic constant K to experimental measurements of the
twist constant K2 because membrane director distortions
are dominated by the twist mode. K and q(T ) are ∼5
times larger than the values measured from viruses dis-
persed in a bulk cholesteric phase without any depletant.
However, they depend strongly upon the virus concen-
tration [26]; membranes condensed by depletants have a
higher virus concentration than cholesteric suspensions
do and thus should have higher K and q.

Our theory uses a number of assumptions and sim-
plifications. We study the membrane in the continuum
limit with only two coarse-grained degrees of freedom.
We ignore rod-rod interactions other than those implicit
in the phenomenological Frank free energy, whose moduli
are assumed to be temperature-independent and equal.
Rod fluctuations perpendicular to the membrane do not
directly increase the membrane’s volume in the simple
manner assumed, and while these fluctuations are most
important at large rod angles θ ≈ π/2, their energetic
cost (Eq. 5) was calculated in the small rod angle, small
fluctuation amplitude limit. In addition, the retardance
formula was derived for a material of constant thickness
and optical axis, which does not apply to our membranes.
We assume a simple ripple ansatz to calculate edge fluc-
tuation spectra, but the actual ripples may have a differ-
ent configuration with lower energy. Yet, despite all of
these approximations, our model can match experimen-
tal results with quantitative accuracy, indicating that it
still has value in describing and elucidating properties of
colloidal membranes.

The role of depletion and other hard-core interactions
in colloidal systems has been vigorously investigated from
many perspectives. Direct excluded volume minimiza-
tion was used to study depletion-driven helix formation
in elastic tubes [51]. Effective entropic potentials be-
tween two anisotropic colloidal particles have been cal-
culated in depth [52] and have been used to explain
various self-assembly processes [35, 53–55]. Free-volume
theory and theories based on pair distribution functions
have probed the depletion-induced phase separation of
colloidal species and have provided relatively sophisti-
cated expressions for effective interfacial tensions [56–59].
However, to our knowledge, the depletion interaction has
never appeared before as an effective surface tension of
magnitude nakBT explicitly. Our system admits this ex-
pression because there is near-complete phase separation
between the colloids and the depletants and because de-
pletion is strong enough to fix the membrane volume in
the continuum limit. Our nakBT surface tension can be
related to scaling arguments near the coexistence line in
Flory-Huggins-de Gennes theory, which proposes an in-
terfacial tension proportional to kBT/l

2
inter, where linter

is the thickness of the interface between colloid-rich and
colloid-poor phases [56, 60, 61]. Taking this thickness
approximately to be the equilibrium rod height fluctua-
tion amplitude b0 calculated in our theory, our surface
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tension expression agrees with that obtained by scaling:
kBT/l

2
inter ∼ kBT/b

2
0 ∼ nakBT . Moreover, the ability

of our model to quantitatively match and predict exper-
imental results supports the validity of our expression,
which may guide the design of other colloidal systems
whose surface tension can be easily tuned by changing
depletant concentration, depletant size, or temperature.
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Appendix A: Spontaneous chiral symmetry breaking

at membrane edges

As discussed in Section IVA and demonstrated in
Fig. 3(c), rod height fluctuations are strongly suppressed
in membrane edge configurations. We can simplify the
free energy (Eq. 7) by enforcing h = t cos θ + b0 and
approximating b0 = 0. The free energy can then be ex-
pressed in terms of θ only. In a dimensionless form with
x̃ ≡ x/t, L̃x ≡ Lx/t, q̃ ≡ qt, and F̃ ≡ F/2natkBTLy,

F̃ =

∫ L̃x

0

dx̃

(

√

1 + sin2 θ (∂x̃θ)2 − cos θ

)

+ cos θ(0)

+
k

2

∫ L̃x

0

dx̃ cos θ (∂x̃θ)
2 − kq̃ sin θ(0). (A1)

To investigate the onset of twist, we expand this free
energy for small θ. To third order, the first integral of
the Euler-Lagrange equation gives

√
k∂x̃θ = −θ +

12− 5k

24k
θ3.

