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Forced desorption of semiflexible polymers, adsorbed
and driven by molecular motors†

Abhishek Chaudhuri,∗a and Debasish Chaudhuri,b‡

We formulate and characterize a model to describe the dynamics of semiflexible polymers in the
presence of activity due to motor proteins attached irreversibly to a substrate, and a transverse
pulling force acting on one end of the filament. The stochastic binding-unbinding of the motor
proteins and their ability to move along the polymer, generates active forces. As the pulling force
reaches a threshold value, the polymer eventually desorbs from the substrate. Performing un-
derdamped Langevin dynamics simulation of the polymer, and with stochastic motor activity, we
obtain desorption phase diagrams. The correlation time for fluctuations in desorbed fraction in-
creases as one approaches complete desorption, captured quantitatively by a power law spectral
density. We present theoretical analysis of the phase diagram using mean field approximations
in the weakly bending limit of the polymer and performing linear stability analysis. This predicts
increase in the desorption force with the polymer bending rigidity, active velocity and processivity
of the motor proteins to capture the main features of the simulation results.

1 introduction
Cytoskeleton in the cell comprises of semiflexible protein fila-
ments, cross-linkers and motor-proteins, and is maintained con-
tinuously out of equilibrium. Each family of motor proteins,
when coupled to their type-specific filamentous tracks, can hy-
drolyze chemical fuel (ATP), generating motion and stresses in
the cell1–4. This active meshwork provides the cell its mechan-
ical stability5,6, tracks for intra-cellular locomotion, controlling
cell-motility7,8, as well as organizing signalling platforms on the
cell membrane and endocytosis9,10. Single molecule experiments
on motor proteins revealed mechanism of force generation, force-
velocity relations, and dependence of motion on ATP concentra-
tion11,12. Collective action of molecular motors lead to interest-
ing dynamics like bidirectional motion and spontaneous oscilla-
tions13–17. The transport of cargo in one dimension (1D) by mul-
tiple motors has also attracted much attention and the response
to external opposing forces have been obtained18–20.

A plethora of individual and collective physical properties of cy-
toskeletal filaments were obtained from the study of in vitro glid-
ing assays, in which F-actins or microtubules move on a two di-
mensional substrate decorated by myosin or kinesin motors, both
experimentally21–26 and theoretically27–30,30,31. Recent exper-
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iments on molecular motor assays revealed formation of spiral
defects and loops of actively moving filaments driven by motor
proteins23,32. In gliding assays, one end of motor proteins are ir-
reversibly attached to a two dimensional substrate. The other end
binds to the filaments and actively forces them to move parallel
to the substrate. In this context, it is important to understand
the response to external forces of these gliding filaments actively
driven by the molecular motors.

In this paper, we consider a semiflexible filament floating on
a molecular motor assay in presence of a pulling force acting
on one end of the filament in a direction perpendicular to the
substrate. The filament is actively captured and driven parallel
to the substrate by molecular motors. The situation is akin to
in vivo microtubules, one end of which is captured and actively
driven by motor proteins at the cell cortex while forces act on
the other end attached to the microtubule originating centre33.
A passive counter-part of this problem is peeling of semiflexible
polymers from adhesive surfaces34–40. Such peeling experiments
have been shown to be important in quantifying the strengths
of actomyosin rigor bonds, in absence of ATP driven activity, mea-
sured by pulling F-actins off myosin coated substrate using optical
tweezers41. Rupture of multiple bonds have also been studied in
the context of cell adhesion42–46 and the unzipping of DNA47–49.
Semiflexible polymers themselves are known to show interesting
mechanical and dynamic properties50–57.

We use underdamped Langevin dynamics simulation and theo-
rtical mean field analysis to quantify the dynamics, and hence the
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response, of the semiflexible filament and the molecular motors,
under the transverse pulling force. For simplicity, we assume that
the motor proteins, which undergo attachment-detachment kinet-
ics, are arranged uniformly on a one-dimensional substrate. With
increase in the transverse pulling force applied to one end of the
polymer, it undergoes a non-equilibrium continuous transition at a
threshold force, from an adsorbed state to a completely desorbed
state. A theorteical mean field analysis of the problem predicts
an increase in the threshold force of desorption with increasing
bending rigidity of polymer, as well as activity and processivity
of molecular motors. The predictions show good agreement with
simulation results. We obtain results for biologically relevant pa-
rameter values, making our predictions amenable to direct verifi-
cation in gliding assay experiments.

