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On the basis of a self-consistent field theory treatment of semi-flexible polymer chains, we analyze the effects of the flexibility on
the structure of polymers sterically confined between two parallel, structureless walls separated by a distance. The model is built
from a wormlike chain formalism which crosses over from the rod limit to the flexible limit, and the Onsager-type interaction
which describes the orientation-dependent excluded-volume interaction. Three surface states were obtained from the numerical
solution to the theory: uniaxial, biaxial, and condensed. As the overall density increases in such a lyotropic system, first order
phase transitions between uniaxial-biaxial states, and biaxial-condensed states can occur.

1 Introduction

1.1 Nematic liquid crystals in a slit

The nematic state of a liquid crystal system consists of long
molecules that are directionally aligned in one direction while
the position of these molecules are randomly distributed. The
introduction of a wall surface disrupts the otherwise uniform
density distribution of the molecules in a bulk state [Fig.
1]. In his seminal work, using the Landau-de Gennes theory
of thermotropic liquid crystals consisting of rigid molecules,
Sheng demonstrated that near a single flat wall surface, several
surface-induced structures displaying different orientational
and wetting properties can be produced,1,2 depending on the
wall-anchoring properties. The surface-induced structures can
mutually phase transit into each other, yielding a possible bi-
axial state near the surface. Indeed, other studies of models of
a similar nature have arrived at the same conclusion.3–6 Us-
ing a Mayer-Saupe type approach, Emelyanenko et al. 7 have
recently correlated the surface-transition theory with an exper-
imental measurement on a thermotropic liquid crystal.8

In a lyotropic liquid crystal system, the molecular density is
the control parameter, in comparison with a thermotropic sys-
tem where the temperature is the control parameter.9 Using
a molecular-level theoretical model that can be traced back
to molecular-level parameters such as density and excluded-
volume diameter, Chen and Cui demonstrated the phase tran-
sition between two surface phases in flexible lyotropic liquid-
crystalline polymer solutions near a single hard wall sur-
face.10 As matter of fact, these surface states in association
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Fig. 1 Cross-section view of wormlike polymer chains confined in a
slit between two parallel hard walls separated by a distance H. A
coordinate system is set up such that the x-axis is along the surface
normal. An arc-variable t is defined on the polymer chain starting
from one terminal (t = 0) and ending at another (t = 1). The tangent
direction of the chain u is also shown.

with special orientational ordering are quite general in liquid
crystals and can exist in lyotropic systems as well, which can
exist in a liquid-crystal mixture11 or a fluid of hard colloidal
platelests . Directly using an Onsager functional for rigid rod-
like molecules, a special case of the wormlike chain model
in the rigid limit, Shundyak and van Roij reported that the
surface a transition can happen when rigid rods are in con-
tact with a soft wall.12 Beyond such a mean-field type model,
Monte Carlo simulations have been used as well to demon-
strate the existence of wetting and capillary nematization of
hard rods.13 The existence of the surface biaxial layer for liq-
uid crystal rods was also shown in more complicated density-
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Fig. 2 Illustrations of the surface wetting states predicted from SCFT of wormlike polymers interacting with each other by the Onsager
excluded volume interaction. On the top row, we illustrate the uniaxial state where the orientational distribution is symmetric about the x-axis,
the biaxial state where the two surface layers display nematic ordering along the z-axis but the middle portion still stays at an isotropic state,
and the condensed phase where the middle portion forms a nematic state with a nematic director in z, similar to a bulk nematic phase. On the
second, third, fourth rows, the distribution function is projected in three different perspectives, viewed from the y-axis, z-axis, and x-axis.
Lines are used in the sketches to demonstrate the orientational distribution; they do not represent images of the molecules — except for the
α ≪ 1 limit.

functional theories.14–16

The problem of wormlike polymers confined between two
flat surfaces separated by a distance H provides another com-
peting parameter, the slit width, which enriches the physical
picture of surface transitions. van Roij et al. used Monte Carlo
simulation and the Zwanzig model18 to demonstrate that ly-
otropic rigid rods in a slit display three different types of ori-
entational phases (uniaxial, biaxial or condensed), separated
by phase boundaries in a phase diagram.17,19 Using a self-
consistent field theory coupled with the Onsager interaction
for flexible wormlike liquid-crystal polymers, Chen et al. have
found similar surface phases.20,21 Depending on the magni-
tude of the overall density, the system can display a typical ori-
entational pattern which is schematically shown in Fig. 2. Re-
cent Monte Carlo simulations on confined semiflexible chains
have verified the existence of these surface states and the sur-
face phase transitions between them.22–25 The uniaxial, biax-
ial, and condensed phases are called surface disordered, sur-
face ordered, and nematic phases in the last three references.
The phase diagram based on simulation results presented in
Ref. 24 qualitatively matches the phase diagram based on
mean-field theories presented in Refs. 20, 21. The basic struc-
ture is similar to those in Fig. 3. Table 1 summarizes these
theoretical studies.

One major difference, though, is that the uniaxial-to-biaxial
transition line was identified as a continuous transition in
Refs. 17, 19, 23–25, whereas the same transition line was iden-

tified as a first-order transition in Refs. 21. To ensure that this
is not caused by various degrees of flexibility

α = L/2λ (1)

where L is the molecule length and λ is the persistence length
of a wormlike chain, here we examine the surface properties
over the entire α range, with particular attention paid to the
asymptotic rigid limit (α ≪ 1). The same self-consistent field
theory (SCFT) is used, consistent with the model used in Refs.
20, 21 where only the α ≫ 1 limit was examined. Here, be-
cause a different numerical technique is used, we verify the
phase diagram calculated in the α ≫ 1 limit. The theoreti-
cal framework can be found from Ref. 26 and is summarized
in Appendix A. When the formalism is applied to the bulk
state in the α ≫ 1 limit, the entire theory is reduced to the one
used by Khokhlov and Semenov27 for studying the isotropic-
nematic phase transition of a flexible polymer solution, who
incorporated the Onsager interaction which drives the phase
transition.28 Appendixes B and C review the bulk transition
for any α determined in Ref. 29. For the slit confinement
problem, we can use the slit width H as a scaling parameter,
which makes the entire theory to depend on three parameters,
α , L/H, and the density of the system; this can be found in
Appendix D.