This equation at x̃ = 0 can be combined with the varia-
tional boundary condition

k∂x̃θ(0) = −kq̃ − θ(0) + q̃θ2(0) +
3− k

3k
θ3(0)

to obtain θ(0). We first consider q̃ = 0, so F̃ has chiral
symmetry. We find a twist solution when k < kc = 1,
where

θ(0) ≈ ±
√

4

3
(1− k) (A2)

close to the critical point. When k > 1, only the trivial
θ = 0 solution exists. If we allow a small nonzero q̃ to

break the chiral symmetry, a twist solution appears above
kc:

θ(0) ≈ kq̃√
k − 1

. (A3)

We can integrate the Euler-Lagrange equation to leading
order and obtain

θ(x̃) ≈ θ(0) exp(−x̃/
√
k). (A4)

√
kt acts as a twist penetration depth ltwist in analogy to

smectic phases. Free energy calculations confirm that the
twist solutions are favored whenever they exist. Thus,
when q = 0, the phase transition at the kc = 1 criti-
cal point is second-order and spontaneously breaks chiral
symmetry. Above kc, there is a critical second-order line
at q = 0.
We also investigate the edge profile when k ≪ 1. It

is more convenient to write the free energy (Eq. A1) in

terms of h̃ ≡ h/t = cos θ:

F̃ =

∫ L̃x

0

dx̃

(

√

1 + (∂x̃h̃)2 − h̃

)

+ h̃(0)

+
k

2

∫ L̃x

0

dx̃
h̃(∂x̃h̃)

2

1− h̃2
− kq̃

√

1− h̃2(0). (A5)

We chose the sign of the square-root in the last term
assuming θ > 0, so this expression applies for q > 0. If
q < 0, then θ < 0 configurations have lower energy and
we should choose the opposite sign. The first integral of
the Euler-Lagrange equation gives

0 =
1

√

1 + (∂x̃h̃)2
− h̃− k

2

h̃(∂x̃h̃)
2

1− h̃2
.

This equation at x̃ = 0 can be combined the variational
boundary condition

0 =
∂x̃h̃(0)

√

1 + (∂x̃h̃(0))2
− 1

+ k
h̃(0)∂x̃h̃(0)

1− h̃2(0)
− kq̃

h̃(0)
√

1− h̃2(0)

to obtain a twist solution as a power series in k:

h̃(0) ≈
√

27

32
k − 9

8
kq̃. (A6)

Solving the Euler-Lagrange equation with k = 0 yields a
circular profile

h̃(x̃) ≈







√

2
(

x̃+ h̃2(0)
2

)

−
(

x̃+ h̃2(0)
2

)2

x̃ ≤ 1− h̃2(0)
2

1 x̃ > 1− h̃2(0)
2 .

(A7)

However, since cos θ(0) = h̃(0) ≪ 1, the coupling in Frod

may be weak. Calculations using the full free energy
should be performed to check if h = t cos θ is a valid
assumption.

Page 15 of 17 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



16

Appendix B: Estimation of solvent drag during

ripple fluctuations

Here we estimate the dissipative forces exerted by the
solvent on the membrane as it undergoes ripple fluctua-
tions. We approximate the membrane as an infinite 2D
fluid and apply the analysis of [62], who consider the
drag force exerted by a subfluid of depth d below the
fluid plane. For a velocity field v = vx̂ with wavevector
p = pŷ, the drag per unit area is gdrag = −ηsp coth (pd) v,
where ηs is the subfluid viscosity. We estimate a solvent
depth d ∼ 0.3 µm under the membrane where the poly-
mer brush lies. The fluid above the membrane plane
exerts much less drag because coth pd is a monotonically
decreasing function of d, so we ignore it. Assuming that
an effective width lx ∼ ltwist ∼ t of the membrane edge
moves during the ripple fluctuations, the drag force per

unit length is approximately fdrag =
∫

dx gdrag ∼ gdraglx.
This force modifies the fluctuation autocorrelation decay
constant (Eq. 14) to

ωp =
γ + κp2

ηslx coth(pd)/p+ η1D
.