2 Model
We model the cytoskeletal filaments as stretchable semiflexible
polymers described by space curve r(s), and local tangent vector
t(s) = ∂r/∂ s with s denoting a position along the contour of the
chain. The Hamiltonian for a filament of length L is given by58

H =
1
2

∫ L

0
ds

[
κ

(
∂ 2r
∂ s2

)2

+A
(

∂r
∂ s

)2
]

(1)

where κ is the bending rigidity, A is the bond strength. This model
reduces to the worm like chain model in the limit of unstretchable
bonds with [t(s)]2 = 1.

The motor proteins are modeled as elastic linkers. The tail end
of i-th motor protein is attached irreversibly to the substrate at
position ri

0 = (xi
0,0). The head end is free to attach (detach) to

(from) the filament. It attaches to a segment of the filament if it
lies within a capture radius rc with an attachment rate ωon. When
attached, the motor head either moves along the filament or gets
detached from it with a rate ωoff. The i-th molecular motor when
attached to the polymer at a position r(s) exerts an elastic force
fm = −km(r(s)− ri

0) = −kmδr, attracting the polymer segment to-
wards itself. The amplitude of this force is the load fl = |fm| on
the head of a molecular motor. In their active state, the attached
end of motor proteins move along the filament towards one of its
ends (plus end for kinesins walking on microtubules) with active
relative velocity [see Fig.1(a)]

va
t ( ft) =

−v0

1+d0 exp( ft/ fs)
(2)

where ft =−fm.t, d0 = 0.01 and fs = 1.16 pN is the stall force (pa-
rameters corresponding to kinesin molecule, see Appendix A. The
negative sign is chosen so that the motors move towards the s = 0
end of the polymer. This ATP-driven motion of the motor heads,
via their elastic nature generate an active force on the filament
in a direction opposite to this movement, resulting in a sliding
motion of the filament with respect to the substrate. An external
force Fz, applied at the s = 0 end of the polymer (which serves
as the origin) opposes this active force, and at sufficient strength
desorbs the polymer from the substrate.

Note that, ωon and ωoff are dependent on the separation of a
given polymer segment from the substrate. In our simplified quasi

Parameters Definition Values

γw Viscosity of water 0.001 pN-s/µm2

T Temperature 4.2 pN-nm/kB
α Viscous drag 1 pN-s/µm
σ Bond length 0.5 µm
A Spring constant(filament) 100 pN/µm
km Spring constant(motor) 100 pN/µm
ρ Linear density (motor) 2.5/µm
κAT Bending rigidity (Actin) 0.07 pN-µm2

κMT Bending rigidity (µtubule) 21.84 pN-µm2

v0 Free motor velocity 0.8 µm/s (K)
ωon Attachment rate 20/s (K)
ω0 Bare detachment rate 1/s (K)
fd Detachment force 6 pN (K)
fs Stall force 1.16 pN (K)

Table 1 Various parameters and their typical values used in the
simulation. (K) denotes kinesin.

one-dimensional model, the motors are attached uniformly with
the density ρ along the x-axis and the transverse fluctuations of
the polymer and the motor heads are along the z−axis (Fig. 1(a)).
Assuming a Kramer’s process we have, ωoff =ω0 exp( fl/ fd), where
ω0 is the bare off rate, fl is the load force originating from the
elastic extension of the motor spring and fd is the typical force
required to detach the motor head from the polymer segment.

3 Simulation
To study the full dynamics of the semiflexible polymer under the
influence of motor proteins attached to a substrate, and pulled
out of the substrate by an external force, we perform under-
damped Langevin dynamics simulation of the polymer and with
stochastic attachment detachment kinematics of molecular mo-
tors. In simulations, we discretize the semiflexible polymer into a
bead-spring chain of N bonds of equilibrium length σ , spring con-
stant A, and finite bending rigidity κ such that the Hamiltonian
is H = ∑

N−1
n=1 (κ/2σ)[t(n+1)− t(n)]2 +∑

N
n=1(A/2)[b(n)−σ ]2. Here

we denoted position of the n-th bead by r(n), such that the local
tangent t(n) = [r(n+1)− r(n)]/b(n) where b(n) = |r(n+1)− r(n)|
is the instantaneous bond length. In the limit of large A, instan-
taneous bond lengths b(n) ≈ σ , and the chain in equilibrium be-
haves like a worm like chain. In addition, we incorporate self
avoidance via a Weeks-Chandler-Anderson (WCA) purely repul-
sive potential between non-bonded polymer beads βVWCA(ri j) =

4[(σ/ri j)
12− (σ/ri j)

6 + 1/4] if ri j < 21/6σ and 0 otherwise, with
β = 1/kBT the inverse temperature.

