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Abstract 46 

Exposure to arsenic is known as a risk factor in various types of cancer. Apart 47 

from its carcinogenic activity, arsenic also shows promoting effects on angiogenesis, a 48 

crucial process for tumor growth. Yet, the mechanism underlying arsenic-induced 49 

angiogenesis is not fully understood. In this study, we aimed at investigating the 50 

involvement of inhibitor of DNA binding 1 (Id1) and associating signal molecules in 51 

the arsenic-mediated angiogenesis. Our initial screening revealed that treatment with 52 

low concentrations of arsenic (0.5–1 µM) led to multiple cellular responses, including 53 

the enhanced endothelial cell viability and angiogenic activity as well as the increased 54 

protein expression of Id1. The arsenic-induced angiogenesis was suppressed in the 55 

Id1-knockdowned cells compared with that in control cells. Furthermore, 56 

arsenic-induced Id1 expression and angiogenic activity were regulated by PI3K/Akt, 57 

NF-κB, and nitric oxide synthase (NOS) signaling. In summary, our current data 58 

demonstrate for the first time that Id1 mediates the arsenic-promoted angiogenesis, 59 

and Id1 may be regarded as an antiangiogenesis target for treatment of 60 

arsenic-associated cancer.61 
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Introduction 62 

Arsenic (As) is a metalloid widely distributed in nature via its multiple forms in 63 

association with other elements.
1
 Despite an ecological role, arsenic exposure has 64 

been shown pernicious to human health.
2
 For instance, intake of arsenic-contaminated 65 

drinking water, food, or air causes renal and urinary dysfunction and elevated cancer 66 

incidence.
3-5

 Exposure to arsenic during early gestation is also adversely correlated 67 

with long-term health issues, including increased incidence of carcinogenesis in later 68 

life.
6-8

 69 

Angiogenesis is implicated in many pathological conditions such as rheumatoid 70 

arthritis,
9
 wound healing,

10
 cerebral ischemia,

11
 and cardiovascular or peripheral 71 

artery diseases.
12, 13

 In addition, tumorigenesis is largely dependent on neovascular 72 

formation, and therefore antiangiogenic therapy has become one of the main 73 

therapeutic strategies to control tumor growth.
14, 15

 While most of the on-market 74 

antiangiogenic agents are targeting vascular endothelial growth factor (VEGF) and its 75 

downstream signaling cascade, clinical response to these agents is modest and new 76 

targeted therapies remain to be developed.
16

 77 

Inhibitor of DNA binding 1 (Id1), also known as inhibitor of differentiation 1, is 78 

a member of basic helix-loop-helix (bHLH) transcription factor proteins.
17, 18

 79 

Structurally, Id1 is lack of the basic region that is adjacent to the HLH domain and 80 

essential for DNA binding.
17

 Without a capacity of DNA binding by itself, Id1 forms 81 

heterodimers with other bHLH transcription factors which regulate the expression of 82 

genes involved in cell proliferation and differentiation.
18

 Notably, upregulation of Id1 83 

expression has been correlated with cancer progression, suggesting that Id1 may 84 

constitute an important target for anticancer therapeutics.
19-22

 85 

It has been shown that arsenic exerts a dual effect on angiogenesis and 86 

carcinogenesis.
23-25

 Intriguingly, Id1 also plays a regulatory role for tumor 87 
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angiogenesis.
26-28

 However, whether Id1 is involved in arsenic-associated 88 

angiogenesis has not been elucidated. In this study, we report that knockdown of Id1 89 

expression compromises the arsenic-promoted angiogenesis. In addition, the 90 

arsenic-induced Id1 expression and angiogenesis are suppressed by inhibition of 91 

PI3K/Akt, NF-κB and nitric oxide synthase (NOS) signaling pathway. Together, our 92 

current results provide a novel finding for the involvement of Id1 in 93 

arsenic-associated angiogenesis. 94 

 95 

Materials and methods 96 

Materials 97 

Sodium arsenite, wortmannin, QNZ, DETA-NONOate, 1400W dihydrochloride, 98 

L-NAME hydrochloride, basic FGF, and heparin were purchased from Sigma-Aldrich 99 

(St. Louis, MO, USA). Matrigel was purchased from BD Biosciences (San Jose, CA, 100 

