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Fig. 1 Overview. In schematics, lighter shading labels filament plus ends and color indicates filament plus-end orientation (red up, blue down. (a)

Schematic of motor-driven sliding of polar anti-aligned filaments. Motor heads (orange) move toward filament plus ends, producing forces that slide

filaments toward their minus ends. The filament pair initially contracts (left), and then extends (right). (b) Schematic of motor motion on polar-aligned

filaments. Motors move toward filament plus ends, producing no relative sliding of the pair. (c) Schematic of motor-driven anisotropic extensile stress

in a nematic state. (d) Schematic of motor/crosslink driven anisotropic contractile stress in a nematic state.

teractions between particles play an important role in all liquids,

they have so far been neglected in most models of polar filaments

driven by crosslinking motors, which consider isolated filament

pairs. (We note that the effects of steric interactions on filament

alignment have been considered25,29).

We find that steric interactions play an important role in ac-

tive stress generation. Motors slide anti-aligned filaments apart,

pushing their minus ends into the ends of other nearby filaments.

This increases steric interactions at filament ends relative to fila-

ment sides and leads to extensile stress production. We also find

extensile stress generation for polar-aligned filament pairs due to

motors that are slowed by a retarding force. When a motor walks

on a polar-aligned filament pair, the leading head experiences a

retarding force and slows its movement. Then the lagging motor

is able to catch up, a process which reduces the contractile force

sliding the filaments relative to each other. Reduced pair contrac-

tion leads to net extensile stress production. With this insight,

we can tune our system to change the balance between extensile

and contractile stress. Our results suggest that motor properties

and degree of fluidity are crucial determinants of extensile versus

contractile stress in 2D active liquid crystals.

2 Model

We consider a 2D model of filaments with crosslinkers and motors

that drive active motion28 (fig. 2a). Our goal was to consider a

simple physical model able to generate anisotropic active stress.

We therefore considered fixed-length, rigid filaments crosslinked

and moved by motors, and neglected additional effects such as

filament flexibility, motor pausing, and multi-motor bundles, to

consider the minimum number of parameters and complexity.

Filaments are rigid polar rods of length l, diameter b, and as-

pect ratio r = l/b = 20. Motors bind, unbind, move toward fil-

ament plus ends with a linear force-velocity relation, and ex-

ert forces on filaments. Motors bind to two filaments simulta-

neously with a probability weighted by the Boltzmann factor of

the motor extension. To determine the motor unbinding model,

we note that some kinesin motors unbind more rapidly with

applied force30, but the crosslinking kinesin-5 motor shows no

force-dependent unbinding31, and myosin motors unbind more

slowly with applied force32. Here for simplicity we assume mo-

tor unbinding is force independent, as was also considered pre-

viously26. Forces and torques on filaments occur due to motors,

short-range steric repulsion, anisotropic local fluid drag by the

solvent, and random thermal forces, as discussed below.

Our model differs from previous simulation models of motor-

filament systems33–35 in the treatment of motor/crosslink bind-

ing and unbinding: previous work used simple binding rules that

do not obey the principle of detailed balance. In our model

we accurately calculate the crosslink partition function to ensure

that the equilibrium distribution is recovered for static crosslink-

ers28. This improved treatment of the statistical mechanics of

motor/crosslink binding and unbinding is important to deter-

mine how alterations from equilibrium motor/crosslink distribu-

tions occur due to nonequilibrium activity and the resulting active

forces generated.

Here we briefly outline the simulation model; further model de-

tails are available in previous work28. Filaments undergo Brown-

ian dynamics with center-of-mass equations of motion

xi(t +δ t) = xi(t)+ΓΓΓ−1

i (t) ·Fi(t)δ t +δxi(t), (1)

for filaments indexed by i, where the random displacement

δxi(t) is Gaussian-distributed and anisotropic, with variance

〈δxi(t)δxi(t)〉= 2kBT ΓΓΓ−1

i (t)δ t, kB is Boltzmann’s constant, T is the

absolute temperature, Fi(t) is the systematic (deterministic) force

on filament i and ΓΓΓ−1

i (t) is the inverse friction tensor,

ΓΓΓ−1

i (t) = γ−1

‖ ui(t)ui(t)+ γ−1

⊥ [I−ui(t)ui(t)] . (2)

Here γ‖ and γ⊥ are the parallel and perpendicular drag coeffi-

cients of the rod. The equations of motion for filament reorienta-

tion are

ui(t +δ t) = ui(t)+
1

γr
Ti(t)×ui(t)δ t +δui(t), (3)

where γr is the rotational drag coefficient, Ti(t) is the sys-
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tematic torque on particle i, and the random reorientation

δui(t) is Gaussian-distributed, with variance 〈δui(t)δui(t)〉 =

2kBT/γr [I−ui(t)ui(t)]δ t. To achieve proper dynamics for both

long and short filaments, all drag coefficients γ⊥, γ‖, and γr were

calculated using the method of Löwen et. al36.

