Analyst Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/analyst

Yanyan Li, <sup>a</sup> Xiaoming Ma, <sup>a</sup> Zhengming Xu, <sup>a</sup> Meihua Liu, <sup>b</sup> Zhenyu Lin, <sup>a\*</sup> Bin Qiu, <sup>a</sup>

Longhua Guo<sup>*a*</sup> \* and Guonan Chen<sup>*a*</sup>

<sup>a</sup> Institute of Nanomedicine and Nanobiosensing; The Key Lab of Analysis and Detection
Technology for Food Safety of the MOE and Fujian Province; College of Chemistry,
Fuzhou University, Fuzhou, 350116, China.

<sup>b</sup> Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China

\* To whom correspondence should be addressed. E-mail: <u>guolh@fzu.edu.cn</u> (Longhua Guo); zylin@fzu.edu.cn (Zhenyu Lin); Tel: +86-591-22866164; Fax: +86-591-22866135

# ABSTRACT

Seed-mediated synthesis of gold nanorods (AuNRs) has been widely used for diverse applications in the past decade. In this work, this synthetic process is demonstrated for multicolor biosensing for the first time. Our investigation reveals that ascorbic acid acts as a key factor to mediate the growth of AuNRs. This phenomenon is incorporated into the alkaline phosphatase (ALP)- Enzyme-linked immunosorbent assay (ELISA) system based on the fact that ALP can catalyze the conversion of ascorbic acid-phosphate into ascorbic acid with high efficiency. This allows us to develop a multicolor ELISA approach for sensitive detection of disease biomarkers with the naked eye. We show the proof-of-concept multicolor ELISA for the detection of prostate-specific antigen (PSA) in human serum. The results show that different colors are presented in response to different concentrations of PSA, and a detection limit of  $3 \times 10^{-15}$  g/mL in human serum was achieved. The proposed multicolor ELISA could be a good supplementary to conventional ELISA for POC diagnostics.

Keywords: Au nanorod; ELISA; visual inspection; alkaline phosphatase; clinical diagnosis

## INTRODUCTION

Colorimetric sensors have attracted broad interests to both the academic and industrial communities due to their simplicity and affordability.<sup>1-5</sup> Normally, colorimetric sensors can be detected with a portable UV-Vis spectrometer or even inspected with the naked eye.<sup>6-7</sup> Therefore, colorimetric sensors are extremely suitable for those applications that expensive and/or bulky equipments are not applicable, for example, point-of-care testing (POCT) and *in situ* environmental/food inspection.<sup>8-10</sup> Although colorimetric sensors were extensively explored in the past decades, great challenges still exist to turn these laboratory available sensors into real applications. An ideal colorimetric sensor which is feasible for real applications should at least satisfy the following conditions: 1) High sensitivity. The sensitivity of the sensor should be high enough, when compared with other sensors such as fluorescent- and electrochemical- based sensors. 2) Wide applicability. The sensor should be specific to the target while the sensing strategy should be widely applicable to a number of analytes so that it is easier to be commercialized. 3) Naked-eye (semi)quantitative assay. Visual inspection of the analytes with the naked eye is the unique advantage of colorimetric sensors. However, the accuracy of the sensor should be improved so that naked-eye inspection can not only be used for qualitative assays, but also used for (semi)quantitative assays. Recently, we demonstrated that colorimetric sensor based on the oriented aggregation of Au nanoparticles (AuNPs) can improve the sensitivity effectively, which is comparable to fluorescent based approaches.<sup>11</sup> However, the color response of the sensor was still not enough for

# Analyst Accepted Manuscript

# Analyst

 (semi)quantitative naked-eye inspection, thus a spectral meter was still necessary to be used for the detection. Herein, we demonstrated that colorimetric sensors based on the combination of conventional Enzyme-linked immunosorbent assay (ELISA) and enzyme-triggered growth of Au nanorods (AuNRs) could almost satisfy all the above mentioned criteria.