USA). Dulbecco's modified eagle medium (DMEM) was purchased from Gibco 101 

(Carlsbad, CA, USA). Fetal bovine serum, penicillin, streptomycin, and amphotericin 102 

B were purchased from Biological Industries (Beit-Haemek, Israel). Other reagents 103 

employed in this study were indicated separately wherever suitable. 104 

 105 

Cell culture 106 

Mouse pancreatic endothelial cells (MS1) and human umbilical vein endothelial 107 

cells (HUVEC) were obtained from the American Type Culture Collection (Manassas, 108 

VA, USA). MS1 cells were cultured in DMEM medium supplemented with 10% fetal 109 

bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL 110 

amphotericin B. HUVEC cells were cultured in EndoGRO-LS complete medium 111 

(Millipore, MA, USA). All cells were maintained at 37°C in a 5% CO2 incubator. 112 

 113 
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Cell viability assay 114 

MS1 or HUVEC cells were seeded at a density of 3×10
3
 cells/well in 96-well 115 

plates for 24 h prior to treatment with the indicated concentrations of arsenic. After 72 116 

h of treatment, the number of viable cells was determined by XTT assay 117 

(Sigma-Aldrich) according to the manufacturer’s instructions. 118 

 119 

Western blot 120 

Protein extracts of cells were prepared in lysis buffer (50 mM Tris-HCl pH 7.6, 121 

120 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40, 1 mM β-mercaptoethanol, 50 mM 122 

NaF, and 1 mM Na3VO4), followed by sodium dodecyl sulfate-polyacrylamide gel 123 

electrophoresis (SDS-PAGE) and immunoblotting analysis as described previously.
29

 124 

Antibody against Id1 was purchased from Santa Cruz Biotechnology (Dallas, TX, 125 

USA). Antibodies against STAT3, Akt, phospho-Akt (Ser473), p65, phospho-p65 126 

(Ser536), iNOS, and β-actin were from GeneTex (Irvine, CA, USA). Antibodies 127 

against phospho-STAT3 (Tyr705), phospho-STAT3 (Ser727), phosphor-eNOS 128 

(Ser1177), and eNOS were from Cell Signaling Technology (Danvers, MA, USA). 129 

 130 

In vitro angiogenic tube formation assay 131 

The in vitro angiogenic tube formation was carried out according to a previous 132 

report.
30

 Briefly, the 48-well plate coated with growth factor-reduced Matrigel (150 133 

µl/well) was allowed to polymerize at 37°C for 60 min. Cells (3×10
4
 cells/well) 134 

pretreated with arsenic for 24 h were then plated onto the well containing polymerized 135 

Matrigel. After 12 h of incubation, the morphology of cells was imaged using a Nikon 136 

Eclipse 80i microscope (Tokyo, Japan). The degree of tube formation in each group 137 

was estimated with the presence of total length analyzed by ImageJ 138 

(http://rsbweb.nih.gov/ij/). 139 
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 140 

Knockdown of Id1 protein expression 141 

The short hairpin RNAs (shRNAs) targeting human Id1 (#1, 142 

5’-CCTACTAGTCACCAGAGACTT-3’; #2, 5’-CTACGACATGAACGGCTGTTA-3’) 143 

were cloned into a pLKO.1 vector (Id1-pLKO.1) derived from the National RNAi 144 

Core Facility (Academia Sinica, Taiwan). A parental pLKO.1 vector without shRNA 145 

sequence was used as an empty vector control. Lentiviruses were prepared by 146 

transfecting three plasmids (the packing plasmid pCMV8.91, the envelope plasmid 147 

pMD.G, and either the shRNA plasmid Id1-pLKO.1 or the control plasmid pLKO.1) 148 

into 293T cells using Lipofectamine 2000 (Invitrogen, CA, USA) as described 149 

previously.
31

 MS1 cells were infected with the lentiviral particles containing either 150 

Id1-pLKO.1 or pLKO.1 collected from the corresponding cell culture medium. 151 

 152 

In vivo angiogenic Matrigel plug assay 153 

For the in vivo Matrigel plug experiment in Fig. 1A, female immunodeficient 154 

mice (Foxn1
nu

/Foxn1
nu

) were injected subcutaneously with 500 µL Matrigel 155 

containing basic FGF (1 ng/mL), heparin (10 U/mL), and either arsenic (0.5 µM) or 156 

phosphate buffered saline (PBS) as vehicle control. After 14 days, the mice were 157 

sacrificed and Matrigel plugs were dissected out for the quantitation of hemoglobin by 158 