As will be discussed in more details below, using the nu-
merical technique presented in Appendix E, we arrive at a
similar conclusion, regardless the flexibility of the molecules
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α = L/2λ Zwanzig model Onsager model Monte Carlo
Rods ≪ 1 Ref. 17, 19 This work Ref. 17, 19
Semiflexible polymers any This work
Flexible polymers ≫ 1 Ref. 21 Ref. 24

Table 1 Theoretical studies of lyotropic wormlike polymers confined by a slit consisting of two hard walls, by using different models. The
total length and persistence length of a polymer are L and λ .

in the system. Both uniaxial-biaxial and biaxial-condensed
transition lines are of the first-order characteristics and they
both terminate at critical points, as shown by filled symbols in
Fig. 3. Figure 3(e) for α ≫ 1 is identical to the one in Ref. 21
where a completely different numerical method was used.

While all technical details are placed in Appendixes for in-
terested readers, in Sect. 1.2 we first explain the orientational
structures expected in each of these states. The main theoreti-
cal procedure is briefly reviewed in Sect. 1.3. The new numer-
ical results for the limit α ≪ 1 are discussed and analyzed in
Sect. 2. For semiflexible systems where α , 0, we first review
the α ≫ 1 case in Sect. 3.1, and then turn our attention to
the crossover between the two asymptotic α limits, by noting
a few outstanding features in the intermediate α systems, in
Sect. 3.2.

1.2 Surface states and order parameters

Figure 1 is an illustration of the lyotropic system that is
considered here. Wormlike molecules are placed inside the
slit and they interact with each other by an excluded-volume
interaction. The polymer segments experience steric repul-
sion from the confining walls which naturally forms a planer
anchoring condition. No special anchoring preference is as-
sumed at the wall and no other interactions (such as the van
der Walls attraction) are considered. In a bulk phase, which is
also relevant here for the H/L ≫ 1 limit, below the isotropic-
nematic transition point, the bulk of the liquid is at an isotropic
state. In a low-density system, the orientational ordering of
the molecules is symmetric about the wall normal and typi-
cally persists within a thin layer. In a system of rigid rods, the
thickness of the layer can be a few times of L. In a system of
semiflexible chains, the thickness of the ordered layer can be
a few times of λ . The left panel of Fig. 2 illustrates this case.
One principal order parameter is adequate for the description
of this uniaxial (U) state.

As molecular density increases, the uniaxial state yields to
the biaxial (B) state where a thicker layer of ordered polymer
segments can now be seen. These layers accompany a density
enhancement and contain nematic-like orientational ordering,
aligned in a direction in parallel to the surface surface, the z
axis. A typical structure is shown in the middle illustration of
Fig. 2. The distribution function no longer has the rotational
symmetry about the x axis. The central portion of the system

is still in its isotropic phase where the symmetry remains.
As the density further increases, the surface density en-

hancement layer grows in thickness. As the overall density
approaches the vicinity of the bulk isotropic-nematic transi-
tion point, the entire system displays orientational ordering,
and now the nematic state dominates the system. The sur-
face layer grows rapidly, making a phase transition from a
pre-wetting state to a complete wetting state. The right panel
of Fig. 2 is an illustration for a confined liquid crystal at its
condensed (C) state. The central portion of the the liquid no
longer has a symmetry about the x axis in its orientational dis-
tribution function. Rather, the central portion now has a main
orientational axis along the z axis and is uniaxial about z. The
presence of the wall can now be viewed as an effect that makes
the system biaxial, which has the same nature as the weak bi-
axiality that must be present at an isotropic-nematic interface
in parallel to the main nematic director.30,31

Hence the simplest measurement that can be used to distin-
guish the different surface states studied here is from exam-
ining the properties of the orientation order parameter, which
is usually represented in a matrix form.32 The orientational
states and definition of the axes illustrated in Fig. 2 give rise
to a diagonalized order parameter matrix.

A polymer chain is made of monomeric segments. To
understand the near-wall structure, we look into the orienta-
tional properties as a function of distance from the left wall, x.
Across the slit, the left wall has the coordinate x = 0 and the
right x = H. Let ϕ(x,u) be the segment distribution function
at x for a segmental orientation specified by a tangent unit vec-
tor u. These three diagonal orientational order parameters, Sx,
Sy, and Sz can be defined by using the second-rank Legendre
polynomial P2(ζ ) = 1

2 (3ζ 2 −1),

Sk(x)≡
∫

duP2(u · k̂)ϕ(x,u)∫
duϕ(x,u)

(2)

where k = x, y, z. Three unit vectors k̂ = x̂, ŷ, and ẑ along the
x-, y-, and z-axes are used here.

Only two of these three functions are independent. The def-
inition above yields the identity

Sx(x)+Sy(x)+Sz(x) = 0. (3)
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Fig. 3 Surface phase diagrams determined in this work, in terms of
the reduced chemical potential µ̃ = β µ and reduced slit height H
for systems composed of wormlike molecules of various degrees of
flexibility: α = 0 (rodlike), 0.1 (near-rodlike), 1.0 (semiflexible), 4.0
(near flexible), and ∞ (flexible). All phase diagrams contain three
states illustrated in Fig. 2. Solid lines are interpolated, first-order
phase boundaries crossing open symbols which are actually
determined in numerical calculations. Filled symbols indicate
terminal second-order transition points. Arrows indicate the
first-order, bulk (i.e., H = ∞) isotropic-nematic transition point. The
axes are scaled by functions of α , µ̃0(α) and A0(α), which can be
found in Appendix C.

