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Abstract 

 Assembling graphene nanosheets into three dimensional aerogels has attracted 

considerable interest due to their unique properties and potential applications in many 

fields. Here, graphene aerogels constructed by interconnected graphene nanosheets 

coated-carbon fibers are fabricated by using cigarette filters as the template via a 

simple dip-coating method. The composite aerogels are ultralight (ρ= 7.6 mg cm
-3

) yet 

have high mechanical strength (0.07 MPa); when used as electromagnetic wave 

absorber, they showed a minimum reflection loss value of -30.53 dB at 14.6 GHz and 

the bandwith of reflection loss less than -10 dB (90% absorption) is 4.1 GHz. 

Furthermore, coating polypyrrole into the composite aerogels can increase the 

minimum reflection loss value to -45.12 dB. Our results provide a promising approach 

to fabricate graphene-based composite aerogels with strong electromagnetic wave 

absorption ability.  
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Introduction 

With the rapid development of wireless technology, digital devices and radar 

system, electromagnetic (EM) interference and radiation have become severe 

pollution sources because of their impacts on both humans and the environment.
 [1-3]

 

To solve these problems, one effective method is to use microwave absorption 

materials to attenuate those unwanted EM energies.
 [4, 5]

 Thus, much effort has been 

devoted to the development of high-performance EM absorbents. An EM absorbent is 

a type of functional material that is able to absorb incidence of EM wave effectively 

and then attenuate it in the form of thermal energy. 
[6, 7]

 Ideal absorbents must be 

lightweight, as well as exhibit strong absorption, high thermal stability, and a broad 

absorption frequency bandwidth.
 [8, 9]

 To this end, several materials such as metals,
 [2, 4]

 

carbon fibers (CFs),
[10-12]

 carbon nanotubes (CNTs),
[13,14]

 graphene 
[15-18]

 and 

conducting polymers 
[19-21] 

have been investigated. Among them, carbon-based 

materials and their composites have been found to be effective candidates owing to 

their excellent mechanical and electrical properties.  

As a conventional EM absorbing material, a great deal of research on CFs has been 

conducted. Porous CFs prepared from polyacrylonitrile/polymethylmetharylate 

showed a minimum reflection loss (RFm) of -31 dB at 9.7 GHz.
 [10]

 In another report, 

modified CFs grafted with magnetite (Fe3O4) nanoparticles and CNTs had been 

proven that the RFm can reach up to -50.9 dB at 14.03 GHz.
[11]

 Despite their 

outstanding performance on EM absorption, however, one dimensional CFs need to 

be fabricated into shaped woven fabrics and then embedded into polymer matrix for 

further use because of their inconvenient manipulation.
[12]

  

Recently, carbon foams found their way to act as EM absorbers due to their 

light-weight, easy manipulation and effective EM wave absorbing capability.
[22]

 

Graphene aerogels (GAs), a new-generation carbon foam, are highly porous 

three-dimensional (3D) networks constructed by interconnected graphene sheets have 

especially attracted tremendous attention. The high surface area and strong dielectric 
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loss of GAs indicate that they are good candidates for EM absorbers.
 [23, 24] 

Also, the 

3D skeleton of GAs makes it possible to synthesize multifunctional GAs by 

introducing functional nanofillers. The composite aerogels will inherit the properties 

from graphene and nanofillers as well as provide enhanced new properties owing to 

the interaction between individual patents.
[25, 26]

 For example, zinc oxide 

(ZnO)/graphene hybrid aerogel could exhibit an excellent RFm up to -25.95 dB due to 

the synergetic effect of ZnO and graphene sheets.
[27]

 By adding α-Fe2O3 nanoparticles 

into GAs, the effective bandwidths of this composite was 7.12 GHz and the RFm was 

-33.5 dB.
[28]

 Moreover, the RFm of thermally treated Polyviny alcohol/graphene GAs 

reached to -43.5 dB at 12.19 GHz because of the enhanced conductivity by 

carbonization.
[29]

 This development of novel functional graphene aerogels may pave 

the way for practical applications in EM absorption.  