The simulations are performed using a velocity-Verlet algorithm
in presence of a Langevin heat bath that fixes the temperature at
the room temperature value kBT = 4.2 pN-nm through a Gaus-
sian white noise 〈ηi(t)η j(t ′)〉 = 2αkBT δi jδ (t − t ′) with α denot-
ing viscosity of the environment. Since the typical environment
within a cell is at least one order of magnitude more viscous than
water, we choose the viscosity of the medium γ = 100γw = 0.1
pN s/µm2, where γw = 0.001 pN s/µm2 is the viscosity of water.
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Fig. 1 (Color online) Polymer configuration, and adsorption-desorption transitions. Units used are: positions in µm, forces in pN, velocities in µm/s.
(a) A configuration of semiflexible bead-spring polymer (red beads and lines) actively captured by motor proteins on a substrate. Each motor protein is
denoted by a blue line connecting two end-points, one of which is bound irreversibly to the substrate while the other end can attach (detach) to (from)
the polymer beads with fixed rates. The end of motor proteins attached to a polymer bead walks towards the trailing end of the polymer on which an
external force Fz is applied. This in turn pulls the filament in the opposite direction. (Inset) The time averaged desorbed fraction of polymer length 〈ε〉
as a function of Fz, where ε = `/L with ` denoting desorbed length of the polymer. Points with error-bar denote simulation results, and the line (red) is a
guide to eye. 〈ε〉 remains small up to 17pN, subsequently showing gradual increase finally desorbing completely at a threshold force Fc

z = 22pN.
(b) Phase diagrams depicting adsorption-desorption transition of a stiff (microtubule) and a relatively flexible (F-actin) filament, as a function of active
velocity v0 of motor proteins. Both of them show increase in desorption force with increasing v0, finally merging into a single curve at high enough
values of v0. Lines are fit to Eq. 5 with b′0 = 0.56,b′1 = 1/µm,b′2 = 5.11 pN-s/µm3 and b′3 = 18.53 pN/µm2 for F-actin and b′0 = 0.384, b′1 = 1/µm,
b′2 = 15.126 pN-s/µm3 and b′3 = 0.755 pN/µm2 for microtubule. (c) Phase diagram for Fz vs Ωd for v0 = 0.807µm/s for the same two filaments as in (b).
The line is a plot of Eq. 6 with b′0 obtained in (b) for microtubule.

Therefore, the viscous drag α = 6πγa ≈ 1 pN s/µm on a bond of
length σ = 0.5 µm. The spring constant of the bead-spring sys-
tem is taken to be fairly large A = 100 pN/µm so that the bond
fluctuations are small enough to reproduce known equilibrium
statistics50,54. The persistence length λ of cytoskeletal filaments
varies by three orders of magnitude, with λ = 16.7 µm for actin
filaments, to λ = 5.2 mm for microtubules59. These correspond
to variation of bending rigidity κ from the value κAT = 0.07 pN-
µm2 for F-actins to κMT = 21.84 pN-µm2 for microtubules. Unless
stated otherwise, in our simulations we consider parameters typ-
ical for kinesin motors with attachment rate, ωon = 20/s and a
bare detachment rate ω0 = 1/s. The motors are placed on a 1d
line along the x-axis with constant coverage density. The spring
constant, km, for kinesin motors lie between 10-1000 pN/µm. In
our simulations, we use km = A = 100pN µm−1. The detachment
force, fd = 6 pN characterizes the force induced enhancement of
detachment rates as ωoff = ω0 exp( fl/ fd) where fl is the instan-
taneous load on the molecular motor. In our simulations, we
used the polymer bond-length σ as unit of length, and the typ-
ical forces associated with the motor proteins 1pN as the unit of
force.

The unit of time is set by tu = α/A, and we choose the integra-
tion time step δ t = 0.01tu. Attachment- detachment kinematics
of motor proteins are performed stochastically with probabilities
ωonδ t and ωoffδ t at every time-step. Note that the attachment
event is tried only if a filament segment is within the capture ra-
dius rc ∼ σ , from the equilibrium position of molecular motors.
Once detached the molecular motors are assumed to relax back
to equilibrium configurations immediately. When attached to the
polymer, molecular motors move along the polymer following
Eq.(2). In the absence of load, the attached motors move with
velocity v0 in the negative x direction along the filament, forcing
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Fig. 2 (Color online) Phase diagram for Fz (in pN) as a function of κ (in
pN-µm2) for a passive system (v0 = 0, �), intermediate activity
(v0 = 0.2µm/s,  ) and high activity (v0 = 0.807µm/s, N). Lines are fit to
Eq. 5 with b′0 = 0.267, b′1 = 1/µm, b′3 = 20.97 pN/µm2 for v0 = 0,
b′0 = 0.278, b′1 = 1/µm, b′2 = 28.737 pN-s/µm3, b′3 = 20.97 pN/µm2 for
v0 = 0.2 and b′0 = 0.33, b′1 = 1/µm, b′2 = 28.737 pN-s/µm3, b′3 = 20.26
pN/µm2 for v0 = 0.807.

the polymer to translate towards the positive x direction.

