Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Lithium Amidoborane Hydrazinates: Synthesis, Structure and Hydrogen Storage Properties

Teng He,*^a* **Hui Wu***b,c***, Guotao Wu****^a* **, Zhao Li***^a* **, Wei Zhou***b,c***, Xiaohua Ju***^a* **, Dong Xie***^a* **, Ping Chen***a,d*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵**DOI: 10.1039/b000000x**

The first metal amidoborane hydrazinate with the composition of $LiNH₂BH₃·NH₂NH₂$ was successfully synthesized and characterized in the present study. LiNH₂BH₃ NH_2NH_2 exhibits a monoclinic $P2_1/n$ space group with lattice parameters of *a* = 10.0650 Å, *b* = 6.3105 Å, *c* = 7.4850 Å, and *β* = 107.497º. Meanwhile, lithium amidoborane hydrazinates with different molar ratios of LiNH_2BH_3 (LiAB) and

 $10 \text{ NH}_2\text{NH}_2$ were synthesized and characterized. It is found that $4\text{LiAB-NH}_2\text{NH}_2$ can release 1.6 equiv. and 2.5 equiv. H₂/LiAB at 75 °C and 170 °C, respectively. Therefore, around 7.1 wt% and 11.1 wt% hydrogen can be released form $4LiAB-NH₂$ at 75 °C and 170 °C, respectively, which are higher than those of pristine LiAB. The dehydrogenation mechanism, which may be initiated by the "homogeneous dissociation" of N-N in hydrazine, was also proposed and discussed in this study.

¹⁵**1. Introduction**

Development of efficient hydrogen storage materials on board is one of the greatest challenges towards the realization of "hydrogen economy".¹² In the past decade, tremendous effects have been given to ammonia borane (AB for short), $3, 4$ which has ²⁰a hydrogen content as high as 19.6 wt%. However, the high kinetic barrier, by-products, and sample foaming during dehydrogenation make AB unsuitable for application on PEMFC vehicle. To overcome these obstacles, researchers have investigated several approaches and improved the 25 dehydrogenation properties by using nanoscaffolds,^{5, 6} transition metal catalysts,^{7, 8} acid or base catalysts,^{9, 10} and ionic liquid¹¹. Another important method is to replace one H atom on $NH₃$ in AB by alkali (Li,^{12, 13} Na¹⁴ and K¹⁵) or alkaline-earth metals(Mg¹⁶, $Ca^{17, 18}$ and Sr^{19}), forming metal amidoboranes. Due to the ³⁰substitution of metal ions, the length of N-B bond is shortened, resulting in the activation of N-H bond and B-H bond in amidoboranes^{12, 13}. As a consequence, the dehydrogenation temperature is reduced to a lower region, which is accompanied with the suppression of by-product borazine at the same time. In 35 the following research, bimetal amidoboranes $20-22$ are obtained as a result of milling LiH-NaH or NaH-MgH₂ mixtures with AB with favorable dehydrogenation properties. Chua *et al.* synthesized calcium amidoborane diammoniate (CaAB·2NH³) and found that CaAB 2NH₃ can evolve ammonia at elevated ⁴⁰temperatures forming calcium amidoborane (CaAB) in an open system. However, the ammonia ligands can interact with CaAB and trigger hydrogen release at 70°C if a close vessel was employed²³. Similarly, lithium amidoborane (LiNH₂BH₃; LiAB in short) can also absorb/desorb ammonia reversibly at room 45 temperature and form corresponding ammoniate $(LiAB\cdot NH_3)^{24}$ at

equiv H_2 (11.18 wt%) rapidly under ammonia. In addition, magnesium amidoborane triammoniate $(MgAB·3NH₃)²⁵$ can release hydrogen and ammonia in open system upon heating. ⁵⁰Whereas, magnesium amidoborane monoammoniate $(MgAB\cdot NH_3)^{26}$ starts to release H_2 rather than NH₃ under dynamic flow, which is quite different from that of CaAB·2NH³ and MgAB·3NH³ . Therefore, the ligand ammonia plays a very important role not only in the stabilization of amidoboranes, but ⁵⁵also in the dehydrogenation. It was reported that the dehydrogenation mechanism of metal amidoboranes likely followed the combination of protonic H^{δ^+} and hydridic H^{δ^-} into hydrogen^{12, 13}. However, there are unequal H^{δ^+} and H^{δ^-} in amidoboranes which could be balanced by the protonic H^{δ^+} in the ligand NH³ ⁶⁰. In the above mentioned ammoniates, the combination of H^{δ^+} in NH₃ and H^{δ^-} in BH₃ is one of the driving forces for dehydrogenation²⁷. Thus, it is of great interest to probe other $H^{\delta+}$ containing ligands to balance the $H^{\delta+}$ and $H^{\delta-}$ in amidoborane and improve the dehydrogenation properties.