The steric interaction potential between rods is the WCA poten-

tial

uwca(rmin) =







4kBT

[

(

b
rmin

)12

−
(

b
rmin

)6
]

+ kBT, rmin < 2
1/6b

0, rmin ≥ 2
1/6b,

(4)

where rmin is the minimum distance between the two finite line

segments of length l that define the filament axes and b is the ef-

fective rod diameter. Note that rmin is an implicit function of the

center of mass positions and orientations of the two interacting

filaments. The typical distance of closest approach between rods

is comparable to b, and the thermodynamic properties closely re-

semble those of hard rods with aspect ratio l/b, a model that is

well-characterized both in 2D37 and 3D38,39. We took extra care

to prevent unstable overlapping configurations, as discussed pre-

viously28.

Motor- and crosslink-mediated interactions and activity occur

in a semi-grand canonical ensemble in which a reservoir of mo-

tors is maintained in diffusive contact at a fixed chemical potential

µm with filaments to/from which they can bind/unbind. Static

crosslinkers are treated similarly. The motors are assumed to be

noninteracting both in solution and in the bound state, so the mo-

tor reservoir can be treated as an ideal solution, and there is no

steric interference among bound motors. We assume that, due to

the relatively low motor and crosslinker concentrations we study

and the availability of multiple surface binding sites on three-

dimensional filaments, motors are generally able to avoid steric

interactions with each other and with crosslinkers. We therefore

neglect steric interations between motors and crosslinkers.

Bound motors have a free energy um(rm), where rm is the exten-

sion of the motor. As in previous work26, we treat motor attach-

ment (detachment) as a one-step process in which motors bind

to (unbind from) two filaments simultaneously, and we assume a

binding rate of

kon(r) = k0e−βum(r) (5)

and an unbinding rate of

koff(r) = k0, (6)

where β = (kBT )−1 is the inverse temperature in energy units.

In contrast to previous work that used simple binding/unbinding

rules such as a constant binding rate whenever a motor/crosslink

head is within a certain distance of a filament33–35, this choice

of binding and unbinding rates ensures that the correct equilib-

rium distribution is recovered for static crosslinkers. Given a dis-

tribution of motors bound to filaments, we compute the forces

and torques exerted on filaments by differentiating um(rm) with

respect to the filament positions and orientations.

The endpoints of bound motors translocate toward the plus

ends of the filaments to which they are attached with a piecewise

linear force-dependent velocity42 v = v0 max(0,min(1,1+F‖/Fs)),

where the parallel force component F‖ = Fi · ûi, v0 is the max-

imum translocation velocity, and Fs is the stall force. To keep

the model as simple as possible while still capturing the major

physics, end pausing of the motors has been excluded. Motors un-

bind immediately upon reaching the plus end of either of the two

filaments to which they are attached. For simulations with both

static crosslinkers and motors, bound crosslinkers remain fixed

at their attachment sites until they detach according to equation

(6). The reversed force-velocity model is identical to the normal

motor model except that the motors move faster under load ac-

cording to the relation v = v0 max(1,1−F‖/Fs). Motor heads with

a force along their direction of motion will move at speed v0.

To compute the motor/crosslinker binding probability for given

filament positions and orientations, we calculate the expected

number of motors for each filament pair in the system in equi-

librium28,

〈

Ni j

〉

= cm

∫ l/2

−l/2

dsi

∫ l/2

−l/2

ds j e−ξmr2
m(si,s j), (7)

where ξm = βKm/2, Km is the motor spring stiffness, and the im-

plicit dependence of rm on filament coordinates has been sup-

pressed. Motors/crosslinkers bind stochastically to the filament

pair with a probability proportional to
〈

Ni j

〉

, ensuring that de-

tailed balance is satisfied and the equilibrium distribution is re-

covered for static crosslinkers and fixed filaments. The average

number of motors/crosslinkers that bind to filaments in a time

interval δ t is

〈Na〉= k0δ t 〈Nc〉= k0δ t
N

∑
i< j

〈

Ni j

〉

. (8)

The number Na of motors/crosslinkers that bind in the inter-

val δ t follows a Poisson distribution P(Na) = 〈Na〉Na e−Na/Na!

In the kinetic Monte Carlo cycle, the number of bound mo-

tors/crosslinkers Na is drawn from this distribution, and Na

motors/crosslinkers are inserted by first selecting pairs of fila-

ments with relative probability ∝ 〈Ni j〉 and then sampling from

the appropriate bivariate normal distribution to choose mo-

tor/crosslinker endpoints that lie on the selected pair of filaments.

The overall hybrid Brownian dynamics/kinetic Monte Carlo

procedure thus consists of the following steps:

1. Compute forces and torques on filaments, and evolve fila-

ment positions and orientations δ t forward in time accord-

ing to the Brownian dynamics equations of motion (Eqs. 1

and 3).

2. Displace each motor endpoint by vδ t along the filament to

which it is attached with translocation velocity v given by

the force-velocity relation.

3. Determine the number Nd of motors that unbind, and re-

move this number of motors at random.