Drabkin’s reagent (Sigma-Aldrich) according to the manufacturer’s instructions. As to 159 

a separate experiment of the in vivo Matrigel plug assay in Fig. 4 C and D, the 160 

procedures were identical as described above except for that the Matrigel prepared 161 

likewise was additionally mixed with either 1×10
6
 Id1-knockdowned MS1 cells 162 

(Id1-KD), or with the same number of empty vector control MS1 cells (EV). The 163 

mice experiments carried out in this study were approved by the Institutional Animal 164 

Care and Use Committee of Kaohsiung Medical University. 165 
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 166 

In vivo angiogenesis in zebrafish model 167 

The in vivo angiogenic assay using embryos of zebrafish was carried out 168 

according to a previous report.
32

 In brief, approximately 100 embryos were generated 169 

per pair of zebrafish via natural pairwise mating. The embryos were then incubated 170 

with the indicated concentrations of arsenic at 27°C. After 72 h post-fertilization (hpf), 171 

the larvae were anesthetized with 0.5 g/L ethyl 3-aminobenzoate methanesulfonate 172 

(Sigma-Aldrich) for 30 min and fixed in 4% paraformaldehyde for 2 h, followed by 173 

staining for endogenous alkaline phosphatase activity. The branches of sub-intestinal 174 

vessel (SIV) were imaged using a Nikon Eclipse 80i microscope. Experiments 175 

involving zebrafish in this study were approved by the Institutional Animal Care and 176 

Use Committee of Kaohsiung Medical University. 177 

 178 

Nitric oxide formation assay 179 

The nitric oxide formation was estimated by the method of Griess Reagent 180 

according to the procedures of Total Nitric Oxide and Nitrate/Nitrite Parameter Assay 181 

Kit (R&D Systems, MN, USA) and expressed as total nitrite/nitrate concentrations by 182 

comparing to a standard curve. 183 

 184 

Nitric oxide staining 185 

MS-1 cells in 12-well plates were treated with or without 0.5 µM As for 4 h 186 

followed by FA-OMe (10 µM) staining for 8 h according to a previous report
33

 and 187 

MitoTracker Red (Life Technologies) staining according to the manufacturer’s 188 

instructions. Images were photographed using Multiphoton and Confocal Microscope 189 

System (Leica, Germany) (FA-OMe ex/em: 460/524 nm; MitoTracker Red ex/em: 190 

579/599 nm). 191 
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 192 

Statistical analysis 193 

Quantitative data were presented as mean±SD. Two-sided Student’s t test or 194 

one-way ANOVA with post hoc Dunnett's test was used to determine the significant 195 

difference between different groups. P < 0.05 was considered statistically 196 

significantly different from at least three independent experiments. 197 

 198 

Results 199 

Effects of arsenic on angiogenesis and Id1 expression 200 

The effect of arsenic on cell viability was analyzed by XTT assay in mouse 201 

pancreatic endothelial cells (MS1) and human umbilical vein endothelial cells 202 

(HUVEC). As shown in Suppl. Fig. 1A, low concentrations of arsenic (0.5–1 µM) 203 

promoted cell viability, while that was inhibited by high concentration of arsenic (10 204 

µM). The results suggested that there was a biphasic effect of arsenic on the 205 

endothelial cell viability. 206 

To evaluate angiogenic activity of arsenic, the in vitro tube formation assay was 207 

employed. As shown in Suppl. Fig. 1B and C, low concentrations of arsenic (0.5–1 208 

µM) increased the tube formation, whereas high concentration of arsenic (10 µM) 209 

reduced the tube formation in both MS1 and HUVEC cells, implying that arsenic also 210 

had a biphasic effect on the angiogenesis. Together, our data showed agreement with 211 

previous reports in that low concentration promoted while high concentration 212 

suppressed cell viability and angiogenesis by arsenic in endothelial cells.
34-36