 65 Recently, hydrazine (NH₂NH₂) with a hydrogen content of 12.5 wt% has received considerable attention. Singh *et al.* used bimetal catalysts to realize total conversion of hydrazine into hydrogen and nitrogen at room temperature.^{28, 29} While, He *et al.* used a noble-metal-free catalysts to catalyze the decomposition of ⁷⁰hydrazine hydrate and found 100% conversation and more than 93 % selectivity to hydrogen 30 . Hydrazine can also coordinate with borane to form $NH_2NH_2:BH_3$ and $NH_2NH_2:2BH_3$.³¹⁻³³ To optimize the dehydrogenation properties of hydrazine borane, alkali metal hydrides were introduced to react with hydrazine and $_{75}NH_2NH_2$ BH₃ to synthesize metal hydrazide and metal hydrazinoborane, respectively.³⁴⁻³⁷ Additionally, hydrazine can also be used for regenerating AB or LiAB in liquid ammonia solution,³⁸⁻⁴⁰ where the yield of AB was claimed as high as 95%. It is worth mentioning that, according to the concept of

low temperature. The decomposition of LiAB NH₃ releases 3.0

combination of $H^{\delta+}-H^{\delta}$, hydrazine was employed as a ligand and hence complexed with borohydrides to form hydrazinates in our recent results.^{41, 42} As a ligand, hydrazine exhibited great improvement in the dehydrogenation of borohydrides. Therefore,

- ⁵it is suggested that hydrazine should be considered as a ligand in amidoboranes. As there are four H^{δ^+} s in one hydrazine molecule, the unequal $H^{\delta+}$ and $H^{\delta-}$ in amidoborane could be modified, which may consequently improve the dehydrogenation performance. In addition, from chemical point of view, hydrazine can coordinate
- 10 with metal in amidoboranes and form a serial of new compounds, which would exhibit many crystallographically interesting structures. Therefore, the first example of amidoborane hydrazinate is synthesized, characterized and investigated in the present work. Experimental results show that
- μ_1 LiNH₂BH₃ NH₂NH₂ exhibits a monoclinic structure with a $P2_1/n$ space group and lattice parameters of $a = 10.0650 \text{ Å}$, $b = 6.3105$ Å, $c = 7.4850$ Å, and $\beta = 107.497$ °. Particularly, a composition of $4LiAB-NH₂NH₂$ can release 7.1 wt% and 11.1 wt% hydrogen at 75 °C and 170 °C, respectively, which are higher than those of 20 pristine LiAB.

2. Experimental

2.1 Materials synthesis

LiH (Sigma, 97.0%) NaBH₄ (Aldrich, 98.0%) (NH₄)₂CO₃ (Alfa, 99%) were used without further purification. AB was synthesized

- 25 from the reaction of NaBH₄ and $(NH₄)₂CO₃$ in THF solution. LiAB was synthesized according to the reaction between LiH and AB (LiH + $NH_3BH_3 \rightarrow LiNH_2BH_3 + H_2$) in literature ¹². To synthesize lithium amidoborane hydrazinates, around 200 mg self-made LiAB and calculated stoichiometric amount of
- ³⁰hydrazine were placed separately in a sealed bottle at room temperature. Due to the vapor pressure of hydrazine, hydrazine can automatically absorb into amidoborane overnight. The samples were then ball milled on a Retsch PM 400 planetary mill at 100 rpm under an inert atmosphere for 2 $h⁴²$ After synthesis,

 σ ₃₅ the qualities of AB, LiAB and n LiAB-NH₂NH₂ were examined by X-ray diffraction (XRD).

Regeneration of spent fuel of *n*LiAB-NH2NH² was carried out in liquid $NH₃$ solution. Around 100 mg dehydrogenated products of *n*LiAB-NH2NH² and 400 mg hydrazine were suspended in

⁴⁰liquid ammonia at 0 °C in a close vessel. Then, the reactor was heated to 40 °C and kept for 3 days with continuous stirring. Ammonia and hydrazine were removed at room temperature under vacuum for 3 hours. At last, the solid product was dissolved in THF for ^{11}B nuclear magnetic resonance (NMR) 45 examination.

2.2 Characterizations

 A home-made temperature programmed desorption-mass spectroscopy (TPD-MS) combined system was employed to detect the gaseous product during sample decomposition. XRD

- ⁵⁰characterizations were conducted on a PANalytical X'pert diffractometer (Cu Kα, 40 kV, 40 mA) To avoid air contamination, samples were sealed in a home-made sample holder covered by a piece of shielding film. The high-resolution XRD data were collected from diffractometer at BL14B1 beamline of Shanghai 55 Synchrotron Radiation Facility (λ =1.239800 Å). During the
- measurements, the sample was sealed in a capillary with a

diameter of 0.5 mm. Volumetric release measurements were performed on a home-made Sievert type apparatus to quantify the gas evolution.

 60 Liquid ¹¹B NMR and solid state ¹¹B magic angle spinning nuclear magnetic resonance (MAS NMR) experiments were carried out at room temperature on Bruker AVANCE 500MHz (11.7 T) spectrometer at a frequency of 128.3 MHz. The chemical shifts of liquid and solid NMR for ${}^{11}B$ nucleiare referenced to BF₃ 65 at 0 ppm and $LiBH₄$ at 41 ppm, respectively.

Ammonia concentration in the gaseous products was determined by using a Thermo conductivity meter, while the accumulated gaseous product was bubbled into a dilute H_2SO_4 solution and the change in ion conductivity of the solution was 70 monitored.