4. Compute expected number of bound motors 〈Ni j〉 for all

pairs of filaments (Eq. 7) and determine the number Na of

motors that bind. Randomly select Na pairs of filaments with

1–13 | 3
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Symbol Parameter Value Notes

kBT Thermal energy 4.11 ×10
−21 J Room temperature

l Filament length 500 nm Chosen

b Filament diameter 25 nm Alberts et al. 40

η Fluid viscosity 1.0 Pa s Cytoplasmic viscosity, Wirtz 41

ρ Linear density of motor binding sites

along filament

– Appears only in dimensionless concen-

tration.

µc Motor chemical potential – Appears only in dimensionless concen-

tration.

u0 Motor binding free energy – Appears only in dimensionless concen-

tration.

v0 Motor speed (zero force) Reference 9.0 µm/s,

range 0.56–18 µm/s

Of order 1 µm/s, Visscher et al. 42

k0 Unbinding rate of motors 28.1 s−1 Processivity of 320 nm, Schnitzer

et al. 30

fs Stall force 1 pN Visscher et al. 42

K Motor spring constant 0.013 pN/nm Decreased from ref Coppin et al. 43

to give appropriate range of motor-

mediated interaction for zero-

equilibrium-length springs

Table 1 Parameters used in simulations.

Symbol Parameter Value Notes

φ = N/V (lb+b2/4) Filament packing fraction 0.4157 Chosen to give nematic state at equilib-

rium in the absence of motors

r = l/b Filament aspect ratio 20 Value for 500-nm MTs

c = ρ2b2eβ (µc+u0) Motor concentration 0.5 Chosen to give average of 2 motors per

nearby filament pair

cc = ρ2b2eβ (µc+u0,c) Static crosslink concentration (mo-

tor and crosslink model)

Reference 0.5,

range 0.25–0.5

Chosen to give average of 2 crosslinkers

per nearby filament pair

Rc =
√

kBT/(Kb2) Range of motor mediated interac-

tion

1/
√

2 Chosen to be of order 1 for a short-range

interaction

ℓ= v0/(k0l) Motor run length Reference 0.64,

range 0.04–1.28

Motor-induced active stresses are

largest when ℓ is of order 1

f = fsb/(kBT ) Motor stall force 6 See table 1

Pe = vwηb/(kBT ) Peclet number Reference 1.358,

range 0.085–2.72

Varies with motor speed

k0,mτ Inverse motor lifetime 1.0 See table 1

k0,cτ Inverse static crosslink lifetime (mo-

tor and crosslink model)

Reference 0.01,

range 0.001–1.0

Varied

Table 2 Dimensionless groups used in simulations.

relative probability 〈Ni j〉/∑
N
i< j

〈

Ni j

〉

, and insert a motor be-

tween each selected pair of filaments by sampling from a

bivariate normal distribution.

5. If system includes static crosslinkers, repeat steps three and

four for crosslinkers.

We nondimensionalize using the filament diameter b, the ther-

mal energy kBT , and the diffusion time τ, defined as the aver-

age time for a sphere of diameter b to diffuse
√

4b2, τ = b2/D.

Then the motor and reversed motor models depend on seven di-

mensionless parameters: the filament aspect ratio r = l/b, the

filament packing fraction φ = N/V (lb+b2/4), the range of motor

mediated interaction Rm = [kBT/(Kb2)]1/2, the motor concentra-

tion c = zmρ2b2eu0/(kBT ), the motor run length ℓ = vw/(k0l), the

motor stall force f = fsb/(kBT ), and the Peclet number (the ra-

tio of translocation and diffusion rates) Pe = vwτ/(3πb). The

motor and static crosslinker model introduces three additional

parameters, the range of static crosslinker mediated interaction

Rc = [kBT/(Kcb2)]1/2, the static crosslinker concentration cc =

zcρ2b2eu0,c/(kBT ), and the static crosslinker lifetime τc = 3π/(k0,cτ).

Parameter values are summarized in tables 1 and 2.

3 Measurements

To characterize the simulation results, we determined density-

density correlations, motor distributions, and active forces for fila-

ment pairs in different configurations, as a function of ri j = r j−ri,

4 | 1–13
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the separation of filaments i and j. The pair distribution function

is

g(r) =
V

N (N −1)

〈

N

∑
i

N

∑
j 6=i

δ
(

ri j − r
)

〉

. (9)

The pair distribution function g(r) will typically tend to 1 at in-

finity for a normal fluid. However, since we often want to observe

subsystems of the fluids, such as only polar-aligned pairs, the lim-

iting behavior at infinity is not typically 1 but some smaller frac-

tion. To make comparisons between systems more accessible, we

instead study

h(r) = g(r)− lim
r→∞

g(r) (10)

which tends to zero at large distances for all subpopulations. Us-

ing this expression, we can easily determine if a system has excess

or depleted correlation at a given pair separation by examining

the sign of the distribution function h(r).