With ηs ≈ 3mPa s from [44] and η1D ≈ 300mPa s µm2

from this work, this change would increase the calcu-
lated values of 1/ωp in Fig. 5(c) at low wavenumbers
p . 0.3 µm−1, but it would not significantly modify our
fit value for η1D. For example, at p = 0.3 µm−1, 1/ωp

would be increased ∼20%. Moreover, since the measured
values of 1/ωp do not show any increase at small p, this
analysis may overestimate the drag force, a claim whose
verification would require a much more sophisticated the-
ory that better captures the ripple geometry and motion.
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[39] D. B. DuPré, J. Chem. Phys. 63, 143 (1975).
[40] F. Leenhouts, F. Van der Woude, and A. J. Dekker,

Phys. Lett. 58, 242 (1976).
[41] P. P. Karat and N. V. Madhusudana, Mol. Cryst. Liq.

Cryst. 40, 239 (1977).

Page 16 of 17Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



17

[42] S. Zhou, Y. A. Nastishin, M. M. Omelchenko, L. Tortora,
V. G. Nazarenko, O. P. Boiko, T. Ostapenko, T. Hu,
C. C. Almasan, S. N. Sprunt, J. T. Gleeson, and O. D.
Lavrentovich, Phys. Rev. Lett. 109, 037801 (2012).

[43] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cam-
bridge University Press, Cambridge, 2005) p. 829.

[44] R. Cush, P. S. Russo, Z. Kucukyavuz, Z. Bu, D. Neau,
D. Shih, S. Kucukyavuz, and H. Ricks, Macromolecules
30, 4920 (1997).

[45] C. B. Allendoerfer, Bull. Amer. Math. Soc. 54, 128
(1948).

[46] C. N. Kaplan and R. B. Meyer, Soft Matter 10, 4700
(2014).

[47] P. M. Chaikin and T. C. Lubensky, Principles of Con-
densed Matter Physics (Cambridge University Press,
Cambridge, 1995) pp. 440–449.

[48] T. Maniatis, E. F. Fritsch, and J. Sambrook, Molecu-
lar Cloning: A Laboratory Manual (Cold Spring Harbor
Laboratory, New York, 1982).

[49] R. Oldenbourg and G. Mei, J. Microsc. 180, 140 (2011).
[50] S. Safran, Statistical Thermodynamics of Surfaces, Inter-

faces, and Membranes (Addison-Wesley, Reading, 1994)
pp. 83–84, 201–202.

[51] Y. Snir and R. D. Kamien, Science 307, 1067 (2005).
[52] G. van Anders, D. Klotsa, N. K. Ahmed, M. Engel, and

S. C. Glotzer, Proc. Natl. Acad. Sci. U. S. A. 111, E4812

(2014).
[53] S. Sacanna and D. J. Pine, Curr. Opin. Colloid Interface

Sci. 16, 96 (2011).
[54] S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-

Meléndez, S.-H. Kim, D. J. Pine, and G.-R. Yi, Nat.
Commun. 4, 1688 (2013).

[55] D. J. Ashton, R. L. Jack, and N. B. Wilding, Soft Matter
9, 9661 (2013).

[56] H. N. W. Lekkerkerker and R. Tuinier, Colloids and the
Depletion Interaction, Lecture Notes in Physics, Vol. 833
(Springer Netherlands, Dordrecht, 2011).

[57] S. M. Oversteegen and R. Roth, J. Chem. Phys. 122,
214502 (2005).

[58] D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerk-
erker, D. Bonn, and R. van Roij, J. Chem. Phys. 120,
1973 (2004).

[59] A. Vrij, Phys. A 235, 120 (1997).
[60] P.-G. de Gennes, Scaling Concepts in Polymer Physics

(Cornell, Ithica, 1979) p. 123.
[61] E. H. A. de Hoog and H. N. W. Lekkerkerker, J. Phys.

Chem. B 103, 5274 (1999).
[62] D. K. Lubensky and R. E. Goldstein, Phys. Fluids 8, 843

(1996).

Page 17 of 17 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t