2.3 First-principles calculations method

First-principles calculations were performed using the planewave implementation of density functional theory (DFT) in the PWscf package. The Vanderbilt-type ultrasoft potential and the 75 generalized gradient approximation (GGA) of Perdew-Burke-Ernzerh for the exchange-correlation energy functional were used. A cutoff energy of 408 eV was found to be enough for the total energy and force to converge within 0.5 meV/atom and 0.005 eV/Å. Car-Parrinello molecular dynamics simulation was used to ⁸⁰help searching for the most likely crystal structures. The conventional unit cell was used with cell dimensions fixed at the experimental values. The initial system temperature was set to 600 K. The system was first allowed to evolve and equilibrate for 20 ps, and then the system temperature was slowly brought to 0 K ⁸⁵in a period of 20 ps. Structure optimizations on the resulting candidate structures at 0 K were further performed with respect to atomic positions with the lattice parameters fixed at the experimental values. Lattice dynamics calculations were then performed on the relaxed structures to rule out unstable ⁹⁰candidates. The total energies of the stable candidate structures at 0 K, including corrections for the zero-point motion, were also evaluated. This information was used in combination with XRD pattern matching to derive the best crystal structure solutions of the LiAB hydrazinate.

⁹⁵**3. Results and Discussion**

3.1 Formation of nLiNH2BH³ -NH2NH² and crystal structure of LiNH2BH³ ·NH2NH²

The reactions of LiAB with hydrazine in molar ratios of 1:1 and 2:1 yield two new phases as identified by XRD technique (shown 100 in Figure S1). However, a slurry state mixture could be obtained by adding more hydrazine to LiAB (for example 1:2 in molar ratio). And, reducing hydrazine content to the molar ratio of 4:1 $(LiAB:hydrazine)$ will result in mixed phases of $2LiAB-NH₂NH₂$ and LiAB (Figure S1). The XRD pattern of LiAB $NH₂NH₂$ was 105 indexed using a monoclinic $P2₁/n$ space group with lattice parameters of approximately $a = 10.0650$ Å, $b = 6.3105$ Å, $c =$ 7.4850 Å, and β = 107.497°. The crystal structure was then partially solved using direct space methods under this space group. Due to the uncertain H positions, first-principles molecular ¹¹⁰dynamics simulated annealing were then performed to confirm the LiAB and $NH₂NH₂$ configuration with the lowest energy. Rietveld structural refinement on the optimal structural candidate

was performed using the GSAS package on the XRD data. The $LiAB$ and $NH₂NH₂$ were kept as rigid bodies with common refined bond lengths and bond angles constrained as reasonable values due to the inadequate number of observations. One LiAB s and one $NH₂NH₂$ group together with lattice parameters were refined, yielding the agreement factors of $R_{wp} = 0.0222$, $R_p =$ 0.0172 and χ^2 = 1.693. The Rietveld fit to the XRD pattern is shown in Figure 1.

¹⁰**Fig. 1** Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) XRD profiles for LiAB·NH2NH2 at 298 K (CuKa radiation). Vertical bars indicate the calculated positions of Bragg peaks.

¹⁵**Fig. 2** Crystal structure of LiAB·NH2NH2 (left) and local coordination (right) of Li+ cation.

Table 1 Interatomic distances (Å) in LiAB·NH₂NH₂ compared with pristine LiAB and hydrazine at room temperature.

20 The crystal structure of $LiAB·NH₂NH₂$ and local coordination of Li⁺ cation are shown in Figure 2, and the interatomic distances in LiAB**·**NH2NH² as compared with pristine LiAB and pristine hydrazine can be found in Table 1. In $LiAB \cdot NH_2NH_2$, each Li^+ cation is surrounded by two $NH₂BH₃$ ions and two $NH₂NH₂$ ²⁵molecules, leading to a distorted tetrahedral coordination. The distances between Li^+ and N in the adjacent NH_2NH_2 are 2.151 Å

This journal is © The Royal Society of Chemistry [year] *Journal Name*, [year], **[vol]**, 00–00 | **3**

and 2.153 Å, similar to the Li-N distances in other coordinate bonds, such as $LiBH_4 \cdot NH_2NH_2$ (2.131-2.427 Å).⁴¹ At the same time, the Li^+ directly bonds with a $NH₂BH₃$ ions with the closest ³⁰Li-N distance of 2.084 Å, similar to Li-N distances in ionic bonds, such as LiAB (2.063 Å) and LiNH₂ (2.06-2.21 Å)¹³. In addition, each Li^+ is also coordinated with the other NH_2BH_3 group with a Li-B distance of 2.487 Å. Therefore, the coordination of $Li⁺$ is consistent with the Li (IV) tetrahedral coordination preferred in 35 the commonly observed complex hydrides, $e.g., \text{LiNH}_2, \text{LiBH}_4^{44}$ and LiAB.¹³ Unfortunately, the crystal structure of 2LiAB- $NH₂NH₂$ is still unresolved due to the poor quality of XRD