Herein, we fabricate high EM absorption GAs composed of CFs and graphene 

nanosheets, and the composite aerogels are lightweight yet with high mechanical 

strength. Our basic idea is to use cigarette filter, a non-biodegradable residual waste 

mainly composed of cellulose acetate (CA), as the scaffold of the composite aerogel 

while graphene oxide nanosheets (GO) were coated on them in the form of core-shell 

structrues; after thermal annealing, the cellulose fibers were carbonized into CFs and 

also GO sheets were reduced simultaneously. The all-carbon CF@G aerogels are 

robust with a compressive strength of ~ 0.07 MPa (much higher than previous 

reported GAs). The EM absorption capacity of the bare CF@G is -30.53 dB at 14.6 

GHz. When they were coated with polypyrrole, a conducting polymer usually used for 

EM absorption, the RFm was further improved to -45.12 dB at 7.9 GHz.  

Results and discussion 

The cigarette filters played an important role in the fabrication process and were 

used as structural template for the synthesis of our composite aerogels (Scheme 1). 

Each of them composed of aligned CA arrays (Fig. 1a), somewhat like the CNT forest, 

although CA have a larger size in macroscopic level (about 4 centimeter in length and 

20 µm in diameter for each CA fibers). After soaked in GO solution for a certain time, 
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these GO coated-celluloses (CA@GO) were subjected to thermal annealing for the 

carbonization of celluloses fibers into CFs and the reduction of GO into graphene. 

Then, composite aerogels consist of interconnected graphene nanosheets-wrapped 

CFs were formed (CF@G). It is noted that cigarette filters without graphene coatings 

cannot form the 3D structure under the same synthesis condition; instead, they were 

carbonized into carbon ashes (Supporting Information, Fig. S1), indicating the 

synergetic effect of the graphene nanosheets. The layer of GO coated on the backbone 

of cigarette filters helped to keep the cylindrical shape of the templates. Furthermore, 

CF@G aerogel was coated with pyrrole monomers and immersed into FeCl3 solution 

for polymerization into the CF@G@PPy aerogels with enhanced properties (Scheme 

1) for further use. 

Compared with pristine cigarette filter, the height of CF@G decreased from 3 cm to 

1.9 cm and the diameter decreased from 8 mm to 6.9 cm. The volume of CF@G 

aerogel is thus only ~ 47 % of that of cigarette filter (Fig. 2a). The CF@G aerogel has 

a low density of ~ 7.6 mg cm
-3

 and CF@G@PPy is slightly larger (~ 8.8 mg cm
-3

) due 

to the addition of PPy, thus both of them belong to the ultralight materials category (< 

10 mg cm
-3

). The morphologies of CF@G and CA@GO were characterized by 

scanning electron microscopy (SEM). Images of the top view and side view of both 

samples are shown in Fig. 1a-d. Relatively ordered fibers are observed for CA@GO 

(Fig. 1a), however, the fibers are cross-linked and twisted for CF@G (Fig. 1b) owing 

to carbonization. The pore sizes of CF@G range from 100-300 µm were observed in 

the cross-section images along the axis (Fig. 1d), which are larger than CA@GO due 

to the shrinkage of the CA fibers. The pristine CA fibers displayed a “Y”-shape 

cross-section with the diameter of ~ 20 µm (Fig. 1e), while after annealing at 900℃ 

the fibers shrank into ~ 5 µm in diameter with thick graphene layers on the surface 

(Fig. 1f). The fibers are connected together to form a piece by the connection of 

graphene nanosheets and amplified SEM image reveals that the graphene nanosheets 

are strongly adhered to the CF like leaves grown on a trunk (Fig. S1), and the leaves 

become thicker when they were coated with PPy (Fig. S2).  
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A burning experiment was carried out on an alcohol lamp for CF@G and CA@GO 

(Fig. 2a), the CA@GO sample was easily ignited and melted while CF@G exhibited a 

good thermal stability against burning which is beneficial for using as EM absorption 

materials. Despite the low density, a CF@G aerogel is robust enough to sustain 4,000 

times its own weight without collapse (Fig. 2a). The cross-linked graphene-coated 

fibers enhanced the integral strength of our composite aerogels. Although there is a 

decrease in mechanical strength compared with CA@GO owing to the carbonization 

(Fig. S3), our CF@G aerogel still exhibit a high strength of 0.07 Mpa (Fig. 2b) which 

is higher than previously reported graphene aerogels (Table S1). The CF@G@PPy 

exhibit a higher value up to 0.09 Mpa due to the PPy layers. The enhanced 

mechanical strength is attributed to the synergetic effect of the CF and the graphene 