ELISA is a widely used immunoassay method based on biocatalytic property of an enzyme and the antigen antibody recognition.<sup>12-13</sup> Due to the extremely high biocatalytic ability of the labeled enzyme, ELISA methods are usually highly sensitive; while the antigen-antibody recognition ensures the specificity of the approach. In addition, thousands of antibodies have been commercialized, so that ELISA can detect a broad range of targets. For example, ELISA has been extensively used in many fields such as clinical diagnosis, environmental monitoring, food quality control, laboratory research, and so on.<sup>14-19</sup> In conventional colorimetric ELISA, a signal is generated by the conversion of the enzyme substrate into a colored molecule, and the intensity of the color of the solution is increased with the concentration of the target. This single-color intensity variation is insensitive to human eyes, thus naked-eye inspection can be only used for qualitative detection of the target, while a microplate reader should be used for quantitative determination of the concentration of the analytes. However, the costly and bulky microplate reader prevents its utility for POC testing.<sup>20-21</sup>

Recently, the unique optical properties of the noble metal nanoparticles were incorporated into conventional ELISA to develop a new immunoassay method called

### Analyst

plasmonic ELISA.<sup>22-23</sup> The results showed that plasmonic ELISA presented enhanced color display compared with conventional colorimetric ELISA so that it can be utilized for visual detection of the analytes with the naked eye. For example, Stevens and coworkers reported the first plasmonic ELISA for ultrasensitive detection of prostate specific antigen (PSA) and HIV-1 capsid antigen p24.<sup>24-25</sup> The absence and presence of target molecules induced the growth of spherical gold nanoparticles (AuNPs) and ill-defined gold nanoparticle aggregates, respectively. As a consequence, the solution color transferred from red to blue with the increase of targets concentration. Recently, the same strategy was utilized for the detection of HIV-1 protein gp120 at ultralow concentrations.<sup>26</sup> Researchers from other groups have also explored diverse plasmonic ELISA based on the formation of AuNPs aggregates.<sup>27-28</sup> Noting that all these plasmonic ELISA approaches showed red to blue transformation in response to different concentration of analytes. These dual-color responses are still not accurate for (semi)quantitative detection of the analytes with the naked eye.

**Analyst Accepted Manuscript** 

In this work, we demonstrate a novel strategy for the fabrication of plasmonic ELISA based on enzyme-triggered growth of AuNRs. Our method is developed based on the alkaline phosphatase (ALP) ELISA system. ALP is a hydrolytic enzyme that plays a crucial role in the cell signaling pathways.<sup>29</sup> It is responsible for removing phosphate groups from many types of molecules.<sup>30-31</sup> In our sensing strategy, ALP is used for the removal of a phosphate group from ascorbic acid-phosphate to yield the ascorbic acid to trigger the growth of AuNRs.<sup>32-33</sup> The presence of different amount of ascorbic acid leads

to the formation of AuNRs with different sizes and aspect ratios. Therefore, the proposed plasmonic ELISA shows vivid color responses to a varied concentration of target molecules.

## **EXPERIMENTAL SECTION**

 **Materials and instrumentations.** Cetyltrimethylammonium bromide (CTAB, 99%), sodium borohydride, ascorbic acid-phosphate, gold (III) chloride trihydrate (HAuCl<sub>4</sub>.3H<sub>2</sub>O), Tween-20, bovine serum albumin (BSA), and the PSA (human) ELISA kit were purchased from Sigma-Aldrich. Tris (hydroxymethyl) aminomethane (Tris), silver nitrate and ascorbic acid were purchased from Aladdin. Phosphate buffer (PBS) was purchased from ding guo in China. The absorbance of AuNRs solutions in 96-well plates were collected by a Microplate Reader (Thermo). The photographs of all colored solutions were taken by a digital camera (Canon EOS 600D with EF 100mm f/2.8L IS USM). All solutions were prepared with double-deionized water.