pattern. Since the coordination of $NH₂NH₂$ to LiAB is through the 40 donation of a lone pair electrons, Li⁺ will bear higher electron density than Li⁺ in pristine LiAB, resulting in the elongated Li-N distance $(Li-NH₂BH₃)$ in $LiAB\cdot NH₂NH₂$ as shown in Table 1. Similarly, due to the lower electrons density of N, N-H (in $NH₂NH₂$ ligand) distances in LiAB $NH₂NH₂$ are longer than that ⁴⁵of the pristine hydrazine. In addition, two N atoms in hydrazine are coordinated by two Li⁺, the distance between N-N is elongated consequently, showing the activation of ligand hydrazine compared with the pristine one. Moreover, the B-H distance and N-H (in LiAB) in LiAB $NH₂NH₂$ are longer than 50 those of the pristine LiAB, indicating the activation of N-H and B-H bonds after coordinating with hydrazine. From the crystal structure, it was found that the H^{δ^+} (in NH_2NH_2 or NH_2BH_3) has a short distance with its neighboring $H^{\delta-}$ in BH₃, ranging from 1.888 to 2.139 Å, which indicates the establishment of 55 dihydrogen bonding network. Such interaction of the oppositely charged H^{δ^+} (in NH₂NH₂ and NH₂) and H^{δ^-} (in BH₃⁻) may consequently also contribute to the elongated N-H and B-H bonds in LiAB $NH₂NH₂$. It is reported that the dihydrogen bonding network in ammonia borane^{3, 45} is primarily responsible for the ⁶⁰stability of the molecular crystal at room temperature. The dihydrogen bonding network and the ionic/electrostatic interactions between Li and $NH₂BH₃/N₂H₄$ ligands in $LiAB \cdot NH₂NH₂$ are thus responsible for the structural stabilization and is expected to have a profound impact on their thermal ⁶⁵decomposition.

3.2 Decomposition and dehydrogenation of nLiNH2BH³ - NH2NH²

TPD-MS measurements are employed to investigate the dehydrogenation properties of nLiAB-NH2NH² compared with 70 the pristine LiAB as shown in Figure 3. Pristine LiAB releases hydrogen in two steps, giving a sharp peak centered at 92 °C and a broad peak centered at around 120 °C in the first and second step, respectively, which is identical to that in literature.¹² For LiAB·NH2NH² sample (Figure 3b), it starts to release hydrogen ⁷⁵at around 70 °C and exhibits three successive steps. However, a large amount of ammonia, which is a poison to fuel cells, is also observed during dehydrogenation. The evolution of NH₃ should be attributed to the excess of N in the system. Therefore, to suppress ammonia evolution, the content of hydrazine was so reduced to 2:1 ($LiAB:NH₂NH₂$) in a molar ratio (Figure 3c). It can be seen that the dehydrogenation of $2LiAB-NH_2NH_2$ is a two-steps reaction with the peak temperatures centered at 74 °C and 130 °C. As we expected, only a little amount of ammonia can be detected. If we further decrease the ratio of $NH₂NH₂$ /LiAB to

4:1 (*i.e.*, 4LiAB-NH2NH² in Figure 3d), which possesses equal amount of H^{δ^+} and H^{δ^-} , no ammonia can be detected from MS. At the same time, the dehydrogenation profile of $4LiAB-NH_2NH_2$ is similar to that of $2LiAB-NH_2NH_2$ with dehydrogenation peak ⁵temperatures at 76 °C and 130 °C. It is noticeable that the

- dehydrogenation temperature of the first step of 2LiAB-NH₂NH₂ and $4LiAB-NH_2NH_2$ are about 17 °C lower than that of pristine LiAB, whereas, the second dehydrogenation temperatures are about 10 °C higher than that of pristine LiAB. It is reported that
- 10 the decomposition of hydrazine follows two competitive routes giving rise to H_2 and N_2 or N_2 and NH_3 under mild conditions even with the presence of noble or noble metal-like catalysts⁴⁶⁻⁴⁸. However, no N_2 can be observed during the dehydrogenation/decomposition of $nLiAB-NH_2NH_2$. Therefore,
- 15 the evolution of NH₃ during the decomposition of LiAB·NH₂NH₂ is not from the self-decomposition of hydrazine, which means the hydrogen is derived from the interaction of LiAB and hydrazine.

To quantify the evolution of hydrogen from $nLiAB-NH_2NH_2$ systems, volumetric release measurements were employed at 75 °C and 170 °C (Figure 4). At 75 °C, around 1.2 equiv. $_{25}$ H₂/LiAB can be released from the pristine LiAB in 3 hours. However, LiAB NH₂NH₂ system can release around 1.5 equiv. gas/LiAB, which is composed of NH_3 and H_2 determined by MS. For $2LiAB-NH_2NH_2$ and $4LiAB-NH_2NH_2$ systems, around 1.6 equiv. $H_2/LiAB$ are generated from both samples under the same ³⁰condition. At the same time, we can see that the onset dehydrogenation temperatures of 2LiAB-NH2NH² and 4LiAB- $NH₂NH₂$ are lower than that of the pristine LiAB, which is

consistent with TPD results. It is worth mentioning that, calculating from the volumetric release measurements, around 7.1 35 wt% hydrogen can be evolved from $4LiAB-NH_2NH_2$ component at 75 °C, which is higher than that of the pristine LiAB (6.5 wt%). At 75 \degree C, around 14.1 mol% ammonia is found in the gaseous products of LiAB NH₂NH₂, agreeing with the TPD result. However, the concentration of by-product ammonia is even lower ⁴⁰ than 0.2 mol% in the 2LiAB-NH₂NH₂ and 4LiAB-NH₂NH₂ samples as shown in Table S1.