3.1 Stress and stress anisotropy density

The osmotic stress tensor of a periodic system of N interacting

filaments at temperature T in a d-dimensional volume V is given

by

ΣΣΣ =
NkBT

V
I+

1

V
〈W〉 , (11)

where the first and second terms on the right-hand side represent

the ideal gas and interaction contributions, respectively, I is the

unit tensor, and W is the virial tensor44,

W =
N

∑
i< j

ri jFi j. (12)

where the sum ranges over all interacting pairs of filaments, and

Fi j is the force from filament j on filament i. The angular brackets

in Eqn. (11) denote an average over time. Here we have assumed

that the temperature of the system is isotropic and well-defined,

so that
〈

N

∑
i=1

PiPi

mfil

〉

=
NkBT

V
I, (13)

where Pi is the momentum of filament i and mfil is the filament

mass (here assumed the same for all filaments). Filaments have

momentum based on their instantaneous movements on short

time-scales. This motion is in thermal equilibrium with the back-

ground fluid, connecting molecular motion to Brownian motion.

While this relation is clearly true in the equilibrium case, it’s

less obvious that this relationship holds for active filament/motor

systems. However, a purely mechanical definition of osmotic

pressure leads to the same expression even for nonequilibrium

particle suspensions in the low Reynolds number hydrodynamic

regime45, and we will assume that Eq. (11) holds in the following

discussion.

The isotropic pressure is

〈Π〉= 1

2

2

∑
j=1

〈

Σ j j

〉

, (14)

and the average stress anisotropy is

∆Σ =
〈

Σyy

〉

−〈Σxx〉 , (15)

where the y direction corresponds to the instantaneous nematic

director orientation and x the perpendicular axis (fig. 2b). The

stress anisotropy ∆Σ = Σyy − Σxx is positive for extensile stress

and negative for contractile stress. The total stress tensor is de-

termined from all forces between filaments; both elastic forces

from crosslinks and steric forces from interfilament repulsion con-

tribute to the stress tensor. For the orientationally aligned sys-

tems studied here we typically find anisotropic dipolar stress: if

motor activity favors pair extension, then extensile dipolar stress

is generated and drives the material to extend in the alignment

direction and contract perpendicular to the alignment direction

(fig. 1c) and vice versa for pair contraction (fig. 1d) which leads to

contractile dipolar stress. In constant-volume simulations, stress

anisotropy is unable to relax and can be measured over long

runs. In constant-pressure simulations, we adjust the simulation

box size to achieve a constant isotropic pressure44. Persistent

stress anisotropy leads to continuous anisotropic deformation of

the simulation box as the system attempts unsuccessfully to reach

a constant isotropic pressure.

To characterize how different filament pair configurations con-

tribute to active stress generation, we measured densities of the

virial tensor, which we denote w(r), and the virial stress, which

we denote σσσvir (r). Both are functions of the filament separation

r. The spatial distribution of stress is useful for determining the

nature of microscopic stress generation. The virial stress density

is

σσσvir (r) =
1

2N (N −1)V

〈

N

∑
i

N

∑
j 6=i

δ
(

ri j − r
)

Fi jri j

〉

. (16)

This density gives the average stress generated by pairs at separa-

tion r and has the property that
∫

σσσvir (r)dr = ΣΣΣvir, the total virial

contribution to the stress tensor. We can then define a virial stress

anisotropy density by taking the difference in the stress along and

perpendicular to the nematic director

∆σ (r) = σvir,yy (r)−σvir,xx (r) . (17)

By integrating the stress anisotropy density along the perpen-

dicular direction (x), we obtain the expression for the 1D stress

anisotropy density

∆σ (y) =
∫

∆σvir (r)dx. (18)

It can also be useful to know the stress contribution for a given

configuration without considering contributions due to the pair

distribution function. We call this function the configurational

virial stress density

σσσ c (r) =
σσσvir (r)

g(r)
=

1

2V 2

〈

∑
N
i ∑

N
j 6=i δ

(

ri j − r
)

Fi jri j

〉

〈

∑
N
i ∑

N
j 6=i δ

(

ri j − r
)

〉 (19)

and its corresponding anisotropy measure

∆σc (r) = ∆σc,yy (r)−∆σc,xx (r) . (20)
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We also defined a pair normalized virial anisotropy density

∆wpair (y). Due to the tendency of active nematics to form po-

lar domains, the number of polar-aligned pairs outnumbers the

number of anti-aligned pairs in a typical simulation by approx-

imately ten to one. This difference makes comparing the stress

contributions from the polar-aligned and anti-aligned subsystems

difficult when considering the absolute magnitude of stress con-

tributions alone. In order to make quantitative comparisons of

the two subsystems with a properly intensive property, we nor-

malized the virial density w(r) by the number of total interacting

pairs for each given subsystem. We defined an interacting pair as

a pair where the expected number of attached motors in equilib-

rium was greater than the threshold Nc = 10
−3. The virial stress

density per filament pair is

wpair (r) =
∑

N
i ∑ j 6=i δ

(

ri j − r
)

Fi jri j

∑i ∑ j>i Θ
(

〈Ni j(1)〉−Nc

) (21)

where 〈Ni j(1)〉 is the expected number of attached mo-

tors/crossliners from eqn. 7 for a concentration of 1, and Θ(N)

is the Heaviside step function with Θ(0) ≡ 0. The total virial

anisotropy per filament is therefore

∆wpair (r) = wpair,yy (r)−wpair,xx (r) (22)

and its corresponding anisotropy measure as shown in the figures

∆wpair (y) =
∫

∆wpair (r)dx. (23)

Note that this anisotropy measure is independent of filament ori-

entations because summing over the simulation-calculated values

of Fi j and Ni j integrates out any explicit orientational dependence

on these quantities.