nanosheets. Here, CF serves as the composite matrix while graphene nanosheets are 

the nanofillers. When a lower concentration GO was used, the strength of CF@G 

decreased correspondingly (Fig. 2b). Chemical analysis was also conducted by 

Fourier Translation Infrared Spectroscopy (FT-IR). Spectrum of pure CA shows 

characteristic peaks at 1740, 1367 and 1220 cm
-1

 regard to the C=O, C-CH3 and 

C-O-C stretching, respectively. After being coated with GO and carbonized, all these 

peaks vanished leaving the C=C stretching peak (1620 cm
-1

), reflecting the removal of 

oxygen contained groups during carbonization. Some new peaks rise (1544.4 cm
-1

) in 

the spectrum of CF@G@PPy due to the pyrrole ring vibration and C-N stretching 

vibration (1290.9 cm
-1

). The peaks at 1456.1 cm
-1

, 1385.3 cm
-1

, 896.6 cm
-1

 and 783 

cm
-1

correspond to the =C-H in-plane vibration and the =C-H out-of-plane vibration of 

the pyrrole ring. To further characterize the physical properties of CF@G aerogels, N2 

adsorption/desorption analysis was performed and the results indicate the high surface 

aera of CF@G with the value of 264 m
2
 g

-1
; the pores of our aerogels are larger than 5 

nm and have a wide size distribution from 5 nm to 20 nm (Fig. 2d). The porous 

structure of our aerogel is suitable for EM adsorption because the EM wave can easily 

enter into the inside of CF@G aerogels with less reflectivity. Also, X-ray 

photoelectron spectroscopy (XPS) analysis was conducted to investigate the element 

distribution of our aerogels (Fig. S4). After thermal annealing, the C1s peak of CF@G 
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aerogels increased dramatically indicating the reduction of GO and carbonization of 

cellulose fibers and the nitrogen atoms content is ~ 8.5 wt% after they were coated 

with PPy. 

To study the EM absorbing properties, our aerogels were impregnated with paraffin 

wax and fabricated into cylindrical specimens (Fig. S5). According to the EM energy 

conversion principle, the reflection and attenuation characteristics of EM absorbents 

are determined by the relative complex permittivity (εr = ε’ - jε’’), relative complex 

permeability (µr = µ’ - jµ’’) and proper matching between εr and µr. Considering that 

no ferromagnetic materials were involved in our samples, here the complex 

permeability was taken as 1 (µr =1).
[30]

 The complex permittivity values (εr) were 

measured in the frequency range of 2-18 GHz (Fig. S6). The real part (ε’) and 

imaginary part (ε’’) of complex permittivity represent the stored electrical energy 

within the medium and the dissipation (or loss) of the electrical energy, respectively. 

Thus, a high value of ε’’ means strong dielectric loss to EM wave. As shown in Fig. 

S6, the permittivity values increase with higher loading of aerogel samples in wax 

owing to better conductivity. All samples show typical frequency dependent 

permittivity, when the frequency increases in the measured region both ε’ and ε’’ are 

found to decrease, probably due to the resonance behavior. The CF@G@PPy exhibits 

some typical dielectric resonances at 8-16 GHz, especially for the ε’’ (~ at 8, 10, 12, 

14 GHz) while such phenomenon is absent for the CF@G samples. It is clearly seen 

that overall the ε’ value of CF@G@PPy are larger than CF@G. However, the ε’’ of 

CF@G@PPy is slightly lower than that of CF@G in the range of 2.0-9.0 GHz (Fig. 

S6f). This behavior is due to the interfacial polarization and associated relaxation at 

the interfaces between the PPy core, graphene core and the CF shell.
[31, 32]

 

The dielectric tangent loss (tan δE = ε’’/ε’) provide a measure of the power lost in a 

material versus the amount of power stored and higher values of tan δE indicate more 

EM energy will be consumed (Fig. 3a,b). For CF@G aerogels, tan δE increase with 

increasing loadings in wax. The tan δE for 20 wt% of CF@G in wax ranges from 0.46 

to 0.65 with a maximum value of 0.83 at 11.7 GHz. CF@G@PPy aerogels have the 

same trend with increasing loadings in wax with tan δE range from 0.28-0.62 (20 
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wt%), and three peaks rise at the range of 11.8, 14 and 16GHz with corresponding 

value of 0.89, 0.86 and 0.78, respectively. However, at 12-15 GHz 15 wt% 

CF@G@PPy in wax is higher than 20 wt% samples, which indicates that these 

samples exhibit higher loss capabilities for electric energy at this bandwith. This 

permittivity behavior can be attributed to the increase of electric conductivity and 

space-charge polarization among PPy layers isolated by the wax matrix. Several 

factors should be considered in order to obtain an ideal reflection loss (RL (dB)), such 

as magnetic loss, dielectric loss, characteristic impedance, interface relaxion, etc. 