Fig. 4 Volumetric release measurements on LiAB complexed with hydrazine with different molar ratios compared with pristine LiAB at ⁴⁵75 °C and 170 °C

For the pristine LiAB, around 2 equiv. H_2 can be released at 170 °C, identical to the literatures.^{12, 13} Under the same condition, $LiAB NH₂NH₂$ can release more than 3.6 equiv. gas, which is ⁵⁰composed of hydrogen and ammonia as detected by MS. However, around 2.9 and 2.5 equiv. $H_2/LiAB$ can be released from $2LiAB-NH_2NH_2$ and $4LiAB-NH_2NH_2$. In other words, around 10.9 wt% and 11.1 wt% hydrogen can be evolved from these two samples at 170 °C. The weight loss of $4LiAB-NH_2NH_2$ 55 from TG experiment (Figure S2) is about 11.2 wt% at 200 $^{\circ}$ C which is consistent with the volumetric release result, indicating the high purity of hydrogen production. However, the weight loss is about 18.7 wt% for 2LiAB-NH₂NH₂ at 200 °C (Figure S3), which is much higher than the value of 10.9 wt% from volumetric ω release measurement, indicating the gaseous impurity (NH₃) release during TG experiment. The low impurity (NH₃) concentration may be attributed to the fact that the formed ammonia has more chance to interact with LiAB or solid products during the volumetric release measurement^{41, 49}. However, in the ⁶⁵TG measurement, ammonia will be taken away by the carrier gas once formed. Therefore, the weight loss form TG is much higher than that from the volumetric release measurement. The exothermic nature of dehydrogenation of $2LiAB-NH_2NH_2$ and $4LiAB-NH₂NH₂$ from DTA (Figure S2 and S3) indicates the

irreversibility of the dehydrogenation process. The following investigation focuses on $2LiAB-NH_2NH_2$ and $4LiAB-NH_2NH_2$ samples due to the low ammonia concentration in the gaseous products. XRD was also employed to characterize the solid 5 products after dehydrogenation at 75 °C and 170 °C. However, all the dehydrogenated products are in an amorphous state. According to the quantity of hydrogen evolution, the dehydrogenation reactions can be expressed as follow:

 $2\text{LiNH}_3\text{BH}_3\text{-NH}_2\text{NH}_2\text{-}^{\frac{170^\circ C}{2}}\rightarrow 2[\text{LiN}_3\text{BH}]+\text{6H}_2$ *R1*

¹⁰ 4LiNH₂BH₃ - NH₂NH₂ $\frac{170^{\circ}C}{2}$ → 2[Li₂N₃B₂H₂] + 10H₂ R₂

Fig. 5 ¹¹B MAS NMR spectra of synthesized nLiAB-NH2NH2 and post dehydrogenated nLiAB-NH2NH2 at 170 °C compared with pristine LiAB.

- 15 Since the dehydrogenated products are of amorphous state, ^{11}B MAS NMR technique was carried out to investigate the chemical environment of the post-dehydrogenated products. As shown in Figure 5, the pristine LiAB exhibits a peak at around -21.6 ppm which belongs to BH_3 signal.¹² Both synthesized 2LiAB-NH₂NH₂ $_{20}$ and 4LiAB-NH₂NH₂ samples show BH₃ signals at around -22.3 ppm, indicating the formation of new phases. From XRD results (Figure S1), the $4LiAB-NH_2NH_2$ sample is composed of $LiAB$ and $2LiAB-NH₂NH₂$ phases. However, there is only one peak in
- $4LiAB-NH₂NH₂$ at around -22.3 ppm. No signal or shoulder peak ²⁵at around -21.6 ppm for pristine LiAB can be observed. This may be attributed to the overlap of LiAB and $2LiAB-NH_2NH_2$ signals in the solid NMR measurement. It is worth noting that the chemical shift of ^{11}B in 2LiAB-NH₂NH₂ has 0.7 ppm up-shift compared to the pristine LiAB, which is consistent with that of
- 30 CaAB-2NH_3 in the literature.²³ The post decomposed LiAB sample at 170 °C gives a broad peak ranging from 33 ppm to 15 ppm, which is consistent with the amorphous [LiNBH] reported in the literatures^{12, 13}. For the $2LiAB-NH_2NH_2$ and $4LiAB NH₂NH₂$ samples, there is still a little amount of $BH₃$ residue
- ³⁵after dehydrogenation at 170 °C as shown in Figure 5. Most of the 11 B signal in the products are sp^2 hybridized B species, maybe in the form of Li_3BN_2 , $[BN_2H]$ or $[BN_3]$, which is similar to the decomposition of ammonia borane family $50-52$.

Due to the exothermic nature of dehydrogenation (Figure S2 $\&$ ⁴⁰S3), it is unlikely to achieve the direct hydrogenation from the spent fuel of $nLiAB-NH_2NH_2$. However, it is reported that AB or LiAB can be regenerated by interaction of the spent fuel with hydrazine in NH_3 solution³⁸⁻⁴⁰. Therefore, we investigated the regeneration of spent fuel of 4LiAB-NH₂NH₂ by using hydrazine 45 in NH_3 solution at 40 °C. From liquid NMR technique (Figure S4), two BH₃ species can be observed after regeneration, which can be assigned to $BH_3NH_2NH_2$ and NH_3BH_3 . Therefore, the regeneration of BH₃ species can be realized. However, LiAB and $nLiAB-NH₂NH₂$ compounds are not observed. It is worth 50 mentioning that the yield of regenerated BH₃ species is less than 10% and possible for further optimization.