3.2 Reference frames and thresholding

In order to define a polar reference frame for unique comparison

of minus-minus, plus-plus, and plus-minus steric interactions we

considered the orientation of each filament ûi and the instanta-

neous nematic director n̂(t). To calculate n̂(t), we first calculated

the order parameter tensor Q(t), defined in 2D as

Q(t) =
2

N

N

∑
i

ûiûi − I (24)

where I is the identity matrix. The instantaneous nematic direc-

tor n̂(t) is then defined as the pseudovector corresponding to the

maximum eigenvalue of Q(t). Since the nematic director is a

pseudovector, we constrained n̂(t) to lie in the northern hemi-

sphere of the plane of the simulation. The instantaneous polar

nematic director for filament i is then defined as

n̂p,i (t) = sgn(ûi (t) · n̂(t)) n̂(t) . (25)

The frame given by n̂p,i (t) and the vector perpendicular to it
(

n̂
⊥
p,i (t)

)

is used for all spatial measurements excluding motor

densities. This reference frame distinguishes minus end-minus

end interactions from plus end-plus end interactions for anti-polar

pairs while.

All colormap data has been thresholded for clarity. Thresh-

olds represented by the minimum (maximum) value are shown

as the minimum (maximum) values on the colorbar associated

with each density map. Values below (above) the thresholds are

shown as the color representing the minimum (maximum) value

on the associated colorbar. All colorbars are symmetric to ensure

zero is always represented by the same color.

3.3 Motor density vs filament separation

To determine the motor density per filament as a function of fil-

ament separation y, we measured the average number density of

motors attached to a filament pair at positions (ri,r j) in the axis

frame of each filament

nm (raxis)=
1

2N

〈

N

∑
i

N

∑
j 6=i

Nm,i j

[

δ
((

ri j · û⊥
i

)

û
⊥
i +

(

ri j · ûi

)

ûi − raxis

)]

〉

(26)

where N is the total number of filaments, Nm,i j is the number of

motors linking filament i to filament j, ûi is the vector along the

filament i, û
⊥
i is the vector perpendicular to the filament i, and

raxis is a vector in this axis frame for particle i defined by (û
⊥
i , ûi).

The factor of 1/2 is to compensate for the double counting of the

filament pairs. To determine this density as a function of filament

separation y, we integrated out the perpendicular (x) contribution

to the motor distribution function

nxl (y)=
1

2N

∫

〈

N

∑
i

N

∑
j 6=i

Nxl,i j

[

δ
((

ri j · û⊥
i

)

û
⊥
i +

(

ri j · ûi

)

ûi − raxis

)]

〉

dx.

(27)

By integrating again along y, we obtain the total number of mo-

tors per filament
∫

nxl (y)dy =
Nxl

N
. (28)

4 Results

4.1 Comparison of equilibrium and motor-driven systems

In the absence of motors or crosslinkers, our system forms a 2D

nematic liquid crystal phase in constant-volume simulations at

the selected volume fraction (fig. S1a, S2, video S1) which serves

as a useful reference state for understanding active stress gener-

ation. The stress produced arises solely from steric interactions

between filaments resulting from their Brownian motion. When

orientationally-aligned filaments undergo side-side steric interac-

tions, the repulsion tends to separate the filaments perpendicular

to the alignment direction, producing contractile stress (fig. 2b,

left). End-end steric interactions tend to separate the filaments

along the y direction, producing extensile stress (fig. 2b, right). As

a result, the pairwise virial anisotropy density is positive (exten-

sile) near y =±20 due to end-end steric interactions and negative

(contractile) near y = 0 (fig. 2c, S2). The contributions from dif-

ferent configurations integrate to zero, giving an isotropic stress

tensor as required for an equilibrium system.

Motor activity drives extensile stress generation by altering fil-

ament interactions. The driven system is typically an active ne-

matic phase with fluctuating polar lanes (fig. 3, S1b, video S2)

characterized by extensile stress production and enhancement of
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Fig. 3 Snapshot phase diagram with varying lr and c. Other parameters found in table 2. An isotropic bundled state in which long, polar-aligned

bundles are distributed with random orientation throughout the simulation box appears for high motor concentration and relatively small run length

(c = 1.0, lr = 0.04, 0.08). An active nematic state is much more prevalent, appearing for the majority of the parameter sets examined. The active

nematic state contains large, generally short-lived polar domains with relatively few free anti-polar filaments within the domains.

system (fig. 4f, black versus cyan curves). However, motor forces

cause a significant shift toward extensile stress production. The

leading motor experiences an opposing force that slows it due to

the motor force-velocity relation. This reduces the crosslink tether

y extension and reduces the y component of the force exerted by

the crosslink, decreasing filament pair contraction relative to a

system with constant-speed motors (fig. 4e).