 213 

The effect of arsenic on in vivo angiogenesis was examined in a mouse model 214 

implanted with Matrigel plug and in a zebrafish model. We observed that the level of 215 

hemoglobin from the plug containing arsenic in mice was significantly higher than 216 

that from the control plug (Fig. 1A), suggesting that new vascular formation was 217 
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potentiated in the presence of arsenic. The other approach using zebrafish as a model 218 

showed the number of branches of sub-intestinal vessel (SIV) increased at 5–10 µM 219 

arsenic treatment and decreased at 100–200µM arsenic treatment (Fig. 1B), in 220 

agreement with a recent paper that demonstrated a perturbed vascular development at 221 

high dose arsenic treatment.
37

 222 

Since Id1 plays a regulatory role for tumor angiogenesis,
26-28

 we next examined 223 

the role of Id1 and involving signaling in the arsenic-promoted angiogenesis. As 224 

shown in Fig. 2A and B, low concentrations of arsenic (0.5–1 µM) induced Id1 225 

protein expression in MS1 cells. The protein levels of vascular endothelial growth 226 

factor (VEGF) were also increased under arsenic treatment (Fig. 2A). In addition, the 227 

phosphorylation of Akt and NF-κB (p65 subunit) were both enhanced by arsenic (Fig. 228 

2A), while the expression of total form and phosphorylated STAT3, a transcription 229 

activator that may participate in tumor angiogenesis,
38

 was unaffected in the presence 230 

of arsenic (Suppl. Fig. 2A). The arsenic-induced Id1 expression and Akt 231 

phosphorylation were also observed in an in vivo zebrafish model (Fig. 1C). 232 

 233 

Involvement of PI3K/Akt and NF-κB in arsenic-induced Id1 expression and tube 234 

formation 235 

The involvement of PI3K/Akt and NF-κB in arsenic-induced Id1 expression was 236 

further examined by wortmannin, a PI3K/Akt inhibitor, and by QNZ, an inhibitor of 237 

NF-κB. As shown in Fig. 2C, the arsenic-induced Akt phosphorylation was inhibited 238 

in MS1 cells treated with wortmannin. Notably, the Id1 expression induced by arsenic 239 

was suppressed in the presence of wortmannin (Fig. 2C) or QNZ (Fig. 2D). Moreover, 240 

the arsenic-promoted in vitro tube formation was inhibited in the presence of 241 

wortmannin (Fig. 2E) or QNZ (Fig. 2F). These data suggested that activation of 242 

PI3K/Akt and NF-κB signaling might play a regulatory role in the arsenic-induced Id1 243 
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expression and angiogenesis. 244 

 245 

Involvement of nitric oxide synthase (NOS) in arsenic-induced Id1 expression 246 

and tube formation 247 

Although the effect of arsenic on nitric oxide production
35, 39

 and eNOS 248 

activation
40

 were reported, the role of nitric oxide in Id1-mediated angiogenesis 249 

induced by arsenic has not been elucidated before. In the present study, MS1 cells 250 

treated with arsenic consistently showed an increased nitric oxide formation (Fig. 3A 251 

and Suppl. Fig. 2B), and treatment with DETA-NONOate, a nitric oxide donor, was 252 

able to upregulate the Id1 expression and in vitro tube formation in these cells (Fig. 253 

3B, C), implying that nitric oxide might play a role upstream of Id1 in this process. 254 

Furthermore, we found that treatment of arsenic increased the protein expression of 255 

phospho-eNOS (Ser1177) and iNOS (Fig. 3D). The involvement of nitric oxide in 256 

arsenic-stimulated Id1 expression and tube formation were further examined by two 257 

nitric oxide synthase inhibitors, L-NAME and 1400W. As shown in Fig. 3E and 3F, 258 

the arsenic-induced Id1 expression was suppressed in the presence of L-NAME and 259 

1400W, respectively. In addition, the arsenic-promoted tube formation was inhibited 260 

by L-NAME (Fig. 3E) or 1400W (Fig. 3F). Collectively, the data suggested that the 261 

arsenic-induced Id1 expression and angiogenesis were mediated through a signaling 262 

pathway involving nitric oxide. 263 

 264 

Id1 as the downstream effector for arsenic-induced angiogenesis 265 

To further investigate the role of Id1 in arsenic-induced angiogenesis, the 266 

endogenous expression of Id1 was knockdowned by a lentiviral shRNA approach (Fig. 267 