**Preparation of the AuNP seed solution.** The AuNP seed was synthesized according to a reported literature.<sup>34</sup> Briefly, CTAB solution (5 mL, 0.20 M) was mixed with HAuCl<sub>4</sub> (5.0 mL, 0. 50 mM) at room temperature. The mixture was vigorously stirred for 5 min. Then, 0.60 mL of ice-cold 10 mM NaBH<sub>4</sub> was rapidly injected into the mixture. The solution gradually changed into brownish yellow, indicating the formation of AuNP seed. The seed solution was vigorous stirring for 2 min, then it was kept at 25 °C and should be used within 2 h.

Procedures for ascorbic acid sensing. Ascorbic acids (0-15 µL, 0.01M) were added

### Analyst

to a mixture solution containing CTAB (125  $\mu$ L, 0.2 M), AgNO<sub>3</sub> (1.5  $\mu$ L, 0.01 M), and HAuCl<sub>4</sub> (12.5  $\mu$ L, 10 mM). The total volume of the solution was adjusted to 240  $\mu$ L with double-deionized water. Then, 10  $\mu$ L of the seed solution was added to the above solution to trigger the growth of AuNRs. The resulting solutions were incubated at room temperature for 1 h. The photograph was taken with a digital camera, and the corresponding UV–vis absorption was collected by a Microplate Reader.

**Procedures for visual detection of ALP-conjugated antibody.** ALP-conjugated antibody solution obtained from the ELISA kit was diluted with 1 mM Tris-HCl buffer (pH7.4) for 2500 folds before use. 10-70  $\mu$ L of the diluted ALP-conjugated antibody solution was then mixed with 50  $\mu$ L of ascorbic acid-phosphate (20 mM). The mixture solution was incubated at 37 °C for 1 h. After that, a mixture solution containing CTAB (125  $\mu$ L, 0.2 M), AgNO<sub>3</sub> (1.5  $\mu$ L, 0.01 M), HAuCl<sub>4</sub> (12.5  $\mu$ L, 10 mM) was added. The total volume of the solution was adjusted to 240  $\mu$ L with double-deionized water. Then 10  $\mu$ L of the seed solution was added. The mixture solution was incubated for 1 h at room temperature. The absorbance of the AuNRs solution was recorded by a plate reader and corresponding photograph was taken by a digital camera.

**Plasmonic ELISA for visual detection of PSA.** Reagents obtained from a commercial PSA (human) ELISA kit (Sigma-Aldrich) were used for the plasmonic ELISA. Procedures for capture the PSA and ALP-conjugated PSA antibody were followed by the instruction manual of the kit. Briefly, the primary antibody (4  $\mu$ g/mL) in bicarbonate buffer (100 mM, pH 9.6) was added into the wells of the microplate and

# Analyst Accepted Manuscript

# Analyst

incubated at 4 °C overnight. After rinsing with PBST for 3 runs, 5% BSA in PBS (pH 7.4) was added into each well as a blocking agent. Then, PSA (spiked in whole human serum) was added at concentrations ranging from  $10^{-3}$  to 200 pg/mL, respectively, and the serum-only solution was set as a control. The plate was kept at 37 °C for 1 h and washed with PBST for 3 runs. Then, 100 µL of ALP-conjugated antibody (0.5 µg/mL) solution was added into each well, and incubated for 30 min. 200 µL of PBST was added into each well and rinsed for 3 runs. Next, 50 µL of ascorbic acid-phosphate (20 mM) was added. The solution was incubated at 37 °C for 1 h. Then 20 µL of the solution was mixed with the AuNRs growth solution containing CTAB (125 µL, 0.2 M), AgNO<sub>3</sub> (1.5 µL, 0.01 M), and HAuCl<sub>4</sub> (12.5  $\mu$ L, 10 mM). The total volume of the solution was adjusted to 240  $\mu$ L with double-deionized water. Finally, 10 µL of the seed solution was added to trigger the growth of AuNRs. The mixture solution was incubated for the other 1 h at room temperature. The absorbance of the AuNRs solution was recorded and corresponding photograph was taken.