We can understand how this nonequilibrium tether relaxation

alters force production in a mean-field model of fixed filaments.

The motor number density ψ(s1,s2) depends on filament arc

length s j ( j = 1,2) and evolves according to

∂ψ

∂ t
=−∂ (v1ψ)

∂ s1

− ∂ (v2ψ)

∂ s2

+ kon − koffψ, (29)

where v j are the speeds of motor motion, kon is the motor binding

rate, and koff is the unbinding rate. The motor binding kinetics

are modeled as for the BD-kMC simulations (eqns. 5, 6), with the

additional dimensional factor in the on rate that makes the bind-

ing rate is kon(r) =
k0

a2 e−βu(rc), where a is a typical motor binding

site size. For long parallel rods with aligned centers of mass, the

steady-state motor distribution satisfies

0 =−∂ (v1ψ)

∂ s1

− ∂ (v2ψ)

∂ s2

+ γe−α(s2−s1)
2 − koffψ. (30)

Here γ = k0eβu0−αd2

/a2, where d is the perpendicular separation

of the two rods, and α = βk/2. In this case, the equation for ψ and

the velocities are only functions of the motor extension parallel to

the filament axes, ym = s2 − s1. Therefore we find an ODE in ym:

d(v1ψ)

dym

− d(v2ψ)

dym

+ γe−αy2
m − koffψ = 0, (31)

which is a first-order linear inhomogeneous ODE in ψ,

(v2 − v1)ψ
′+(v′2 − v′1 + koff)ψ = γe−αy2

m . (32)

where the primes denote differentiation with respect to ym.

If motors move at constant speed, v1 = v2 and v′
1
= v′

2
= 0,

we recover the same Gaussian distribution as for static crosslinks

(fig. 4g):

ψst(ym) =
γ

koff

e−αy2
m . (33)
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Fig. 4 Extensile stress generation by polar anti-aligned (top row) and polar-aligned (lower row) filament pairs. In schematics, lighter shading labels

filament plus ends and color indicates filament plus-end orientation (red up, blue down). (a) Motor-driven sliding of anti-aligned filament pairs tends to

increase steric interactions between filament minus ends and decrease steric interactions between filament plus ends. (b) Virial anisotropy density per

interaction for anti-aligned pairs compared to an equilibrium system with no motors, as a function of y, the pair separation along the nematic director

measured in the polar nematic frame. Black denotes the equilibrium reference system, red the total for the active system with motors, and cyan and

purple the contributions from steric and motor forces, respectively. (c) Integrated virial anisotropy contributions (integrals of curves in panel b) for

equilibrium and active systems. Black denotes the equilibrium reference system, red the total for the active system with motors. (d) Motor density as a

function of filament separation for anti-aligned pairs. (e) Motors on polar-aligned filament pairs exert forces in the alignment direction (Fy) and

perpendicular to the alignment direction (Fx) that tend to contract the filament pair (left). The larger opposing force on the leading motor slows its

motion and makes the tether relax, reducing the y-direction forces (right). (f) Virial anisotropy density per interaction for polar-aligned pairs compared

to an equilibrium system with no motors. (g) Distribution of motor y extension for motors moving on long fixed parallel filaments determined analytically

(solid lines) and from simulations (points). Analytic curves were calculated using the dimensionless parameters d = 1, k = 2, Fs = 6, β = 1, k0 = 1,

u0 = 1+ ln2, a = 1, and v = 0 (constant speed curve), v = 1 (ζ = 3 curve), v = 4 (ζ = 0.75 curve). (h) Variation of extensile stress with stall force for

systems of polar-aligned filaments. Vertical lines indicate stall force values for which ζ = 1. In simulations, unless otherwise noted both equilibrium

and active simulations have a filament packing fraction φ = 0.4157 , N = 4000 filaments, and filament aspect ratio r = 20. Active system has motor

parameters stall force f = 6.0, concentration c = 0.5, inverse lifetime k0,m = 1.0, run length ℓ= 0.64, interaction range Rc = 1/
√

2, and Peclet number

Pe = 1.358.

However, when motors instead move with a linear force-

velocity relation, the distribution becomes more concentrated

near zero extension and the shape is controlled by the parameter

ζ = koffFs/(kv0). In this case the motors move with a piecewise

linear force-dependent velocity given by

v(F‖) =











v0, F‖ ≥ 0

v0(1+F‖/Fs), −Fs < F‖ < 0

0, F‖ ≤−Fs.