The U state contains an order parameter symmetry

Sy(x) = Sz(x) =−1
2

Sx(x). (4)

According to these only one order parameter is independent
for a system at the U state.

To measure the biaxiality of B state, we define

P(x)≡ Sy(x)−Sz(x). (5)

The uniaxial phase, for example, is characterized by P(x) =
0 over the entire slit, and in the biaxial phase, nonvanishing
P significantly develops only in the near-wall regions. The
central region of the slit of U and B states has vanishing or
weak orientational ordering.

Technically, the C phase is also biaxial, however, having a
higher average density between the walls (see below). What
distinguish itself from a P state is the strong orientational or-
dering of molecules in the central slit region. Here we have
followed the terminology used in related studies17,19,21 and
refer to the low-density biaxial phase as a biaxial phase and
the high-density biaxial phase as a condensed phase.

1.3 Theoretical framework

In the current work, we focus on the physical properties of
n semiflexible wormlike polymers confined between two flat
surfaces separated by a distance H. Each polymer has length
L and persistence length λ .26,33 Out of three length scales,
only two reduced ones are relevent, H/L and α ≡ L/2λ . The
parameter α determines rigidity and flexibility of a polymer.
A rodlike polymer, for example, is characterized by α ≪ 1 and
flexible polymer by α ≫ 1. In a typical theoretical framework,
the length scale λ disappears from the formalism after taking
the α ≪ 1 asymptotic limit.

In a lyotropic liquid crystal system, another important pa-
rameter is the number density of polymer chains ρ = n/V
where V is the volume of the system. According to Onsager,
the mutual exclusion of polymer segments that have a hard-
core diameter d is the mechanism that drives the liquid-crystal
formation in these systems. A high density drives the polymer
segments to order orientationally.28 In the current confinement
system, the local density near the wall drives the surface ori-
entational ordering to occur. Across the entire slit, we expect
that the polymer density varies as a function of x. Instead of
density, a convenient control parameter is the system chemical
potential, µ , which is related to the bulk free energy F by

µ =
∂F
∂n

. (6)

Hence our phase diagram will be described by using H/L, α ,
and

µ̃ = β µ . (7)
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The bulk isotropic state, for example, has a reduced chemi-
cal potential µ̃ that is related the reduced density dL2ρ . The
expression within a second-virial approximation can be found
in Eq. (28). The chemical potential as a function of the re-
duced density has different branches, corresponding to differ-
ent phases. In general, along the same branch, µ̃ increases as
a function of the reduced density.

A self-consistent field theory (SCFT) can be established to
describe the free energy of this spatially inhomogeneous and
orientationally ordered system by incorporating the Onsager
interaction between polymer segments.26 For consistency, in
Appendix A, we present the major structure of the theory,
which depends on three parameters, α , H/2λ , and µ̃ .

2 Rodlike particles in slit confinement, α = 0

We first discuss the surface properties of an α = 0 sys-
tem (rodlike particles). The surface phase diagram is plot-
ted in Fig. 3(A) in terms of µ̃/µ̃0(0) and H/2λA0(α) where
µ̃0(0) = 9.0132... and A0(α) = α are scaling factors listed
in Appendix C. In the asymptotic α ≪ 1 limit, the combi-
nation 2λA0(α) = L becomes λ -independent. There are three
branches of the SCFT solution, corresponding to surface states
with distinctively different symmetries as illustrated in Fig. 2:
U, B, and C.

2.1 Uniaxial-biaxial phase transition
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Fig. 4 Reduced surface tension σ̃ , defined by (48), as functions of
the reduced chemical potential µ̃ = β µ , for the uniaxial (open
symbols) and biaxial (filled symbols) states for rodlike molecules
confined in slit of reduced width H/L = 1/8,1/4,1/2 and 3.0,
represented by circles, diamonds, triangles, and squares,
respectively.
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Fig. 5 Reduced surface tension σ̃ of the biaxial and condensed
branches, corresponding to open and filled symbols, as functions of
the reduced chemical potential µ̃ = β µ for a rodlike system α = 0.
Four examples are given here: H/L = 2.5,3.5,4.0, and 8.0,
represented by circles, diamonds, triangles, and squares.

To determine the U-B phase boundary, represented by sym-
bols in the Fig. 3(A), for a given H/L we compare the reduced
surface tension σ̃ of different states as a function of µ̃ . For ex-
ample, in Fig. 4 we plot the numerical solution for both uni-
axial and biaxial branches. In all cases, in particular high H/L
cases, the two branches cross each other clearly, indicating a
first-order phase transition. The uniaxial state is stable at low
µ̃ (low ρ̃ region) and the biaxial state is stable at high µ̃ (high
ρ̄ region).

The relative difference in slopes of the two surface-tension
branches for a typical H/L in Fig. 4 becomes smaller, as
H/L decreases. The first-order uniaxial-biaxial transition ter-
minates at a second-order critical point at H/L = 0, labeled
by a filled circle in Fig. 3(a). We project that at this point,
µ̃/µ̃(0) = 0.894..., on the basis of an analysis from plots sim-
ilar to those in Fig. 4, by reducing H/L consecutively.