To study the effect of transverse pulling force, Fz is applied in
the z direction perpendicular to the substrate and at the trailing
end of the polymer (see Fig. 1 (a)). We study the influence of the
pulling force Fz as we vary (i) active self-propulsion v0, (ii) the
duty ratio Ωd = ωon/(ωon +ω0), and (iii) the bending rigidity κ.
All the parameters used in the simulations are summarized in Ta-
ble 1.
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Fig. 3 (Color online) Time series of the desorbed fraction of microtubule
from kinesin bed, at different values of pulling force Fz expressed in units
of pN. A longer time series is presented at Fz = 20.1pN, a force value
close to the desorption transition.

4 Results
In the absence of a transverse pulling force and for processive
motors with large duty ratio Ωd = 0.95 (ωon : ω0 = 20 : 1), desorp-
tion of the polymer by stochastic fluctuations is prevented. The
polymer stays on the motor protein bed and slides towards pos-
itive x-axis with a velocity close to v0 characteristic of individual
motor proteins. The response of the system to a force applied
parallel to the substrate is characterized in detail in Appendix B.
In this specific case, filament bending does not play any role and
the filament is well approximated as a one dimensional rigid rod.

For a transverse pulling force applied on the trailing end, op-
posing the sliding motion of the filament, we study the transi-
tion of the polymer from an adsorbed to a completely desorbed
state. Fig.1(a) shows a typical configuration of a filament having
κ = κMT the bending rigidity of microtubules, on a bed of motor
proteins having active velocity v0 = 0.807 µms−1 corresponding to
kinesins, under external force Fz. For further details on modeling
kinesin activity see Appendix A. The desorption is characterized
by a continuous increase in the fraction of desorbed length be-
yond a threshold force, as shown in the inset of Fig. 1(a), or by
following the fraction of motor proteins attached to the filament.
Note that beyond Fz = 17pN in Fig. 1(a), the polymer starts to par-
tially desorb, while the complete desorption occurs at a relatively
higher pulling force of Fc

z = 22pN. The transition from adsorbed
to desorbed state occurs smoothly, like a continuous phase transi-
tion. We come back to this point again at the end of this section.
We obtain Fc

z with changing v0, Ωd and κ, in each case keeping
the other parameter values unchanged. This gives us three phase
diagrams for adsorption-desorption transition.

Fig. 1(b) shows the dependence of Fc
z on v0, for two different

values of bending rigidity of polymer κ: κ = κAT corresponds to
relatively flexible F-actins, and κ = κMT corresponds to the very
rigid limit of microtubules. The simulation results show that both
for F-actins and microtubules the threshold desorption force Fc

z in-
creases with v0, to eventually merge together and saturate at large
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|ε̃(
ν
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Fz = 17
Fz = 18

Fz = 20.1

Fig. 4 (Color online) Power spectrum of the desorbed fraction |ε̃(ν)|2
obtained from the respective time series as shown in Fig. 3. The data
show power law profiles 1/να with α ≈ 1 at Fz = 17pN, and α ≈ 2 at
Fz = 20.1pN, and reflect an increase in the correlation time as one
approaches the desorption transition force Fz = 22pN.

values of v0 in accordance with Eq. 5, derived in the following sec-
tion. Both the data sets in Fig. 1(b) fit well with Eq. 5. Fitting pa-
rameters are mentioned in the figure captions. Fc

z increases with
v0 to eventually saturate at large v0 as Fc

z ∼ [1−C1/(C2 + v0)]
1/2,

where C1, C2 are constants. At large enough values of v0 and
κ, the desorption force is expected to become independent of
both [see Eq.6], leading to the same Fc

z for F-actins and micro-
tubules for large active velocity v0 of the molecular motors. Thus
the two phase boundaries for F-actins and microtubules merge to-
gether as v0 approaches 1µm/s. Fig. 1(c) presents the simulated
phase diagram in Fc

z −Ωd plane, calculated with large active mo-
tion v0 = 0.807 µm/s. It shows good agreement with mean field
results (Eq. 6).

In Fig. 2, we present the dependence of desorption force Fc
z on

bending stiffness κ of the polymer, for different values of active
velocity v0. All the data sets fit well to Eq. 5. A passive semi-
flexible polymer (v0 = 0) shows increase in Fc

z with increasing κ

as Fc
z ∼ [1−C ′1/(C

′
2 +κ)]1/2, with C ′1 and C ′2 are constants. This

scenario is equivalent to equilibrium desorption of semiflexible
filaments from adhesive substrates35,36. However, at large values
of active velocity of motor-proteins (v0 = 0.807 µm/s), v0 would
dominate over κ, giving rise to an essentially κ-independent des-
orption force.