## **RESULTS AND DISCUSSION**

Figure 1 shows the general principle of the proposed plasmonic ELISA for the detection of the target molecule. A widely used, commercially available ALP-ELISA system was employed in our detection scheme. ALP is conjugated with a detection antibody. The amount of ALP is proportional to the concentration of the target molecules due to the sandwich-format immunoreaction. Hitherto, many enzymatic reaction

### Analyst

substrates have been reported for ALP-ELISA system to generate colorimetric or chemiluminescent signals.<sup>35-37</sup> Herein, ascorbic acid-phosphate was selected as the enzymatic reaction substrate. ALP can efficiently remove a phosphate group from ascorbic acid-phosphate to produce ascorbic acid.<sup>28, 38-39</sup> The obtained ascorbic acid induces the formation of AuNRs in the presence of growth solution. As it is shown in figure 1, in the absence of the target, there is no ascorbic acid generated in the solution. In this case, the ascorbic acid-phosphate in the reaction solution would reduce Au (III) to Au (I), and the solution is colorless. In the presence of the target, the conjugated ALP can catalyze the dephosphorylation of ascorbic acid-phosphate to produce ascorbic acid. Ascorbic acid can further reduce Au(I) to Au(0). In the presence of AuNP seeds and surfactant (e.g. CTAB), the reduced Au(0) would then deposit on the surface of AuNP seeds to initial the growth of AuNRs. Corresponding growth mechanism has been extensively investigated in seed-mediated synthesis of AuNRs.<sup>32, 40</sup>



Figure 1 Schematic diagram of the plasmonic ELISA based on target-guided growth of

### AuNRs

First of all, the impact of the concentration of ascorbic acid on the growth of AuNRs was investigated (Figure 2). Different concentrations of ascorbic acids were added to a growth solution containing AuNP seeds, CTAB, AgNO<sub>3</sub>, and HAuCl<sub>4</sub>. Noting that the formula of this growth solution was directly adopted from a literature for seed-mediated synthesis of AuNRs.<sup>32</sup> This means that the procedures for the preparation of AuNP seeds, the concentrations of CTAB, AgNO<sub>3</sub>, and HAuCl<sub>4</sub> are all followed by the instruction of the previous literature, and we didn't optimize these conditions. The resulting solutions were allowed to incubate at room temperature for 1h. It can be clearly seen from Figure 2a that the solution shows adsorption at ~400 nm, which corresponds to the extinction peak of HAuCl<sub>4</sub>, and the solution color is yellow (see Figure 2b). After the addition of ascorbic acid, the intensity of the yellow solution decreased rapidly and then turned into colorless in the presence of 0.40 mM ascorbic acid. No obvious peak is observed at the wavelength larger than 500 nm, indicating that the AuNP seeds were not grown in this process. Therefore, we inferred that in a low concentration of ascorbic acids, the amount of ascorbic acids were not enough to reduce Au(III) to Au(0), but to Au(I). The colorless solution (Figure 2b, sample number 5) indicates the completely reducing of Au(III) into Au(I) because Au(I) (in the form of AuBr<sub>2</sub>) is colorless.<sup>41</sup> A step further to increase the amount of ascorbic acids induced the formation of new absorption peaks at 500 nm to 800 nm, indicating the formation of AuNRs (Figure 2b, sample number 6-10). It was

### Analyst

observed that the intensities as well as the peak wavelength of the longitudinal peaks of AuNRs increased with the added amount of ascorbic acids. As a result, the color of these solutions changed vividly as well. These results strongly indicated that the amount of ascorbic acid played an important role in tuning the growth of AuNRs.



**Figure 2** UV-vis spectra (a) and the corresponding photographs (b) of AuNR solutions grown with different concentrations of ascorbic acid. Concentrations of ascorbic acid for sample number 1 to 10 were 0, 0.2, 0.28, 0.36, 0.40, 0.44, 0.48, 0.52, 0.56, 0.60 mM, respectively.