2.2 Biaxial-condensed phase transition

In Fig. 5, we examine four examples of the reduced surface
tension as a function of µ̃ for given H/L. At relatively low
µ̃ (low ρ̃), the biaxial state is stable. At relatively high µ̃
(high ρ̃) the condensed state has a lower free energy hence it is
stable. The crossing point of the two typical curves determines
the phase boundary, which is plotted by diamonds in Fig. 3(a).
At the asymptotic limit H/L ≫ 1, both states in the system
become bulk phases: isotropic and nematic; in terms of the
reduced chemical potential µ̃ , the transition then takes place
at the bulk isotropic-nematic transition point µ̃0. This limit is
indicated by an arrow in Fig. 3(a).

The first-order characteristic is weakened as the system ap-
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proaches the critical point by lowering H/L. The entire first-
order curve terminates at a critical point labeled by the filled
diamond in Fig. 3(a).
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Fig. 6 Phase diagram of the biaxial-condensed transition in other
perspectives: (a) L/H-ρ̃ diagram and (b) µ̃-ρ̃ diagram. In both
plots, the biaxial-condensed co-existence region is shown.

The B-C phase transition can be viewed in other represen-
tations. Figure 6 shows the phase diagram in L/H − ρ̃ view
and µ̃ − ρ̃ view respectively. The middle portion of the di-
agrams are the coexistence region of biaxial and condensed
states. These phase diagrams can be compared with the liquid-
vapour phase transition diagram, where the density coexis-
tence region is possible. The coexistence region terminates
at a critical point.

The critical point [filled diamond in Fig.3 (A)] for the B-C
transition, specified by µc and Hc/L, is determined by con-
sideration of the the co-existence density difference in Fig. 6,
represented by the magnitude of the dashed lines. Since we
are dealing with a mean-field theory, we expect that the den-

sity difference follows the power law

∆ρ̃ ∝ (H −Hc)
1/2 (8)

as the critical point is approached in Fig. 6(A). Similarly we
expect

∆ρ̃ ∝ (µ̃ − µ̃c)
1/2 (9)

in Fig. 6(B). A linear regression on the data of [∆ρ̃]2 yields the
critical values, Hc/L = 2.46±0.1 and µ̃c = 8.7±0.1 based on
the current model.
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Fig. 7 Density and orientational order-parameter profiles for at the
coexisting uniaxial (left) and biaxial (right) states at the
uniaxial-biaxial transition point for H/L = 1/8 (circles), 1/4
(diamonds), 1/2 (squares), and 3 (triangles). At the these transition
points, the reduced chemical potential has the value
µ̃ = 7.69, 7.12, 7.10, and 7.80, respectively. Only the portion near
the left wall is displayed for the H/L = 3.0 case.

2.3 Density and orientational-order-parameter profiles

The variation of segmental density across the slit, after av-
eraging over the orientational distributions, can be obtained
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Fig. 8 Density and order parameter profiles of biaxial and
condensed state at the B-C transition point, for α = 0, the rod limit.
H̃ = 2.5(circles), 3.0(diamonds), 4.0(squares), 8.0(triangles) are
shown in this plot, corresponding to µ̃ = 8.72, 8.78, 8.86, 8.95,
respectively.

from ρ̃Φ(x̄) where

Φ(x̄) =
∫

ϕ(x̄,u)du (10)

is the orientationally averaged density. Figures 7(a) and 7(b)
show the density profiles at the uniaxial-biaxial transition
point for a selection of H/L at 1/8, 1/4, 1/2 and 3. Fig-
ures 8(a) and 8(b) show the density profiles at the biaxial-
condensed transition point for a selection of H/L at 2.5, 3.0,
4.0 and 8.0. The two (b) plots of the figures display the density
difference for a clearer presentation.

One siginificant feature is the cusplike shape near the wall.
This mirrors the density profile of a dilute rodlike molecule
solution near a single wall, studied by Poniewierski, who also
found a similar singularity on the center-of-mass density pro-
file near the wall, at approximately x/L = 1/2.34 In this pa-
per, we used a contour-based density function rather than the
center-of-mass density. The two physical quantities are related

to each other by a transformation that integrates over the path
variable.26 Transforming Φ back to the center-of-mass density
profile, we found that the cusp occurs at the same x/L = 1/2
location.

The order parameter profile Sx(x) and biaxiality profile
P(x), defined in (2) and (5), are displayed in Fig. 7(c)-(f) as
well as Fig. 8(c)-(f). As µ̃ increases, the density near the
wall is significantly larger in comparison with the density at
the slit center. Due to the large density enhancement, Sz(x) is
positively large at the places where Φ(x) is large. This causes
the large negative value of P in plots 7(f) and 8(f). Note that
over the entire x/L, P(x) in Fig. 7(e) is identically zero, which
reflects the symmetry of the uniaxial phase. In H/L ≫ 1 sys-
tems, the central region of the slit of the B state has a P value
close to 0 as well, which is a reminiscent of the bulk isotropic
phase. In H/L ∼ 1 systems, at the U-C transition, the C state
displays even more biaxiality over the entire region, in com-
parison with the B state.

3 The case of α , 0, semiflexible chains in slit
confinement

3.1 Phase Diagram of flexible wormlike chains α ≫ 1

In the asymptotic L ≫ 2λ limit, we can already guess the
qualitative phase diagram by working on a scaling analysis.
The dominant length scale is the effective Kuhn length a= 2λ .
The total chain length L, which is an important length scale
in rodlike molecular system, now plays a role of providing
L/a persistent segments so that the total effective rigid seg-
ments in the system is neff = nL/a. Taking Leff = a as the
new basic length scale of the effective rodlike segments, we
can deduce the scaling behavior of the bulk isotropic-nematic
transition density. The Onsager interaction coefficient, for ex-
ample, becomes L2

effd instead of L2d. Hence the isotropic-
nematic transition occurs at a reduced density neffL2

effd/V ∼
nLa−1a2d/V = nLad/V . The effective chemical potential at
the transition point becomes (∂F/∂n)eff = (L/a)−1µ . Hence,
if we qualatively map the phase diagram in Fig. 3(a) to
Fig. 3(e), µ0 on the vertical axis, i.e., the transition chemi-
cal potential µ̃0, is proportional to L/a. Because the effective
length is Leff = a, the horizontal axis should be replaced by
H/Leff = H/a. The qualitative feature then remains the same
as Fig. 3(a).