3.3 Discussion on the dehydrogenation pathway

Due to the unbalanced H^{δ^+} and H^{δ^-} in LiAB, hydrazine with 55 four $H^{\delta+}$ in one molecule was selected and complexed with LiAB. It is known that the decomposition of hydrazine follows two competitive ways (R3 and R4) $46-48$:

Scheme 1 Proposed dehydrogenation pathways of 2LiNH2BH3- NH2NH²

Since nitrogen was not observed during the decomposition of *n*LiAB-NH2NH² , hydrogen is not from the self-decomposition of ⁶⁵hydrazine. As mentioned above, the elongated B-H and N-H bonds in LiAB $NH₂NH₂$ showed the activation of both hydrazine and LiAB. Consequently, we propose that the hydrogen release is more likely *via* the interaction of LiAB and NH₂NH₂. Here, two dehydrogenation pathways of $2LiAB-NH_2NH_2$ are proposed as ⁷⁰illustrated in Scheme 1. Since the dissociation energy of N-N bond (60 kJ mol⁻¹) is lower than that of N-H bond (84 kJ mol⁻¹) in hydrazine^{53, 54}, the "homogeneous dissociation" of N-N bond forming [NH₂] radicals may occur, which is observed in the surface of metal catalysts⁴⁶. The radical $[\text{NH}_2]$ is an active 75 species and can react with LiAB readily. Therefore, $[NH₂]$ may attack NH₂ group in LiNH₂BH₃ forming lithium hydrazinoborane $(LiNH₂NHBH₃)^{34, 36}$ and H₂. It is reported that the lithium hydrazinoborane can be dehydrogenated readily under mild condition. For the second dehydrogenation pathway, it is reported 80 that the bridged H between Li and B (Li \cdots H \cdots B) can be formed during the activation of LiAB⁵⁵⁻⁵⁷, which is called "hydride transfer mechanism". The radical $[NH_2]$ may attack the bridged H in $BH₃$ group forming $[LiNH₂BH₂NH₂]$ and $H₂$, which may further decompose and release hydrogen in the following steps. M_2 For the LiAB NH₂NH₂ sample, since more radical [NH₂] could be generated, the H atom generated from the interaction between [·NH₂] and LiAB may have more chance to combine with excessive radical $[NH₂]$ forming NH₃, which may in turn explain

the formation of large amount of $NH₃$ in TPD result of $LiAB \cdot NH_2NH_2$. For the $4LiAB-NH_2NH_2$ sample, two phases $(LiAB$ and $2LiAB-NH_2NH_2)$ can be observed from XRD. The decomposition of $2LiAB-NH_2NH_2$ is prior to that of pristine ⁵LiAB as shown in Figure 3. Therefore, LiAB may interact with

the intermediate species of the decomposition of $2LiAB-NH_2NH_2$, forming $[Li_2N_3B_2H_2]$ and H_2 as shown in R2.

4. Conclusions:

The coordination of hydrazine to the $Li⁺$ cation in lithium ¹⁰amidoborane results in the formation of hydrazinates, among which $LiNH₂BH₃·NH₂NH₂$ is identified to crystallize in the monoclinic *P2¹ /n* space group. Around 7.1wt% hydrogen can be evolved from $4LiAB-NH_2NH_2$ component at 75 °C, which is higher than that of the pristine LiAB. Two possible 15 dehydrogenation pathways for the hydrazinates are proposed. However, more investigations and characherizations are needed to obtain various metal amidoborane hydrazinates with appropriate dehydrogenation properties. Research effort shall also

be devoted on the regenaration of amidoborane hydraiznates to 20 realise the "reversibility" of these materials.

Acknowledgements

The authors would like to acknowledge financial support from the project of National Natural Science Funds for Distinguished Young Scholar (51225206), projects of National Natural Science

²⁵Foundation of China (Grant Nos. U1232120, 51301161, 21473181 and 51472237) and project from Natural Science Fund of Liaoning Province, and Shanghai Synchrotron Radiation Facility (SSRF) for providing the beam time.

³⁰**Notes and references**

.

a Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457, Zhongshan Road, Dalian, 116023, China. Fax:+86-411-84379583; Tel+86-411-84379583; E-mail: wgt@dicp.ac.cn

b NIST Center for Neutron Research, National Institute of Standards and ³⁵*Technology, Gaithersburg, Maryland, 20899-6102, USA*

c Department of Materials Science and Engineering, University of Maryland College Park, Maryland, 20742-2115, USA

d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457, Zhongshan Road, Dalian, 116023, ⁴⁰*China*