(34)

The equation for ψ at steady state can be solved using an

integrating factor method with the integration constant set by

requiring that the solution go to zero as |ym| → ∞. The solution is

ψ(ym) =







Fsγ
2kv0

E(ζ+1)/2(αy2
m) |ym| ≤ Fs/k

γ
√

πe
k2
off

/(4αv2
0
)

2v0

√
α

ekoff|ym|/v0

[

1− erf

(√
α|ym|+ koff

2
√

αv0

)]

Fs/k < |ym|.
(35)

Here ζ = koffFs/(kv0) and the exponential integral function

En(x) =
∫ ∞

1
e−xt t−ndt. When ζ is large (slow motors or high

stall force), the distribution is qualitatively similar to that of

constant-speed motors. However when ζ ≤ 1 (fast motors or low

stall force), the distribution develops an integrable singularity as

ym → 0. This indicates a qualitative change in the motor distri-

bution in which a large population of motors with zero y exten-

sion develops, significantly decreasing the y-direction contracting

forces exerted on filaments. Our analytic results agree well with

simulation results on fixed parallel rods for motor extension dis-
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Fig. 5 Generation of active contractile stress in systems with altered motor force-velocity relation (top row) or static crosslinkers (lower two rows). In

schematics, lighter shading labels filament plus ends and color indicates filament plus-end orientation (red up, blue down). (a) Schematic of reversed

force-velocity relation model. Bound motors exert forces in the alignment direction (Fy) and perpendicular to the alignment direction (Fx) that tend to

contract the filament pair (left). For motors with a reversed force-velocity relation, the larger opposing force on the leading motor increases its speed,

increasing the motor tether extension and the y-direction forces (right). (b) Virial anisotropy density per interaction for the reversed force-velocity model

compared to an equilibrium system with no motors, as a function of y, the pair separation along the nematic director measured in the polar nematic

frame. Black denotes the equilibrium reference system, red the total for the system with reversed force-velocity motors, and cyan and purple the

contributions from steric and motor forces, respectively. (c) Distribution of motor y extension for the reversed force-velocity model (red) compared to

the conventional force-velocity model (blue). (d) Schematic of active system with static crosslinkers. Addition of static crosslinks partially gels the

system, reducing filament sliding and causing motors to adopt configurations with increased tether extension. (e) Virial anisotropy density per

interaction for the system with motors and static crosslinkers compared to an equilibrium system with no motors. Black denotes the equilibrium

reference system, red the total for the system with motors and crosslnkers, and cyan and purple the contributions from steric and motor/crosslinker

forces, respectively. (f) Anisotropic stress as a function of static crosslinker unbinding rate. (g) Snapshots of a constant-pressure simulation of a

system with motors and static crosslinkers (video S8). The periodic simulation box is adjusted to produce constant pressure and elongates

perpendicular to the director (x direction), indicating generation of contractile stress. Both equilibrium and active simulations have a filament packing

fraction φ = 0.4157 , N = 4000 filaments, and filament aspect ratio r = 20. Active system has motor/crosslink parameters stall force f = 6.0, motor

concentration c = 0.5, motor inverse lifetime k0,m = 1.0, crosslink inverse lifetime k0,c = 0.01, motor run length ℓ= 0.64, motor/crosslink interaction range

Rc = 1/
√

2, and motor Peclet number Pe = 1.358.

tributions away from the rod ends (fig. 4g).

The mean-field theory predicts that increasing the motor stall

force will increase ζ and decrease nonequilibrium tether relax-

ation, thereby reducing extensile stress generation. We tested

this in bulk simulations of moving polar-aligned filaments (all

filament plus ends initially point in the same direction). As the

stall force increases, we observe a transition to decreased exten-

sile stress generation (fig. 4h). As expected, the crossover point

occurs near ζ = 1, showing that the mean-field theory qualita-

tively explains the change in extensile stress generation as a func-

tion of stall force. This comparison confirms that nonequilibrium

crosslink tether relaxation is an important mechanism of extensile

stress generation in our system.

4.4 Contractile stress production by altered motor kinetics

or static crosslinkers

Based on our analysis of nonequilibrium motor tether relaxation,

we predict that altering motor kinetics to increase motor tether

y extension would produce contractile stress for polar-aligned fil-

aments. We formulated a reversed force-velocity model in which

the leading motor of a pair, which when experiencing a retard-

ing force from the crosslink spring, moves faster than the trailing

motor (fig. 5a, S1c, S4, video S5). This mechanism is related

to Dasanayake and Carlsson’s observation of increased motor ex-

tension in a simulation model of contractile actin-myosin gels46.

While motor kinetics of this type have not been experimentally re-

alized, this is a useful model to test our understanding of the role

of filament steric interactions in stress generation. We find that al-

though our system remains fluid, the reversed force-velocity mo-
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tors lead to reduced extensile stress by end-end steric interac-

tions and corresponding generation of contractile stress (fig. 5b,

video S6). As expected, motor tethers become more extended in

the y direction compared to the conventional force-velocity model

(fig. 5c).