Indeed, a SCFT-based precise calculation of the α ≫ 1
case gives rise to Fig. 3(e), where all these scaling properties
are preserved. The transition chemical potential, for exam-
ple, has the value µ̃0 = (20.498...)L/a and the bulk isotropic-
nematic transition occurs at ρ̃ I = (13.0495...)a/L and ρ̃N =
(14.0769...)a/L.29 Our phase diagram for the α ≫ 1 case in
Fig. 3(d) is identical to the one calculated for the same system
but with a different numerical approach in Ref. [21]. The read-
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ers are referred to this reference for more detailed description
of the structural properties.

3.2 Phase Diagram of wormlike chains: other α

1.7
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H
c/2

λ 
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0(α
)
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0.97

µ cB
C
/µ
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)

˜
˜

0.01 0.1 1 4 8
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B
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0(α
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˜
˜

(a)

(b)

(c)

Fig. 9 The location of the two critical points as a function of the
flexibility α . The U-B critical point is located at Hc = 0 and µ̃UB

c
shown by the line behind circles in plot (c). The B-C critical point is
located at Hc shown by the line behind circles in plot (a), and µ̃BC

c
shown by the line behind circles in plot (b). Solid and dashed lines
indicate the asymptotic values at α = 0 (left) and α = ∞ (right).

For other values of α , we expect a crossover of the phase
diagrams from Fig. 3(a) to Fig. 3(e). Three intermediate cases
are plotted as (b) [for α = 0.1], (c) [for α = 1], and (d) [for
α = 4] in this figure. To facilitate the plots within a reason-
able scale, we reduce the vertical axis by µ̃0(α) and use the
Kratky-Porod factor A0(α) defined in Appendix C to scale the
horizontal axis so that the crossover from H/L to H/a can be
maintained within a similar scale.

The main structure of the phase diagram, the first-order na-
ture of the U-B and B-C phase transitions and the existence of
two critical points on the phase diagram, remains the same. In
Figs. 9(a) and (b), we plot the location of the critical point, in
terms of Hc and µ̃BC, as a function of α for the B-C transition.
In Fig. 9(c), we plot the location of the critical point, in terms
of µ̃UB, happening at Hc = 0, as a function of α for the U-B
transition.

4 Uniaxial-biaxial phase transition: first-order
vs. second-order

The numerical evidence of the crossing of two branches (U
and B) of the free energy in Fig. 4, in particular at large H/L
indicates the first-order nature of the U-B transition. Similar
numerical results were found in Ref. 21, based on a different
numerical technique. This is produced from the same SCFT
where both angular dependence and positional dependence of
the distribution function varies continuously.

The numerical solution based on the Zwanzig model for
rodlike molecules, however, indicated a different story. The
U-B transition line, for example, was found to be a flat,
second-order line in parallel to the H/L axis, which can be
contrasted with the variation of the first-order U-B boundary
as a function of H in the current work. Although the interac-
tion form expressed in (13) appears to be local, it has a nonlo-
cal nature from the perspective of the rod-center-to-rod-center
interaction. This can be rigourously shown by transforming
the quantities in the free energy, (12), to new notations that
use a density distribution function based on the center of mass
of a rod molecule.26,35 It is unlikely that the difference be-
tween the results yielded from the two models is caused by
how the excluded-volume interaction is handled. Within the
Zwanzig model, only three representative orientational direc-
tions, along the three main axises are allowed. A rod molecule
is allowed to point in these three directions only. Hence the
orientational dependence is oversimplified in Refs. 17, 19.
This is more likely the reason that has caused the difference.

Recent Monte Carlo simulations of semiflexible polymers
with excluded-volume interactions produced a similar µ-H
phase diagram.23–25 Many features on the phase diagrams
are similar, including the bending of both µ-H boundaries to
lower µ values as H reduces (however, the µ-H curve of the
U-B transition was projected to be flat in Ref. 23). In the
earlier work, the biaxiallity verses chemical potential plot in
Fig. 7(b) of Ref. 23, for example, displays a seemingly finite
jump at the U-B transition. This apparent first-order signature
was later dismissed by the same authors and a second-order
U-B transition scenario was proposed.23,25,36 A discrepancy
regarding the order of the U-B transition exists between these
Monte Carlo simulations and the current SCFT results. It is
unclear whether the discrepancy can be attributed to the finite
lattice setting used in the simulations.

Strictly speaking, a direct comparison between our results
on a lyotropic system and those on a thermotropic system can-
not be made. It is, however, worthwhile to note that lowering
temperature in a thermotropic system encourage stronger ne-
matic ordering. This has the same effect as in a lyotropic sys-
tem when the chemical potential increases. The two staged
transitions, U-B and B-C, can be compared with the surface
nematic and bulk nematic transition observed recently in a
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thermotropic system.Aya et al. The observed heat capacity
curve associated with the surface transition has a sharp peak,
characteristic of a first-order transition. The experiment ob-
servation was explained by a Maier-Saupe theory based on a
structure similar to a typical Onsager theory for a lyotropic
system — here we must effectively regard the Maier-Saupe
coefficient as a function of density. The two staged transitions
found in this theoretical work also predicted a first-order sur-
face transition, consistent with what we see here on the U-B
transition.