- † Electronic Supplementary Information (ESI) available: The supplementary crystallographic data of LiNH2BH3·NH2NH2 was deposited in ICSD database, CSD number is 429145. XRD, TG-DTA, ¹¹B NMR. See DOI: 10.1039/b000000x/
- ⁴⁵1. *http://www1.eere.energy.gov/hydrogenandfuelcells/storage/*.
	- 2. L. Schlapbach and A. Züttel, *Nature*, 2001, **414**, 353-358.
	- 3. A. Staubitz, A. P. M. Robertson and I. Manners, *Chem. Rev.*, 2010, **110**, 4079-4124.
- 4. C. W. Hamilton, R. T. Baker, A. Staubitz and I. Manners, *Chem. Soc.* ⁵⁰*Rev.*, 2009, **38**, 279-293.
- 5. A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. Li, S. , J. Linehan, C. , R. S. Smith, B. Kay, D. , B. Schmid, W. Shaw, M. Gutowski and T. Autrey, *Angew. Chem. Int. Ed.*, 2005, **44**, 3578-3582.
- 6. Z. Tang, X. Chen, H. Chen, L. Wu and X. Yu, *Angew. Chem. Int. Ed.*, 55 2013, **52**, 5832-5835.
7. T. He, Z. Xiong, G.
- 7. T. He, Z. Xiong, G. Wu, H. Chu, C. Wu, T. Zhang and P. Chen, *Chem. Mater.*, 2009, **21**, 2315-2318.
- 8. M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey and K. I. Goldberg, *J. Am. Chem. Soc.*, 2006, **128**, 12048-12049.
- ⁶⁰9. D. W. Himmelberger, C. W. Yoon, M. E. Bluhm, P. J. Carroll and L. G. Sneddon, *J. Am. Chem. Soc.*, 2009, **131**, 14101-14110.
	- 10. F. H. Stephens, R. T. Baker, M. H. Matus, D. J. Grant and D. A. Dixon, *Angew. Chem. Int. Ed.*, 2007, **46**, 746-749.
- 11. M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari and L. G. ⁶⁵Sneddon, *J. Am. Chem. Soc.*, 2006, **128**, 7748-7749.
	- 12. Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David, *Nat. Mater.*, 2008, **7**, 138-141.
- 13. H. Wu, W. Zhou and T. Yildirim, *J. Am. Chem. Soc.*, 2008, **130**, ⁷⁰14834-14839.
	- 14. Z. Xiong, G. Wu, Y. S. Chua, J. Hu, T. He, W. Xu and P. Chen, *Energy Environ. Sci.*, 2008, **1**, 360-363.
- 15. H. V. K. Diyabalanage, T. Nakagawa, R. P. Shrestha, T. A. Semelsberger, B. L. Davis, B. L. Scott, A. K. Burrell, W. I. F. David, ⁷⁵K. R. Ryan, M. O. Jones and P. P. Edwards, *J. Am. Chem. Soc.*, 2010, **132**, 11836-11837.
- 16. J. Luo, X. Kang and P. Wang, *Energy Environ. Sci.*, 2013, **6**, 1018- 1025.
- 17. H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, B. L. Scott, M. E. Bowden, B. L. Davis and A. K. Burrell, *Angew. Chem. Int. Ed.*, 2007, **46**, 8995-8997.
- 18. J. Spielmann, G. Jansen, H. Bandmann and S. Harder, *Angew. Chem. Int. Ed.*, 2008, **120**, 6386-6391.
- 19. Q. A. Zhang, C. X. Tang, C. H. Fang, F. Fang, D. Sun, L. Z. Ouyang ⁸⁵and M. Zhu, *J. Phys. Chem. C*, 2010, **114**, 1709-1714.
- 20. K. J. Fijalkowski, R. V. Genova, Y. Filinchuk, A. Budzianowski, M. Derzsi, T. Jaron, P. J. Leszczynski and W. Grochala, *Dalton Trans.*, 2011, **40**, 4407-4413.
- 21. H. Wu, W. Zhou, F. E. Pinkerton, M. S. Meyer, Q. Yao, S. Gadipelli, ⁹⁰T. J. Udovic, T. Yildirim and J. J. Rush, *Chem. Commun.*, 2011, **47**, 4102-4104.
- 22. X. Kang, J. Luo, Q. Zhang and P. Wang, *Dalton Trans.*, 2011, **40**, 3799-3801.
- 23. Y. S. Chua, G. Wu, Z. Xiong, T. He and P. Chen, *Chem. Mater.*, ⁹⁵2009, **21**, 4899-4904.
	- 24. G. Xia, X. Yu, Y. Guo, Z. Wu, C. Yang, H. Liu and S. Dou, *Chem. Eur. J.*, 2010, **16**, 3763-3769.
- 25. X. Kang, H. Wu, J. Luo, W. Zhou and P. Wang, *J. Mater. Chem.*, 2012, **22**, 13174-13179.
- ¹⁰⁰26. Y. S. Chua, G. Wu, Z. Xiong, A. Karkamkar, J. Guo, M. Jian, M. W. Wong, T. Autrey and P. Chen, *Chem. Commun.*, 2010, **46**, 5752- 5754.