In actively-flowing nematic phases in the absence of static

crosslinkers, we generically find extensile stress generation. A

key contributor to extensile stress generation is the fluid nature of

the material, in which motor activity enhances minus end-minus

end steric interactions and decreases side-side steric interactions

relative to an equilibrium nematic. Therefore, we expect that

decreased fluidity will favor generation of contractile stress by

decreasing filament end-end steric interactions and/or increasing

filament side-side steric interactions. Indeed, the addition of long-

lived static crosslinkers to our system (fig. 5d) favors contractile

stress generation (fig. 5e-g, S1d, S5, videos S7, S8). While the

system develops complex structure and virial anisotropy curves,

we do find net contractile stress. Increasing the off rate of static

crosslinkers increases fluidity and allows a transition back to ex-

tensile behavior (fig. 5f).

5 Conclusion

We used a 2D active nematic model of rigid filaments, crosslink-

ing motors, and static crosslinkers to study mechanisms of active

stress generation. Computing anisotropic stress density allowed

us to determine the role of different filament configurations in

stress generation. For an equilibrium system, filament end-end

steric interactions produce extensile stress and side-side steric in-

teractions produce contractile stress. These effects balance to give

an overall isotropic stress tensor. In motor-driven systems, we typ-

ically find extensile stress generation: for polar anti-aligned fila-

ment pairs, motor-driven sliding enhances extensile minus end-

minus end steric interactions and reduces contractile stress from

side-side interactions. For polar-aligned filament pairs, sliding

forces are relaxed when motors slow under a retarding force.

This reduces motor tether extension and filament pair side-side

contraction, thereby contributing to extensile stress generation.

Based on our understanding of systems with crosslinking motors,

we predicted alterations that would shift the system to contrac-

tile. Changing the motor force-velocity relation to increase slid-

ing forces on polar-aligned filaments or adding long-lived static

crosslinkers both lead to contractile stress generation.

While one-dimensional bundle contraction or expansion along

the bundle axis and the bulk contraction or expansion may appear

quite different, they are related: both require breaking the con-

traction/extension symmetry shown in fig. 1a, and similar mech-

anisms can lead to both bundle and bulk contraction26. A bundle

or oriented system that extends along the bundle axis produces

a dipolar stress tensor that drives flow of material out along the

bundle axis and in perpendicular to the axis (fig. 1c). If such

dipolar active stress occurs locally in an orientationally disor-

dered system, particularly if motors or crosslinkers induce local

filament alignment, it leads to bulk contraction (expansion) in all

directions26, corresponding to a positive isotropic pressure ten-

sor. A similar connection exists for anisotropic contractile stress

and bulk contraction. The same microscopic mechanisms can thus

act in both types of systems.

Our work suggests that the balance between end-end and side-

side steric interactions and the nature of motor- and crosslink-

induced forces are determinants of extensile versus contractile

stress generation in nematic motor-filament systems. In our sim-

ulations, extensile stress is typical for actively flowing motor-

filament mixtures, as observed experimentally for reconstituted

microtubule-kinesin mixtures10,13,14, while contractile stress is

typical for less-fluid systems with long-lived static crosslinkers,

as occurs for reconstituted actin-myosin bundles8,9,15,16. This

suggests that the differing fluidities of microtubule-kinesin ver-

sus actin-myosin systems may contribute to their differences in

active stress generation.

Could the tuning of steric interactions and fluidity by mo-

tors and crosslinkers we describe be important in actin-myosin

systems? Our assumption of rigid filaments makes the model

most relevant to microtubules, which have persistence lengths

of millimeters1. Actin filaments are more flexible, and their

buckling is established to be important for actomyosin contrac-

tility,7,15,47,48 making our model not directly relevant to actin-

myosin systems. Actin-myosin systems often exhibit negative

isotropic pressure, commonly referred to as contractility (in con-

trast to the dipolar contractile stress described here.) Multiple

microscopic mechanisms have been proposed as important to

actin-myosin contractility, including nonzero motor size, crosslink

tether elasticity, spatially-varying motor motion, and filament

buckling5,7,15,26,46,47,49,50. However, the motor- and crosslink-

modulated alterations in steric interactions we describe could also

occur for actin filaments and may complement effects of buckling

in actomyosin gels.

Some experiments have observed that a minimum concen-

tration of static crosslinkers is necessary for contractility in

actin-myosin systems5,12,51,52, consistent with our proposal that

crosslink-induced gelation favors contractile stress generation.

However, other experiments see contractility in the absence of

static crosslinkers,53–55 demonstrating that static crosslinkers are

not required for actomyosin contractility. Even in these systems,

it appears that a minimum myosin density is necessary to provide

sufficient crosslinking for contractility.50,54 The multiple myosin

motors present in a single myosin filament and their tug-of-war

dynamics may allow some fraction of the myosin motors to play

the physical role of static crosslinkers in our model. Consistent

with our model results, it does appear that sufficient crosslinking

to form an actomyosin gel is important for contractility. In fu-

ture work, it would be of interest to consider extensions to our

model that would make it relevant to experimental actin-myosin

systems, including longer filaments, filament flexibility, and vary-

ing density.
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