A definitive examination of the order of the U-B transition
within the current SCFT would be to conduct a simultaneous
expansion of the free energy expression in (39) as a function
of Sx and P. The first step is the expansion of the mean-filed
W in terms of spherical harmonics, where two order parame-
ters, representing the biaxial and main orientational ordering,
show up in the second-rank spherical harmonics. The mod-
ified diffusion equation can then be solved based on a sim-
ilar expansion of the propagator function. Through (43), a
connection can be established between these field-based or-
der parameters and Sx and P. At this stage, the free energy
is expanded in Sx and P. Note that (42) should not be used
in this process (i.e., the free energy is not yet minimized as
a function of ϕ ). The end result is a Landau-type free energy
expansion, which is can be minimized with respect to Sx and P
and allows the identification of the transition order through an
analysis of the leading terms. This procedure was used for an-
alytically calculating the bulk isotropic-nematic transition of a
two-dimensional system, which is a much simpler case.37

5 Summary

In summary, the confinement of semi-flexible polymer
chains is studied with the inclusion of the Onsager excluded-
volume interaction, for various degrees of flexibility, ranging
from 0 to ∞. We have also shown that three surface phases,
uniaxial, biaxial, and condensed, can exist in this system, de-
pending on the magnitude of the slit width and average density
within the slit.
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A SCFT for wormlike polymers

We consider a system of volume V consisting of n worm-
like homopolymers confined between two parallel flat plates
separated by a distance H. The overall chain density is hence
ρ0 = n/V . Every polymer chain is modeled by a cylindrical
filament which has total a contour length L, diameter d, and
persistence length λ .33,38 A coordinate system is displayed in
Fig. 1, together with a representative chain.

Let ρ(r,u) be the probability distribution function of find-
ing a segment of the polymer chain located at r and pointing
in the tangential direction u, such that∫

drduρ(r,u) = n. (11)

Within the self-consistent field theory in which a mean field
W (r,u) coupled with ρ(r,u) is introduced, the system free
energy, F , can be written as26

βF =nln(n/Q)+nlnC0 −
∫

drduW (r,u)ρ(r,u)

+
1
2

∫
drdu

∫
dr′du′ρ(r,u)V (r,u;r′,u′)ρ(r′,u′)

(12)

where β = 1/kBT with kB as the Boltzmann constant and T
temperature. The free-energy constant C0 is set at C0 = 4πdL2

for below convenience. The expression is accurate at the level
of second-virial approximation. According to Onsager’s orig-
inal idea of rod-rod interaction,28 one can rigourously express
the Mayer function V in the last term to represent the orienta-
tionally dependent polymer segment-segment interaction

V (r,u;r′,u′) = 2dL2δ (r− r′)|u×u′|, (13)

which was first introduced for wormlike chains by Khokhlov
and Semenov.27

We remark on the use of the apparently local interaction
energy in the above expression. Such an expression is used to-
gether with the contour-averaged density distribution ρ(r,u),
which is different from the density function defined based on
the properties at the center of mass ρc(r,u). This is a particu-
larly important point, as within the α = 0 limit, these two dis-
tribution functions are different in a spatially inhomogeneous
system; the use of ρc(r,u), for example, requires a nonlocal
Onsager interaction energy. The transformation of the formal-
ism, from using ρ(r,u) and the local interaction energy, to
using ρc(r,u) and a nonlocal interaction energy, can be found
in Refs. 26, 35.

The single-chain partition function in an external field
W (r,u), Q, can be calculated from

Q =
∫

drduq(r,u;1), (14)

where q(r,u; t) is the propagator used in polymer theory to
represent the probability of finding a polymer segment of
chain length Lt, whose t-terminal end is located at the posi-
tion r and points to the direction of u.26,39 The propagator can
be calculated from solving a modified diffusion equation,

∂
∂ t

q(r;u, t) =
[

L
2λ

∇2
u −Lu ·∇r −W (r,u)

]
q(r,u; t), (15)

provided an initial condition q(r,u,0) = 1. The entire the-
oretical framework needs two more relationships for self-
consistency. Minimizing F with respect to ρ yields

W (r,u) = 2dL2
∫

du′|u×u′|ρ(r,u′), (16)

and minimizing F with respect to W yields

ρ(r,u) =
n
Q

∫ 1

0
dtq(r,u; t)q(r,−u;1− t). (17)

We need to solve the coupled integrodifferential Eqs. (14)-
(17) for the current problem.

To proceed further we define a dimensionless density

ρ̃ = dL2ρ0 (18)

and a dimensionless probability,

ϕ(r,u)≡ ρ(r,u)/ρ0, (19)
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the fraction of polymer segments in a chain that is located at r
and points to the direction of u. The latter obeys the normal-
ization condition

1
V

∫
drduϕ(r,u) = 1. (20)

B Homogeneous bulk phases

The problem at hand is the calculation of the probability
distribution function which depends on the overall density ρ0
of the system. Here we review the main bulk properties of the
isotropic-nematic transition resulted from solving the above
theory.27,29,40,41

As all r dependence for the homogeneous bulk property is
removed, the only variable becomes u in the theory. Adding a
subscript b (bulk) to all quantities, we rewrite the free energy
per chain as

βFb

n
=ln

(
4πρ̃
Q/V

)
−
∫

duWb(u)ϕb(u)

+ρ̃
∫

du
∫

du′ϕb(u)|u×u′|ϕb(u′)

(21)

where
∫

duϕb(u) = 1. There are two parameters in the model.

(a) The reduced density ρ̃ which appears in the free energy
expression above, and the resulting mean field in (16).