Debye dipolar relaxations are also favorable for the enhancement of dielectric loss 

materials to absorb EM waves. According to Debye theory, the complex permittivity 

(εr) can be written as, 

εr = ε’ + iε’’ = ε∞ +
����∞

�����	              (1) 
[8]

 

Where εs is the static dielectric constant, ε∞ is the dielectric constant at infinite 

frequency and τ0 is the relaxation time. The equation (1) can be deduced into: 

ε’ = ε∞ + 
����


��(��	)
                    (2) 

ε’’ = 
��	(����
)
��(��	)
                               (3) 

The relationship between ε’ and ε’’ can be deduced from equation (2) and (3) as 

follows: 

(ε’ - ε∞)
2
 + (ε’’)

2
 = (��	- ε∞)

2
             (4) 

Therefore, the plot of ε’ versus ε’’ would be a single semicircle, generally denoted 

as the Cole-Cole semicircle.
[30]

 Each semicircle corresponds to a Debye dipolar 

relaxation. As shown in Fig. 3d, at least three semicircles were found in the curves of 

CF@G@PPy (20 wt% in wax) compared with CF@G (20 wt% in wax) with only one 

semicircle (Fig. 3c) in the range of 2-18 GHz, indicating the PPy coatings endows 

CF@G@PPy with multiple dielectric relaxation processes. The residual oxygen 

functional groups such as hydroxyl (-OH), epoxy (C-O-C) and carbonyl groups (C=O) 

in the thermally reduced graphene and the amino groups (N-H) in the PPy molecular 

act as the polarized centers which account for the presence of higher EM wave 

absorption. 
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To further evaluate the EM absorption performance of CF@G and CF@G@PPy 

aerogels, we calculated the RL values at a given frequency and absorber thickness. 

When the RL is below -10 dB, only 10% of the EM power was reflected and 90% of 

the EM energy was absorbed. Fig. 4b, c shows the RL values of samples (20 wt% in 

wax) with different thicknesses at 2-18 GHz. The minimum RF (RFm) shifts towards a 

lower frequency with increasing thickness, owing to the phenomena of 

quarter-wavelength attenuation, which can be explained by the quarter-wavelength 

equation
 [3]

: 

�� = �λ

� = ��
����|��||��| (n=1, 3, 5, …)   (5) 

Where tm is the thickness of absorber, λ is the wavelength of the electromagnetic 

wave, fm is the peak frequency of the maximum RL, |��| and |��| are respectively 

the modulus of the measured µr and εr at fm, and c is the velocity of light in a vacuum. 

The RLm of CF@G is -30.53 dB at 14.6 GHz when the thickness is 1.5 mm, and the 

bandwidth of RL values less than -10 dB is 4.1 GHz (from 12.7-16.8 GHz). When the 

filler loadings decrease, the absorption decreases correspondingly (15 wt%, 10 wt% 

and 5% wt% can be seen in Fig. S7). The reflection loss properties toward incident 

EM waves of CF@G@PPy are enhanced substantially. The RLm of CF@G@PPy (20 

wt % in wax) is -45.12 dB at 7.9 GHz with the thickness of 2.5 mm. The bandwidth of 

RL below -10 dB at this thickness is 2.5 GHz (from 6.9-9.4 GHz). CF@G@PPy with 

other thicknesses also exhibit excellent EM absorption, the RLm of 1.5 mm, 2.0 mm 

and 3.0mm are -35.95 dB, -42.33 dB and -40.59 dB, and the bandwidths exceeding 

-10 dB for these samples are 13.2-16.9 GHz, 9.2-12.6 GHz and 5.6-7.4 GHz, 

respectively. Moreover, it is clear to see that the RL below -10 dB for both CF@G and 