4A). As shown in Fig. 4A and B, the arsenic-induced in vitro tube formation was 268 

suppressed in the Id1-knockdowned (Id1-KD) MS1 cells. In addition, the level of 269 
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arsenic-promoted in vivo angiogenesis was reduced in the presence of Id1-KD cells 270 

(Fig. 4C and D). Together, the results suggested that Id1 acted as an important factor 271 

mediating the arsenic-promoted angiogenesis. 272 

 273 

Discussion 274 

Previous studies showed that exposure to arsenic was correlated with increasing 275 

risks of various carcinogenesis.
8, 24, 41-45

 In addition to the tumorigenic effect, the 276 

angiogenic activity of arsenic was also reported. For example, it was reported that low 277 

level of arsenic promoted neovascularization and blood vessel remodeling.
24, 25

 278 

Treatment with arsenic also stimulated cell migration and tube formation of human 279 

microvascular endothelial cells.
46

 Moreover, the level of tumor angiogenesis was 280 

elevated by arsenic in mice xenografted with human adenocarcinoma cells.
23

 In the 281 

present study, we consistently showed that low arsenic promoted endothelial cell 282 

viability and angiogenesis (Suppl. Fig. 1), whereas the opposite effect of arsenic at a 283 

higher concentration which caused the reduction of angiogenesis may be explained by 284 

its cytotoxic effect at such amount of arsenic.
35, 36, 47, 48

 285 

It was reported that PI3K/Akt signaling played an important role in the 286 

arsenic-induced angiogenesis.
49-51

 Exposure to arsenic stimulated the PI3K/Akt 287 

phosphorylation cascade and resulted in cellular transformation characterized by 288 

increases of proliferation and anchorage-independent growth.
52

 Arsenic activated 289 

MAPK and PI3K/Akt pathways that were required for the arsenic-induced expression 290 

of COX-2, HIF-1α and VEGF.
53, 54

 Our results suggested a novel regulatory role of 291 

PI3K/Akt in the arsenic-induced Id1 expression and tube formation (Fig. 2C and E). 292 

The possible involvement of NF-κB, a downstream effector of PI3K/Akt in 293 

endothelial cells,
55-57

 was further investigated in this study. We found that arsenic was 294 

able to trigger NF-κB activation (Fig. 2A) as reported previously.
47, 58

 Notably, the 295 
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arsenic-enhanced Id1 expression and tube formation were suppressed in the presence 296 

of QNZ (Fig. 2D and F). We noticed that angiogenesis-related genes driven by NF-κB, 297 

such as IL-8 and Col1, were reportedly unnecessary for the arsenic-induced tube 298 

formation.
59

 Therefore, it would be worthwhile to determine whether there are 299 

specific NF-κB-regulated genes in the Id1-mediated angiogenesis induced by arsenic. 300 

Previous report showed that the level of in vivo angiogenesis was reduced to a 301 

lesser degree in Id1
-/-

 mice in contrast to that in Id1
+/+

 mice.
28

 In addition, Id1
-/-

 mice 302 

xenografted with human lung carcinoma cells had defects of microvascular formation 303 

on the implanted site, suggesting that Id1 might be a major effector for the tumor 304 

angiogenic activity.
28

 Strong Id1 expression was also observed in the surrounding 305 

blood vessels of high-grade glioma tumor tissues, while only weak Id1 expression 306 

was observed in those of low-grade tumor tissues.
27

 Our current data unveiled an 307 

angiogenic role of Id1 in the vascular endothelial cells when treated with arsenic. For 308 

instance, the arsenic-induced in vitro tube formation was significantly reduced in the 309 

Id1-knockdowned MS1 cells compared with the control cells (Fig. 4A and B). 310 

Furthermore, the arsenic-induced in vivo angiogenic activity was suppressed in the 311 

mice xenografted with Id1-KD cells versus the mice xenografted with control cells 312 

(Fig. 4C and D). As angiogenesis is an essential event for tumor growth and 313 

metastasis, the Id1-mediated tumor angiogenesis may be developed into a therapeutic 314 

potential against cancer progression.
15, 20, 60

 315 

While nitric oxide is a known factor involving in arsenic-induced angiogenesis,
61, 