(b) The ratio
α ≡ L/2λ (22)

that appears in the first term on the right-hand side of
MDE in Eq. (15). The second, coupling term vanishes
for the bulk problem. The parameter α determines the
flexibility of the wormlike chain. In the limit α ≪ 1,
we recover the original Onsager theory for rods,28,40 and
in the limit α ≫ 1, we recover the Khokhlov-Semenov
theory for flexible chains.27,40

Once the self-consistent set of equations, Eqs. (14)-(17),
are solve for given ρ̃ and α , the free energy as a function of
density is known.29,31 We can then calculate the chemical po-
tential

µ ≡
[

∂F
∂n

]
T,V

and the osmotic pressure

P ≡−
[

∂F
∂V

]
T,n

for the bulk system. The reduced versions are

µ̃ ≡ µ̃ = 1+ ln
(

4πρ̃
Q/V

)
, (23)

and

P̃ ≡ βPdL2 = ρ̃ + ρ̃2
∫

dudu′ϕb(u)|u×u′|ϕb(u′). (24)

In particular, for the orientationally isotropic (i) phase, we
can show

W i
b(u) = ρ̃ iπ/2. (25)

The partial differential equation in (15) has a trivial solution,

qi
b(u; t) = exp(−πρ̃ it/2). (26)

Using that we arrive at the free energy for the isotropic state

βF i

n
= ln(ρ̄ i)+

πρ̃ i

4
. (27)

Hence, for the isotropic state the reduced chemical potential
and pressure are

µ̃ i = 1+ ln(ρ̃ i)+πρ̃ i/2. (28)

and
P̃i = ρ̃ i +π(ρ̃ i)2/4. (29)

These analytic expression are independent of the flexibility
L/2λ . However, at the isotropic-nematic transition point, the
transition density is dependent on L/2λ .

The system undergoes a first-order isotropic-nematic phase
transition as ρ̃ increases. The densities of the isotropic and
nematic phases at the transition, ρ̃ i and ρ̃n, can be determined
from29,40

µ̃ i(ρ̃ i) = µ̃n(ρ̃n) (30)

and
P̃i(ρ̃ i) = P̃n(ρ̃n). (31)

where the quantities with a superscript n represent the nematic
branch. The numerical results for the transition densities, ρ̃ i

and ρ̃n, as a function of α are available in Ref. 29 and listed
here in Appendix C.

C Previous results used in the text

Transition densities – Calculated in Ref. 29, the isotropic-
nematic transition densities of the current model for the bulk
phase are well represented by the empirical formula,

ρ̃ i
b(α) =

∑3
j=0 ai(α) j

1+∑2
j=1 bi(α) j

(32)

ρ̃n
b/ρ̃ i

b −1 =
∑3

j=0 ai(α) j

1+∑3
j=1 bi(α) j

(33)

The coefficients a j and b j are listed in Table 2.

1–14 | 11

Page 11 of 14 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



a0 a1 a2 a3

ρ i
b 4.1895 26.102 66.003 117.85

ρn
b/ρ i

b −1 0.2737 3.0357 3.0666 10.786
b1 b2 b3

ρ i
b 3.4806 9.0331 0

ρn
b/ρ i

b −1 26.826 86.79 143.15

Table 2 Numerical coefficients in (32) and (33)

Reduced chemical potential – At the isotropic-nematic transi-
tion, according to the model in the text, the chemical potential
has the value

µ̃0(α) = 1+ ln(ρ̃ i
b)+πρ̃ i

b/2 (34)

which is used for rescaling the vertical axis, µ̃ , in Fig. 3. The
chemical potential has the asymptotic limits

µ̃0(α) =

{
9.0132..., when α ≪ 1,
α ×20.498..., when α ≫ 1. (35)

Kratky-Porod factor – In the text, we use a scaling factor
A0(α) which is given by

A0(α) = [2α + exp(−2α)−1]/2α. (36)

The Kratky-Porod expression for the mean square end-to-end
distance is related to the above by

⟨
R2

⟩
= 2λLA0(α). The

Kratky-Porod factor A0(α) has the asymptotic limits

A0(α) =

{
α , when α ≪ 1,
1, when α ≫ 1. (37)

D Reduced theory for slit confinement

The basic assumption is that the segment density of system
is uniform in both y- and z- directions and has variation in x
only [see Fig. 1]. Using the slit width H as the basic unit, the
reduced variable

x̃ = x/H (38)

has a range [0,1] where H is the slit width. We can show that
the free energy can be rewritten as

βF
n

=ln
(

4πρ̃
Q̃

)
−

∫ 1

0
dx̃

∫
duW (x̃,u)ϕ(x̃,u)

+ρ̃
∫ 1

0
dx̃

∫
dudu′ϕ(x̃,u)|u×u′|ϕ(x̃,u′)

(39)

where

Q̃ ≡
∫ 1

0
dx̃duq(x̃,u;1). (40)

The propagator q now satisfies

∂
∂ t

q(x̃,u; t) =
[

L
2λ

∇2
u −

L
H

ux
d
dx̃

−W (x̃,u)
]

q(x̃,u; t). (41)

where ux = u · x̂. Equations (16) and (17) become

W (x̃,u) = 2ρ̃
∫

du′|u×u′|ϕ(x̃,u′), (42)

and

ϕ(x̃,u) =
1
Q̃

∫ 1

0
dtq(x̃,u; t)q(x̃,−u;1− t). (43)

The hard-wall boundary conditions needed for solving (41)
are given as26,{

q(0,u; t) = 0, if ux > 0 and t , 0,
q(1,u; t) = 0, if ux < 0 and t , 0.

(44)

With the initial condition,

q(x̃,u;0) =

{
0 if ux > 0 and x̃ = 0, or ux < 0 and x̃ = 1
1 otherwise,

(45)
The above equations form the basic SCFT for the current slit
system.

Taking derivatives of the free energy, we can show that the
reduced chemical potential follow the same formal expression,

µ̃(ρ̃) = 1+ ln
(

4πρ̃
Q̃

)
(46)

where the minimization condition in (42) is assumed. Note Q̃
depends on ρ̃ as well. The entire theory contains three basic
parameters.