CF@G@PPy can be obtained in the range of 2-18 GHz with a variation in thickness 

from 1.5 to 5.0 mm, indicating excellent EM absorption of our aerogels. To shed light 

on the EM absorption mechanism of our aerogels, Fig. 4a schematically depicts the 

EM transfer across our aerogels. The entered microwaves are trapped in the composite 

aerogels and attenuated by scattering between the fibers. The EM waves are hard to 

escape from the trap until being absorbed and dissipated as heat.
[33]
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We further investigated the influence of PPy content on the EM absorption of 

CF@G@PPy samples. Two other CF@G@PPy samples with higher PPy content 

(46.5 wt% and 70 wt%, respectively.) were fabricated. However, the EM absorption 

decreases with increasing PPy content. The RLm of CF@G@PPy-46.5 wt% is -34.2 

dB at 14.5 GHz at the thickness of 2 mm and the bandwidth of RL below -10 dB is 

4.3 GHz (11.9-16.2 GHz), as Fig. 5a shows. When the PPy content reaches 70 wt%, 

the RLm CF@G@PPy-70 wt% is only -22.8 dB at 17.9 GHz (Fig. 5b). And only 

samples with thicknesses of 4.0, 4.5 and 5.0 mm have EM absorption below -10 dB at 

a small bandwith (15-18 GHz). As we have discussed before, there are many factors 

to be considered in order to achieve ideal EM absorption. Too much PPy layers coated 

on CF@G aerogel will increase the conductivity of the aerogels; this could decrease 

the dielectric properties of the composite aerogels and affect the impedance match, 

which would lower the reflection loss. Most of the EM waves are reflected rather than 

absorbed at this situation, thus, resulting in a decrease in EM absorption. Therefore, 

CF@G composite aerogels with different EM wave absorption performance can be 

obtained by adjusting the proportion of PPy (Fig. 5c). To better understand the EM 

absorption capacity of our aerogels, we made comparisons between our aerogels and 

other reported graphene-based aerogels (Fig. 5d, Table S2). The results show that our 

aerogels are excellent EM absorbers with RLm can reach -45.12 dB for CF@G@PPy 

samples (others range from -22 to -43.5 dB) among all these samples and the effective 

bandwith of our aerogel is also perfect with a value of 4.1 GHz for CF@G samples, 

and this may develop new broadband EM absorbing materials. 

Conclusions 

We have synthesized ultralight yet high mechanical strength 3D porous composite 

graphene aerogels by using cigarette filters as templates via a solution coating method. 

Our composite aerogels have presented strong EM wave absorption abilities 

(minimum RL= -30.53 dB) and wide absorption bandwidths (4.1 GHz). After coated 

with conducting polymer polypyrrole by a simple chemical polymerization method, 

the minimum RL can reach up to -45.12 dB. The easy fabrication process and 
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environmentally friendly raw materials make our aerogels good candidates for 

application in EM wave absorption.   
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Experimental 

Synthesis of CF@G Aerogel 

Waste cigarette filters were collected and the wrapping papers were removed. The 

cellulose acetate filters were rinsed and then immersed into GO suspension (10 mg 

mL
-1

) for 2 h until the GO adsorption was saturated. The resulting CA@GO 

composites were then dried in air at room temperature overnight. Finally, CA@GO 

composites were subjected to thermal annealing at 900 
o
C for 2 h in Ar and the 

production was named as CF@G aerogel. 

Fabrication of CF@G@PPy Aerogel 

CF@G aerogel was immersed in pyrrole solution for 1 h. Then CF@G aerogel with 

Py monomers adsorbed on the surface was directly immersed in FeCl3 (1 M) for 15 

min, followed by rinsing with deionized water. Then, samples were dried in air. The 

PPy content is about 18.5 wt%.  

For comparison, samples with 46.5 wt% and 70 wt% PPy were also fabricated by 

extending the reaction time in FeCl3 solution to 30 min and1 h, respectively. 

Materials Measurements 

Mechanical tests were carried out by a single-column static instrument (Instron 

5843) equipped with two flat-surface compression stages and a 10 N load cell. For 

electromagnetic wave absorption measurements, our aerogels were impregnated with 

paraffin wax at 85 ℃and then fabricated into cylindrical specimens. Paraffin wax was 

used as a matrix to support aerogels and facilitate the sample fabrication process. The 

wax is transparent to EM waves and makes no contribution to EM absorption. 