Finally we take a closer look at the desorption process itself.
For this purpose we use the time evolution of the order param-
eter, the desorbed fraction of the polymer, ε. The time series of
this stochastic quantity ε(t) shows different behavior depending
on the value of the applied desorbing force Fz (Fig.3). At long
time ε(t) reaches a steady state, with a time-independent mean
value. The gradual approach to final steady states with ε ≈ 0.4 for
Fz = 18pN to ε ≈ 0.6 for Fz = 20.1pN shows how the polymer des-
orption progresses in time. Note that the continuous change in
average order parameter 〈ε〉 with Fz as shown in Fig. 1(a) inset,
indicates a continuous non-equilibrium transition (Supplementary
Information). The power spectrums presented in Fig. 4 quantifies
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the dynamics. This clearly shows that the correlation time of the
dynamics increases as one increases Fz towards desorption tran-
sition value. The power spectral density shows a 1/να behavior
with α ≈ 1 for Fz≤ 17pN, and α ≈ 2 as one approaches desorption,
e.g., see the behavior at Fz = 20.1pN. This is reminiscent of pink
noise observed in diverse types of non-equilibrium systems60,61.

5 Theory
The full dynamics is fairly complicated and not tractable analyti-
cally. However, simplifications of the original problem is useful to
develop analytical insight. In the following section, we use small
bending approximation for the filament, and mean field approxi-
mation for dynamics and external force sharing. Further, the net
impact of the molecular motors on the filament is treated in terms
of a local elastic binding to the substrate, and a sliding velocity.
Since the transverse force is applied at the end of the polymer
opposite to the direction of sliding, a component of the exter-
nal force acts against the direction of sliding. In the simulations,
these opposing forces result partially into elastic energy stored in
the extension of stretchable but stiff bonds, and into building up
a tension along the chain. In the following, we assume an un-
stretchable chain in which the tension alone bears the impact of
these two opposing forces.

5.1 Mean field analysis

In the mean field limit, let us assume that nb,u denote the local
density of bound and unbound motors, such that nb + nu = ρ is
a constant. In the detached state motors play no role in the dy-
namics of filament. However, the detached motor heads after
performing diffusive relaxation reattaches to a polymer segment
within capture radius with a given rate. We assume that the at-
tachment of a motor head to the polymer is not instantaneous but
happens over a time ta. Further, to attach to the filament, the mo-
tor head diffuses over a distance z, the local transverse distance
of the polymer segment, with a time scale z2/Du. Therefore, the
total time required for the process is (ta + z2/Du), giving rise to
an effective attachment rate, ωon = Du/(taDu + z2). Thus the dy-
namics of unbound motors may be incorporated in terms of the
effective ωon. The bound motors generate elastic force per unit
length −kmznb on the filament, and slides the filament with a ve-
locity −va

t ( ft) where ft ∝ Fz/nbL.

The bound motors detach from the filament with rate ωoff =

ω0 exp( fl/ fd), where the local load force, fl = km|δr|. This
stochastic load originates from three mechanisms: (i) stochastic
binding/unbinding of other motor proteins changing the number
of bound motors sharing the load, (ii) motion of bound head of
motor proteins along the filament, and finally (iii) the external
force, Fz, acting at the filament end. In the absence of Fz, stochas-
tic binding/unbinding will result in an average time-independent
separation |δr| and the sliding motion of the filament will hand
over binding from one motor to its neighbor without impacting
the polymer dynamics on an average. Therefore, the average
load force would really be due to the external force Fz. Within
mean-field approximation, we assume that Fz acting on the poly-
mer is distributed equally among all bound motors (Supplemen-

tary Information). Therefore, one may use fl = Fz/nbL to obtain
ωoff = ω0 exp( f/nb fd), where f = Fz/L. This remains a good ap-
proximation within the weakly bending limit.

In the limit of small transverse displacements z(x, t) of the fila-
ment from x-axis, the Hamiltonian (Eq. 1) may be approximated
as

H =
1
2

∫ L

0
ds

[
κ

(
∂ 2z
∂x2

)2

+ τ(x, t)
(

∂ z
∂x

)2
]
, (3)

where instead of a large spring constant A used in the simula-
tions, we use a local instantaneous tension τ(x, t) in the theory,
with τ(x, t) constraining the local bond lengths to a constant value
σ . The over-damped motion due to this Hamiltonian is described
by α⊥∂tz=−δH /δ z+η(t), where η(t) is a Gaussian white noise,
and α⊥ viscous friction. Averaging over the stochastic noise, and
incorporating the force due to bound motors, the evolution of the
transverse displacement and the attachment-detachment dynam-
ics of the unbound motors is given by,

α⊥
∂ z
∂ t

= −κ
∂ 4z
∂x4 + τ(x, t)

∂ 2z
∂x2 − kmznb

∂nu

∂ t
= ωoffρ− (ωon +ωoff)nu. (4)

The tension τ(x, t) needs to be determined using the inextensibil-
ity constraint. In the weakly bending limit, spatial variation in
τ can be neglected53, considerably simplifying the analysis. For
values of the external force, Fz, less than the critical desorption
force, the polymer reaches a steady state configuration z(x) (in-
dependent of t) where it is partially adsorbed.