(a) The ratio α ≡ L/2λ defined in Eq. (22) and appears in
(41) representing the flexibility of polymers.

(b) The ratio H/L appears in Eq. (41), representing the
relative slit width. This parameter is new to the slit-
confinement system. For the bulk phase H/L = ∞; the
formalism returns to the one in Sect. B.

(c) The reduced density ρ̃ . As it turns out, three surface
states are possible. To study the first-order phase tran-
sitions between these phases, it is more convenient to
directly use µ̃ in (46) instead of ρ̃ . Each state forms a
unique µ̃-ρ̃ relationship.

For a slit with width ratio H/L, the Gibbs free energy of the
system, G, is obtained from

G(H/L)≡ F −µn (47)
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The determination of the stability of a surface state relies on
a comparison of the surface tension σ , i.e., the Gibbs free en-
ergy difference per unit area of the slit wall. In reduced form,

σ̄(µ̄)≡ (βdL2/H)σ = (βdL2/H)[G(H/L)−G(∞)]

=−ρ̄ − ρ̄2
∫ 1

0
dx̄dudu′ϕ(x̄,u)|u×u′|ϕ(x̄,u′)

+ ρ̄ i +
π
4
(ρ̄ i)2

(48)

where ρ̄ is related to µ̄ by (46) and ρ̄ i is related to µ̄ by µ̄ =
1+ ln(ρ̄ i)+πρ̄ i/2. We only consider the system with a bulk
density up to the isotropic-nematic transition density.

E Numerical Methods

Main steps. – Three basic parameters α , H/L and µ̃ control
the structure of the system. The numerical procedure used to
solve SCFT in this work was of five major steps :

(a) An initial guess for W (x̃,u) is made. A more efficient
method is to adopt an initial guess from an already con-
verged function from a neighboring parameter point.

(b) The modified diffusion equation (MDE), Eq. (41), is
solved with the consideration of the boundary conditions
in Eq. (44) and initial condition condition in Eq. (45), for
the propagator q(x̃,u, t). For a given W function, the nu-
merical algorithm of solving MDE follows the detailed
steps outlined below.

(c) From the propagator we deduce the partition function Q̃
from Eq. (40). From the relationship in Eq. (46) we esti-
mate the average system density ρ̃ on the basis of calcu-
lated Q̃ and specified µ̃ .

(d) The distribution density ϕ(x̃,u) is then calculated based
on Eq. (43).

(e) The SCFT field W (x̄,u) is updated by using Eq. (42).

(f) Steps (b)-(e) are repeated, now with a new W from step
(e) as the initial guess. The entire procedure is consid-
ered convergent following the tolerance criterion — the
maximum difference between the two W functions in (a)
and (e) is less than 5×10−4.

Solving MDE. – To solve MDE within step (b), we use the
second order beam-warming scheme to deal with the advec-
tion part u ·∇q(x̃,u, t) in the equation.42 The range for x̃ is
divided into Nx points. The vector u is represented by spher-
ical coordinates θ ,φ defined from the x-axis. The range for
both variables, θ and φ , are divided into Nθ and Nφ points.
The range for t is divided into Nt points. The propagator is
then represented by qn

i, j,k = q(x̃i,θ j,φk, tn)

On the basis of the current knowledge qn
i, j,k, we calculate

the next step by evaluating

qn+1
i, j,k = qn

i, j,k + Ĥ1qn
i, j,k + Ĥ2qn

i, j,k + Ĥ3qn
i, j,k (49)

where the operator Ĥ1 =
L

2λ ∆t∇2
u and Ĥ3 = −∆tWi, j,k. Using

the beam-warming upward method, for the ux > 0 region we
have

Ĥ2qn
i, j,k =−∆t

∆x
ux(3qn

i, j,k −4qn
i−1, j,k +qn

i−2, j,k)

+
1
2

ux

(
∆t
∆x

)2(
qn

i, j,k −2qn
i−1, j,k +qn

i−2, j,k

)
,

(50)

and for the ux < 0 region we have

Ĥ2qn
i, j,k =−∆t

∆x
ux(3qn

i, j,k −4qn
i+1, j,k +qn

i+2, j,k)

+
1
2

ux

(
∆t
∆x

)2(
qn

i, j,k −2qn
i+1, j,k +qn

i+2, j,k

)
.

(51)

Grid points across the slit – The density profile is sharp near
the wall boundaries of the slit. To achieve a better precision,
we divide the space for x̃, [0,1], nonuniformly. A variable
transformation is made

ξ (x̃) = tan
[
(π − γ)(x̃− 1

2
)

L
H

]
. (52)

Inversely we have

x̃(ξ ) =
[

1
2
+

arctan(ξ )
π − γ

]
. (53)

The parameter ξ is divided evenly in the range [− tan[(π −
γ)/2], tan[(π − γ)/2]] by Nx representative points. The spatial
derivative term in (41) is replaced by

d
dx̃

=
dξ
dx̃

d
dξ

=
(π − γ)L

H
(1+ξ 2)

d
dξ

. (54)

One can show that in the x̃ space, more representative points
are placed near the wall boundaries. The parameter γ controls
the grid distribution and adopts different values in the calcula-
tion.

In most calculation, we used (Nx,Nφ ,Nθ ,Nt ,γ) =
(51,72,37,501,0.5). For systems with large α we used
(51,36,19,2001,0.5) .

1–14 | 13

Page 13 of 14 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



TOC FIGURE: Surface-Induced Phase Transitions of
Wormlike Chains in Slit Confinement
Shiwei Ye, Pingwen Zhang, and Jeff Z. Y. Chen

As the overall density increases, a semiflexible polymer fluid
confined in slit displays three orientational states, stage by
stage. The main-axis orientational distributions of different
states near the surface have different characteristics.
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