316 

62
 the role of nitric oxide in arsenic-induced Id1 expression has not been elucidated. 317 

Several lines of evidence in our current study suggested the possible involvement of 318 

nitric oxide signaling and Id1 in these arsenic-induced events, including 1) the level of 319 

nitric oxide formation was increased by arsenic (Fig. 3A), 2) Id1 expression and tube 320 

formation were enhanced in the presence of DETA-NONOate, a known NO donor 321 
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(Fig. 3B and C), and 3) application of the NOS inhibitor L-NAME and 1400W 322 

showed inhibitory effect on Id1 expression and tube formation induced by arsenic 323 

(Fig. 3E and F). It was reported that NOS activities were regulated downstream of 324 

PI3K/Akt and NF-κB signaling.
63-66

 Intriguingly, a mutual regulation might be present 325 

between Id1 and PI3K/Akt.
51, 67-69

 Therefore, it will be valuable to investigate the 326 

complex connection of these signaling molecules involved in the arsenic-induced 327 

angiogenesis (Fig. 4E). 328 

In summary, our data showed for the first time that Id1 mediated 329 

arsenic-promoted angiogenesis. In addition, PI3K/Akt, NF-κB and nitric oxide had 330 

regulatory roles in this process. The current results may hence further our 331 

understanding towards the role of Id1 in arsenic-associated angiogenesis and suggest 332 

for its potential application as a target of antiangiogenesis therapy in 333 

arsenic-associated cancer.334 
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Figure legends 480 

Fig. 1 Effects of arsenic on in vivo angiogenesis. (A) Matrigels containing bovine 481 

FGF (1 ng/mL), heparin (10 U/mL), and either with or without arsenic (0.5 µM) were 482 

injected subcutaneously to the female immunodeficient mice. After 14 days, the 483 

Matrigel plugs were dissected out and the hemoglobin levels were determined by 484 

Drabkin’s reagent. (B) Embryos of zebrafish were incubated with different doses of 485 

arsenic for 72 h. After anesthetization, the larvae were stained and imaged, and the 486 

number of branches of sub-intestinal vessel (SIV) was quantitated. Arrows showed 487 

typical appearance of the SIV branches under different conditions of arsenic treatment. 488 

*Significant difference of P < 0.05 compared with the untreated control by Student’s t 489 

test. (C) Arsenic induced protein expression of Id1 and phospho-Akt (Ser473) in 490 

zebrafish. Embryos of zebrafish were incubated either with or without arsenic (10 µM) 491 

for 72 h. After anesthetization, the total proteins of larvae were extracted and 492 

subjected to Western blot analysis. 493 

 494 

Fig. 2 Involvement of PI3K/Akt signaling in arsenic-induced Id1 protein expression 495 

and in vitro angiogenesis. (A) MS1 cells were treated with arsenic (0.5 µM) for the 496 

indicated lengths of time, followed by Western blot analysis for protein expression of 497 

VEGF, phospho-Akt (Ser473), Akt, phospho-p65 (Ser536), p65, and Id1. (B) MS1 498 

cells were treated with different doses of arsenic for 24 h, followed by Western blot 499 

analysis for Id1 protein expression. (C) MS1 cells were pretreated with or without the 500 

PI3K/Akt inhibitor wortmannin (1 µM) for 2 h, followed by arsenic treatment (0.5 µM) 501 

for 24 h. The protein expression of phospho-Akt (Ser473) and Id1 was analyzed by 502 

Western blot. (D) MS1 cells were pretreated with or without NF-κB inhibitor QNZ 503 

(10 nM) for 2 h, followed by arsenic treatment (0.5 µM) for 24 h. The protein 504 

expression of Id1 was analyzed by Western blot. (E) MS1 cells were pretreated with 505 
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or without wortmannin (1 µM) for 2 h, followed by in vitro tube formation assay in 506 

the presence or absence of arsenic (0.5 µM) for 24 h. (F) MS1 cells were pretreated 507 

with or without QNZ (10 nM) for 2 h, followed by in vitro tube formation assay in the 508 

presence or absence of arsenic (0.5 µM) for 24 h. *Significant difference of P < 0.05 509 

by one-way ANOVA with post hoc Dunnett's test. 510 

 511 

Fig. 3 Involvement of nitric oxide in arsenic-induced Id1 protein expression and in 512 

vitro angiogenesis. (A) MS1 cells were treated with different doses of arsenic for 48 h, 513 

and the cell culture media were collected for the nitric oxide formation assay. (B) 514 