	- 27. Y. S. Chua, W. Li, W. J. Shaw, G. Wu, T. Autrey, Z. Xiong, M. W. Wong and P. Chen, *ChemSusChem*, 2012, **5**, 927-931.
- ¹⁰⁵28. S. K. Singh and Q. Xu, *J. Am. Chem. Soc.*, 2009, **131**, 18032-18033. 29. S. K. Singh, X. B. Zhang and Q. Xu, *J. Am. Chem. Soc.*, 2009, **131**, 9894-9895.
	- 30. L. He, Y. Huang, A. Wang, X. Wang, X. Chen, J. J. Delgado and T. Zhang, *Angew. Chem.*, 2012, **124**, 6295-6298.
- ¹¹⁰31. T. Hügle, M. F. Kühnel and D. Lentz, *J. Am. Chem. Soc.*, 2009, **131**, 7444-7446.
	- 32. R. Moury, G. Moussa, U. B. Demirci, J. Hannauer, S. Bernard, E. Petit, A. van der Lee and P. Miele, *Phys. Chem. Chem. Phys.*, 2012, **14**, 1768-1777.
- ¹¹⁵33. L. Li, Y. Tan, Z. Tang, G. Xia, F. Yuan, Q. Li and X. Yu, *Mater. Chem. Phys.*, 2014, **143**, 1055-1060.
	- 34. H. Wu, W. Zhou, F. E. Pinkerton, T. J. Udovic, T. Yildirim and J. J. Rush, *Energy Environ. Sci.*, 2012, **5**, 7531-7535.
- 35. R. Moury, U. B. Demirci, T. Ichikawa, Y. Filinchuk, R. Chiriac, A. 120 van der Lee and P. Miele, *ChemSusChem*, 2013, **6**, 667-673.
	- 36. R. Moury, U. B. Demirci, V. Ban, Y. Filinchuk, T. Ichikawa, L. Zeng, K. Goshome and P. Miele, *Chem. Mater.*, 2014, **26**, 3249-3255.
	- 37. Y. S. Chua, Q. Pei, X. Ju, W. Zhou, T. J. Udovic, G. Wu, Z. Xiong, P. Chen and H. Wu, *J. Phys. Chem. C*, 2014, **118**, 11244-11251.
- ¹²⁵38. A. D. Sutton, A. K. Burrell, D. A. Dixon, E. B. Garner, J. C. Gordon, T. Nakagawa, K. C. Ott, P. Robinson and M. Vasiliu, *Science*, 2011, **331**, 1426-1429.
	- 39. Z. Tang, H. Chen, X. Chen, L. Wu and X. Yu, *J. Am. Chem. Soc.*, 2012, **134**, 5464-5467.
- 40. Z. Tang, Y. Tan, X. Chen and X. Yu, *Chem. Commun.*, 2012, **48**, 9296-9298.
- 41. T. He, H. Wu, G. Wu, J. Wang, W. Zhou, Z. Xiong, J. Chen, T. Zhang and P. Chen, *Energy Environ. Sci.*, 2012, **5**, 5686-5689.
- ⁵42. T. He, H. Wu, J. Chen, W. Zhou, G. Wu, Z. Xiong, T. Zhang and P. Chen, *Phys. Chem. Chem. Phys.*, 2013, **15**, 10487-10493.
- 43. K. Kohata, T. Fukuyama and K. Kuchitsu, *J. Phys. Chem.*, 1982, **86**, 602-606.
- 44. M. R. Hartman, J. J. Rush, T. J. Udovic, R. C. Bowman Jr and S.-J. ¹⁰Hwang, *J. Solid State Chem.*, 2007, **180**, 1298-1305.
- 45. W. T. Klooster, T. F. Koetzle, P. E. M. Siegbahn, T. B. Richardson and R. H. Crabtree, *J. Am. Chem. Soc.*, 1999, **121**, 6337-6343.
- 46. J. P. Contour and G. Pannetier, *J. Catal.*, 1972, **24**, 434-445.
- 47. X. Chen, T. Zhang, P. Ying, M. Zheng, W. Wu, L. Xia, T. Li, X. ¹⁵Wang and C. Li, *Chem. Commun.*, 2002, 288-289.
- 48. L. Ding, Y. Shu, A. Wang, M. Zheng, L. Li, X. Wang and T. Zhang, *Appl. Catal., A*, 2010, **385**, 232-237.
- 49. X. Zheng, G. Wu, W. Li, Z. Xiong, T. He, J. Guo, H. Chen and P. Chen, *Energy Environ. Sci.*, 2011, **4**, 3593-3600.
- ²⁰50. D. J. Heldebrant, A. Karkamkar, N. J. Hess, M. Bowden, S. Rassat, F. Zheng, K. Rappe and T. Autrey, *Chem. Mater.*, 2008, **20**, 5332-5336.
- 51. Y. S. Chua, P. Chen, G. Wu and Z. Xiong, *Chem. Commun.*, 2011, **47**, 5116-5129.
- 52. F. H. Stephens, V. Pons and R. T. Baker, *J. Chem. Soc., Dalton* ²⁵*Trans.*, 2007, 2613-2626.
	- 53. M. Szwarc, *Proc. R. Soc. London, Ser. A*, 1949, **198**, 267-284.
	- 54. I. P. Fisher and G. A. Heath, *Nature*, 1965, **208**, 1199-1200.
	- 55. D. Y. Kim, N. J. Singh, H. M. Lee and K. S. Kim, *Chem. Eur. J.*, 2009, **15**, 5598-5604.
- ³⁰56. T. B. Lee and M. L. McKee, *Inorg. Chem.*, 2009, **48**, 7564-7575. 57. A. T. Luedtke and T. Autrey, *Inorg. Chem.*, 2010, **49**, 3905-3910.