5.2 Linear Response

To get an estimate of the critical force required to desorb the
filament from the substrate, we perform a linear stability anal-
ysis by assuming a steady state configuration [z(x),nb(x)] ob-
tained under a fixed external force Fz. Let us consider small
variations [δ z(x),δnb(x)] about it. As stated earlier, the at-
tachment rate ωon = D/(taD + z2), and detachment rate ωoff =

ω0 exp( f/nb fd). Small variations around steady state give δωoff =

−(ωoff f/n2
b fd)δnb, δωon = −[2ωonz/(taD+ z2)]δ z. In practice, a

motor protein may attach to a segment of filament only if it lies
within a capture radius rc. We assume that the segment of fil-
ament to which motors may attach remains essentially parallel
to the substrate and within a separation σ . Thus replacing rc

by σ , kmzδnu by kmσ δnu, and rewriting δωon = −b1ωonδ z with
b1 = 2σ/(taD+σ2), and δnb by −δnu we obtain from Eq.(4),

α⊥∂tδ z = (−κ∂
4
x + τ∂

2
x − kmnb)δ z+ kmσ δnu

∂tδnu =

[
ωoff f
nb fd

− (ωon +ωoff)

]
δnu +b1ωonnuδ z.

As argued before, the total tensile force τ may be expressed
in terms of active processive motion of the motor proteins as
τ = b2va

t +b3, with b2 a undetermined constant. Here the constant
b3 denotes the tension due to joint action of external force Fz and
adhesion to substrate by the motor proteins. The linear perturba-
tions considered above are variations around a steady state where
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we assumed that all tension propagation53 is settled down. Thus
a linear dependence of τ on a steady state velocity va

t (Fz) is rea-
sonable.

If one considers a small segment of a long polymer, far away
from the boundary on which pulling force Fz is applied, boundary
conditions would not affect the local behavior. In this limit, per-
forming a Fourier transform, the evolution of specific modes fol-
lows ∂t(δ zq,δnq

u) = A .(δ zq,δnq
u), where the elements of the 2×2

matrix A are given by A11 = −[κq4 + τq2 + kmnb], A12 = kmσ ,

A21 = b1ωonnu, and A22 =
[

ωoff f
nb fd
− (ωon +ωoff)

]
.

In the large q limit, the unstable modes of the above linearized
dynamics identifies the condition where the absorbed state of the
polymer is locally unstable. Thus it identifies an upper bound of
instability, which is instructive to study. However, the actual des-
orption may take place at a smaller force. In the large q limit, we
have A11 ≈ −[κq4 + τq2]. The two eigenvalues of matrix A are
λ± = 1

2 [A11 +A22 ±
√

(A11 +A22)2−4(A11A22−A12A21)]. The
condition that λ+ > 0 for the mode to be unstable is satisfied if
A12A21−A11A22 > 0.

To obtain a closed analytic form for the expression of instabil-
ity condition, we linearize the force dependence of detachment
rate ωoff ≈ ω0(1+Fz/Nb fd), where Nb = nbL. This assumption is
reasonable in the weakly bending limit where a large number of
motor proteins would be in the bound state. Note that in the ab-
sence of external force, bound motor density n0

b = ρΩd , with the
duty ratio of motor proteins, Ωd = ωon/[ωon +ω0]. Assuming σ

as the smallest length scale in the problem, so that q ∼ 1/σ , the
condition λ+ > 0 leads to an inequality identifying a force which
will destabilize the steady state profile of an adsorbed filament.
Thus the following expression gives the critical desorption force,

Fc
z ≈

b′0 fdNb√
1−Ωd

[
1−b′1

Ωdkm nuσ4

κ +b′2v0 +b′3

]1/2

, (5)

using |vt | ≈ v0 in the limit of small Fz/Nb� fs. Here b′1 =σb1, b′2 =
σ2b2 and b′3 = σ4b3. Note that the actual desorption may occur
at force values smaller than the destabilizing force obtained from
linear stability analysis, and thus we introduce the proportionality
constant b′0 in the above expression in order to compare it with
numerical simulations.