MS1 cells were treated with different doses of DETA-NONOate for 24 h, followed by 515 

Western blot analysis for Id1 protein expression. (C) MS1 cells were treated with 516 

DETA-NONOate (10 µM) for 24 h, followed by the in vitro tube formation assay. 517 

*Significant difference of P < 0.05 by Student’s t test. (D) MS1 cells were treated 518 

with arsenic (0.5 µM) for 24 h, followed by Western blot analysis for protein 519 

expression of phospho-eNOS (Ser1177), eNOS, iNOS and Id1. (E) MS1 cells were 520 

pretreated with or without the nitric oxide synthase inhibitor L-NAME (100 µM) for 2 521 

h, followed by the presence or absence of arsenic treatment (0.5 µM) for 24 h. The 522 

protein expression of Id1 and tube formation ability were analyzed. (F) MS1 cells 523 

were pretreated with or without the nitric oxide synthase inhibitor 1400W (10 µM) for 524 

2 h, followed by the presence or absence of arsenic treatment (0.5 µM) for 24 h. The 525 

protein expression of Id1 and tube formation ability were analyzed *Significant 526 

difference of P < 0.05 by one-way ANOVA with post hoc Dunnett's test. 527 

 528 

Fig. 4 Involvement of Id1 in the arsenic-promoted angiogenesis. (A) Protein 529 

expression levels of Id1 in the Id1-knockdowned (Id1-KD#1 and Id1-KD#2) and 530 

empty vector control (EV) MS1 cells were assessed by Western blot. As a result, 531 
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Id1-KD#2 MS1 cells were chosen for the experiments in (B)–(D). (A, B) Id1-KD and 532 

EV MS1 cells were treated with or without arsenic (0.5 µM) for 24 h, followed by the 533 

in vitro tube formation assay. (C, D) Id1-KD or EV MS1 cells were mixed with the 534 

Matrigel containing bovine FGF (1 ng/mL), heparin (10 U/mL), and either with or 535 

without arsenic (0.5 µM), followed by subcutaneous injection to immunodeficient 536 

mice for the Matrigel plug assay. (E) Schematic representation of a summary for the 537 

current work. The flow chart shows that arsenic-induced angiogenesis is mediated 538 

through Id1 expression regulated via PI3K/Akt, NF-κB and nitric oxide signaling. The 539 

dashed line suggests that a mutual regulation between Id1 and PI3K/Akt may possibly 540 

exist in this process (see Discussion). Wortmannin, PI3K/Akt inhibitor; QNZ, NF-κB 541 

inhibitor; L-NAME and 1400W, nitric oxide synthase inhibitors. *Significant 542 

difference of P < 0.05 by one-way ANOVA with post hoc Dunnett's test.  543 

 544 

Suppl. Fig. 1 Effects of arsenic on endothelial cell viability and in vitro angiogenesis. 545 

(A) MS1 and HUVEC cells were treated with different doses of arsenic for 72 h. The 546 

number of viable cells was determined by XTT assay. (B) MS1 and HUVEC cells 547 

were treated with different doses of arsenic for 24 h, followed by in vitro tube 548 

formation assay. (C) Quantification of the total tube lengths from the corresponding 549 

groups in (B). *Significant difference of P < 0.05 compared with the untreated control 550 

by Student’s t test. 551 

 552 

Suppl. Fig. 2 Effects of arsenic on the protein expression STAT3 and nitric oxide in 553 

MS1 endothelial cells. (A) Cells were treated with arsenic (0.5 µM) for the indicated 554 

lengths of time, followed by Western blot analysis. (B) MS1 cells were treated with or 555 

without arsenic (0.5 µM), followed by nitric oxide staining (FA-OMe, green in color) 556 

and mitochondrial staining (Mitochondrial, red in color). Dashed boxes were enlarged 557 
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in the bottom of each fluorescent micrograph. 558 
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