Samples with different aerogel loadings in the paraffin wax were fabricated, such as 

20 wt%, 15 wt%, 10 wt% and 5 wt% and then the resulting paraffin composites were 

compressed into cylindrical specimens with and inner diameter of 3 mm, outer 

diameter of 7 mm. The complex permittivity (εr = ε’ - jε’’) and relative complex 

permeability (µr = µ’ - jµ’’) were measured using the T/R coaxial line method in the 

range of 2-18 GHz using as network analyzer (Agilent Technologies N5230A). The 

reflection loss (RL) curves calculated from the following equations: 
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        								� 	(!") = 20log ()*+��)*+��(          (6) 

Where Zin is the normalized input impendence of the microwave absorption layer, 

which can be written as the following equation: 

																				Z-� = .µ/
ε/ tanh 01 23� √����5!6        (7) 

Where c is the velocity of light in a vacuum, f is the microwave frequency, d is the 

thickness of the absorber, εr and µr are the relative permittivity and permeability of the 

materials. In this paper the complex permeability was taken as 1 because of the weak 

magnetic properties of our samples. 
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Scheme 1. Flow diagram for the fabrication of the CF@G and CF@G@PPy aerogels. a) 

Cigarette filters and graphene oxide (GO) were mixed together and then dried in air followed 

by carbonization. Cellulose fibers were carbonized into carbon fibers (CF) and GO 

nanosheets were reduced into graphene nanosheets during the thermal annealing. Finally, the 

CF@G aerogels were coated with PPy to synthesize the CF@G@PPy aerogels. b) 

Photographs showing the detailed synthesis process.  
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Figure 1. SEM micrographs of CA@GO and CF@G aerogels. a, b) Cross-sectional view 

of CA@GO and CF@G aerogels, respectively. c, d) Lateral view of CA@GO and CF@G 

aerogels, respectively. e, f) Amplified photos of one single fiber inside CA@GO and CF@G 

aerogels, repectively. Inset of a) and c) are illustrations indicating the top and side view of the 

sample. 
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Figure 2. Mechanical properties, flame resistance and chemical characterization of 

CF@G aerogel. a) Photo of CA, CA@GO, CF@G and CF@G@PPy aerogel, respectively; 

Photo showing that a CF@G monolith of 5 mg can sustain a 20 g weight; Photo of CA@GO 

and CF@G burned with an alcohol burner. b) Mechanical strength of CA, CA@GO, CF@G 

and CF@G@PPy aerogel. GO-low indicates the sample prepared using a lower concentration 

(5 mg mL
-1

) GO solution. c) FT-IR spectrum of CA, CF@G and CF@G@PPy, respectively. d) 

N2 adsorption-desorption isotherms of the CF@G. Inset is the pore size distribution plots.  
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Figure 3. Dielectric dissipation factors and Cole-Cole semicircle curves of CF@G and 

CF@G@PPy aerogels. a, b) Dielectric dissipation factors (tan δE) of CF@G and 

CF@G@PPy aerogels with different filler loadings in paraffin wax in the frequency range of 

2-18 GHz. c, d) Typical Cole-Cole semicircles (ε’’ vs ε’) for CF@G and CF@G@PPy 

aerogels with 20 wt% in paraffin wax in the frequency range of 2-18 GHz. Inset of c) is the 

photo of aerogels in paraffin wax with an inner diameter of 3 mm, outer diameter of 7 mm. 
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Figure 4. Absorption mechanism and EM wave reflection losses. a) Schematic illustration 

of the absorption mechanism. b, c) RL of CF@G and CF@G@PPy aerogels in the frequency 

range of 2-18 GHz. (Filler loadings of all samples are 20 wt% in wax.) 
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Figure 5. EM wave reflection losses of CF@G@PPy aerogels with different PPy content. 

a, b) RL of CF@G@PPy aerogels with 46.5 wt% and 70 wt% PPy content in the frequency 

range of 2-18 GHz, respectively. c) RL of CF@G, CF@G@PPy, CF@G@PPy (46.5 wt%) 

and CF@G@PPy (70 wt%) samples with thickness of 2.5 mm in the frequency of 2-18 GHz. 

d). Comparison of minimum reflection losses (RFm) of different samples. 
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Graphene aerogels with excellent electromagnetic wave absorption properties are 

fabricated by using cigarette filters as the template via a simple dip-coating method. 
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