The above expression shows how the critical desorption force
Fc

z is expected to depend on various properties of the system, like
duty ratio Ωd , bending stiffness κ, and motor velocity v0. The sim-
ulation data for adsorption-desorption phase diagrams fits well
with Eq.(5) [see Figs (1) and (2) ]. In the limit of v0 = 0 and
Ωd following an equilibrium on-off process due to a sticky sur-
face, the above expression describes passive desorption of a stiff
filament36. In the limit of large v0 and κ, the relation simplifies
to

Fc
z ≈ b′0 fdNb/

√
1−Ωd (6)

where Nb denotes the total number of bound motors at the onset
of instability. This expression contains only one unknown param-
eter b′0, and thus we shall present fitting of this expression with
simulated data obtained in the relevant limit. As it turns out, the

simulated phase diagram, in the large v0 and κ limit, is captured
well by the expression obtained above [Fig. 1(c)].

6 Outlook
Using mean field theory and linear stability analysis in one hand,
and a stochastic MD simulation in the other, we investigated
the adsorption-desorption transition of a semiflexible polymer at-
tached to and actively driven by a bed of molecular motors. We
have shown that the non-equilibrium transition is arguably a con-
tinuous transition. This is characterized by a gradual change in
the fraction of bound motors or desorbed length with increas-
ing pulling force, an absence of phase coexistence, and increas-
ing correlation time as one approaches the critical point. We ob-
tained the dependence of desorption force Fc

z as a function of the
bending rigidity κ, duty ratio Ωd and active velocity v0. Phase
diagrams obtained from detailed numerical simulations showed
good agreement with our theory.

The model we studied is closely related to microtubule (MT)
organization in animal cells, particularly those MTs which grow
from the microtubule originating centers (MTOC) towards the
cell membrane, and get captured by the membrane associated
dyenein motors. These motors grab the MT, and tries to walk
towards the MTOC by pulling MTs towards the cell membrane.
Qualitative understanding from our study still remains valid in
such scenarios.

Further, our model may be extended to understand cell adhe-
sion in presence of elastic relaxation of cell membranes, as op-
posed to the rigid membranes considered in the seminal work
by Bell62. This might be achieved by considering two semiflexi-
ble filaments, as one dimensional projection of two dimensional
membranes, and replacing the irreversibly attached motor pro-
teins by freely diffusing reversible bonds.

Our choice of biologically relevant parameter values makes the
current study an interesting prospect for experimental verifica-
tion, e.g., in microtubule-kinesin gliding assays. Variation of v0

and Ωd may be achieved by changing ATP concentration. Bend-
ing rigidity κ is partially tunable changing the ambient electrolyte
concentration. Work is on to extend our model to study two-
dimensional collective motion of semiflexible filaments driven by
molecular motors. Particular questions as to how defects in activ-
ity of molecular motors20 impact motility of single polymers and
in turn the collective motion, will be studied.
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8 Appendix A : Non-linear force velocity re-
lation

The dependence of the velocity of procesive kinesin motor on
the ambient ATP concentration was successfully reproduced by
Michaelis-Menten kinetics12. This describes the binding of ki-
nesin motor head M (enzyme) to an ATP molcule (fuel) and the
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Fig. 5 (Color online) Force-velocity data for kinesin molecules at 2 mM
ATP concentration extracted from Ref. 12. The line is a fit to Eq. 9 with
v0 = 0.807 µms−1, d0 = 0.01 and fs = 1.16 pN.

subsequent ATP-hydrolysis

M+ATP
ra

GGGGGBFGGGGG

rd
M.ATP

rh
GGGAM+ADP+Pi.

Here ra (rd) is rate constant for binding (unbinding) of an ATP to
the kinesin head, and rh is the rate constant of ATP-hydrolysis; Pi

denotes the phosphate ion.
This leads to the Michaelis-Menten expression for the motor-

velocity,
v( f ) = d rh( f )Ψ([AT P]) (7)

where d is the step-size by which the molecular motor moves per
ATP hydrolysis, KM = (rh + rd)/ra is the Michaelis-Menten con-
stant, Ψ([AT P]) = [AT P]/([AT P] + KM) with [AT P] denoting the
ATP concentration.

The net time scale of ATP hydrolysis has two components, one
is the time required in absence of force t1, the other one is an
exponentially increased time scale t2 exp( f δ/kBT ) to cross the en-
hanced energy barrier f δ (δ is a characteristic molecular length
scale) using thermal energy kBT . Thus the total time per ATP hy-
drolysis is t( f ) = t1 + t2 exp( f δ/kBT ) with the corresponding rate
rh( f ) = 1/t( f ). This leads to the following general form of the
rate of ATP hydrolysis12,

rh( f ) =
rh(0)

1+d0 exp( f/ fs)
(8)

where fs = kBT/δ , rh(0) = 1/t1, d0 = t2/t1. The load-free slid-
ing velocity of a single motor is coupled to ATP-hydrolysis by
v0 = rh(0)d Ψ([AT P]). Self propulsion v0 is thus a function of
ATP concentration, and at high enough concentration saturates
to v0 = rh(0)d. Thus the motor velocity

vM( f ) =
v0

1+d0 exp( f/ fs)
. (9)

Fitting this form with kinesin force-velocity data obtained at large
ATP concentration of 2 mM gives v0 = 0.807 µms−1, d0 = 0.01 and
fs = 1.16pN12. The maximal force generated by single kinesin

−1

0

1

2

3

−300 −100 100 300

−
v
/v

0

Fx (pN)

simulation
MFT

Fig. 6 (Color online) Velocity of the polymer as a function of external
force in one-dimension. Error bars indicate numerical errors at some
representative values of simulation data. The dashed line is the MFT
prediction from Eqs. (12) and (15).

molecule is αvM( f ) where α denotes the viscosity of ambient
medium. We used this expression and above-mentioned param-
eter values to model active force generation of molecular motors
in the main text.

Note that the above-mentioned chemical reaction describes the
motion of motor head when it is attached to the polymer track.
In the detached state, it performs simple diffusion.

9 Appendix B : 1D characterization
We perform stochastic MD simulations, of an one dimensional
(1D) rigid rod, under external force Fx, and activity of the molec-
ular motors. When attached to the filament, the head of molecu-
lar motors walk towards positive x-direction with active velocity
va while the tail remains irreversibly attached to the substrate,
thereby pushing the filament towards the opposite direction. A
positive Fx thus acts like an opposing load to the motor driven
motion of the filament, whereas a negative Fx assists that motion.
The stochastic noise acts on the filament as a whole to maintain
the ambient temperature. In the following, we analyze the mo-
tion using mean field theory (MFT) in the over damped limit, and
compare the predictions with simulation results.

The head of each motor protein, when attached to the filament
may move dragged by the filament moving with velocity v, or due
to its active relative motion va. Thus with respect to the attach-
ment point on the substrate, the extension of the head position
is

dx
dt

= v+ va. (10)

The resultant force on the filament due to Nb attached motors is

f a =−kmxNb. (11)

The filament velocity is given by the force balance

αv = f a +Fx. (12)

Journal Name, [year], [vol.], 1–9 | 7

Page 7 of 9 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



55

60

65

70

75

−300 −100 100 300

N
b

Fx (pN)

simulation
MFT

Fig. 7 (Color online) Average number of attached motors as a function
of external force in one-dimension. We show error bars at
representative numerical data. The dashed line shows the MFT
prediction from Eq.s (14) and (15).

The number of bound motors obey the master equation

∂tNb = ωonN− (ωon +ωoff)Nb, (13)

where N is the total number of motor proteins. At steady state,
∂tNb = 0 implies

Nb = N ωon/(ωon +ωoff), (14)

and dx/dt = 0 implies a negative velocity of the filament v =−va.
On an average, the filament moves in the direction opposite to
the motors with the velocity of a single free motor protein.

In the presence of external force, the motor detachment rate
ωoff(x) = ω0 exp(km|x|/ fd), and the active velocity va(x) = v0/[1+
d0 exp(kmx/ fs)]. Using Eq.11 and v =−va, Eq.12 leads to

kmx =
Fx +αva(x)

Nb(x)
, (15)

where Nb can be expressed as a function of x via Eq.14 and ωoff(x).
The non-linear algebraic relation Eq.15 can be solved for x. This
in turn gives the value of va(x) and therefore the filament velocity
v at a given value of Fx. This further allows us to calculate Nb as
a function of Fx through Eq. 14.

Using the parameters ωon = 20s−1 ω0 = 1s−1, α = 1pNs µm−1,
d0 = 0.01, fs = 1.16pN, fd = 6pN, and setting the total number of
available motor proteins N = 75 we plot the Fx dependence of v
and Nb in Figs. 6, and 7 respectively. The plots show compari-
son of this MFT prediction with simulation results, and we find
reasonably good agreement over a broad range of Fx. The num-
ber of attached motors Nb reduces with increase in the load force,
and thus is independent of the sign of Fx. In absence of exter-
nal force, the filament moves with velocity v = −v0 as expected,
and the speed reducing with increasing opposing force Fx > 0.
However for assisting force Fx < 0, MFT predicts a v independent
of Fx. Though for Fx > 0 we see good agreement between MFT
and simulations, for large negative force Fx we find qualitative

deviation. At large external forces, the steady state assumption
dx/dt = 0 does not hold, and velocity of the filament is expected
to be v ∼ Fx independent of the active force. The deviation from
MFT shows a precursor of this crossover.
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