Next, we investigated the growth of AuNRs based on ALP triggered conversion of ascorbic acid-phosphate to ascorbic acids (Figure 3). Figure 3a shows the extinction spectra and corresponding photographs of the growth solution before and after the addition of an excess amount of ascorbic acid-phosphate. It can be observed that the addition of ascorbic acid–phosphate into the growth solution changed the solution color from yellow to colorless. The results indicated that ascorbic acid-phosphate can also

Analyst Accepted Manuscrip

reduce the Au(III) to Au(I). However, it cannot trigger the growth of AuNRs because no extinction peaks are observed in the wavelength range of 500 to 800 nm even after the addition of an excess amount of ascorbic acid-phosphate (the red curve in Figure 3a). Therefore, the introduction of ALP to convert ascorbic acid-phosphate to ascorbic acid is a necessary precondition to trigger the growth of AuNRs.



**Figure 3** Visual detection of ALP-antibody conjugates with the proposed plasmonic ELISA. (a) UV-vis spectra and corresponding photographs of the AuNR growth solutions before and after the addition of an excess amount of ascorbic acid-phosphate (50  $\mu$ L 20 mM); (b) UV-vis spectra and corresponding photographs of the AuNRs growth solution after the addition of different amount of ALP-antibody conjugates. The original solution of ALP-antibody

conjugates in the ELISA kit was diluted for 2500 times with 1 mM Tris-HCl buffer(pH7.4). The amount of diluted ALP-antibody conjugates added in sample 1 to 8 was 0, 10, 20, 30, 40, 50, 60, 70  $\mu$ L, respectively; (c) typical TEM images corresponding to sample number 3 (left) and 8 (right).

In commercial available ELISA kits, ALP is presented in the form of ALP-antibody conjugates. Therefore, herein we showed the effect of the concentration of ALP-antibody conjugates to the growth of AuNRs (Figure3b). ALP-antibody conjugate with various concentrations were mixed with ascorbic acid-phosphate (20 mM), then the mixture was incubated at 37 °C for 1 h to produce various amounts of ascorbic acids. Each of the resulting solution (50  $\mu$ L) was then mixed with a growth solution (200  $\mu$ L) containing AuNP seeds, CTAB, AgNO<sub>3</sub>, and HAuCl<sub>4</sub>. The inset in Figure 3b shows that the solution color turned from colorless to purple, blue, brownish, and reddish brown in response to a varied amount of ALP-antibody conjugates. The extinction spectra shown in Figure 3b shows significant red-shift of the longitudinal peaks of AuNRs when increasing the concentration of ALP-antibody conjugates. These results indicated that the aspect ratios of AuNRs were increased with the added amount of ALP-antibody conjugates. The TEM images shown in Figure 3c also support this conclusion. The close relationship between the solution color (or extinction spectra) and the concentration of ALP-antibody conjugates strongly indicated the feasibility of the proposed approach for visual detection of ALP-antibody conjugates with the naked eye.

**Analyst Accepted Manuscript** 

Finally, we demonstrated the feasibility of the proposed plasmonic ELISA for

Analyst Accepted Manuscript

visually detection of disease biomarkers in human serum. The detection of a cancer biomarker, prostate specific antigen (PSA), was selected for a demonstration. Most of the reagents for conducting the plasmonic ELISA were adopted from a commercial PSA (human) ELISA kit (Sigma-Aldrich). Procedures for capture the PSA and ALP-conjugated PSA antibody was followed by the instruction manual of the kit. Figure 4 shows the photographs (a), spectra (b) and calibration curve (c) of the proposed plsamonic ELISA for the detection of PSA in serum. It should be pointed out that the peak wavelength in the Y-axis means the maximum of absorbance in Fig.4b. PSA was spiked into human serum to result in a series of samples with PSA concentrations ranging from 10<sup>-3</sup> to 200 pg/mL. The sample solution without the addition of PSA remained colorless (see sample number 1 of Figure 4a). The solution color changed from colorless to purple, blue, dark blue, gray, dark gray and brownish red with the increased concentration of PSA. It should be noted that naked-eye distinguishable color was observed in the presence of  $1 \times 10^{-15}$  g/mL PSA, which means that the limit of detection (LOD) of the proposed plasmonic ELISA for the detection of PSA in human serum was equal or lower than  $1 \times 10^{-15}$  g/mL. Meanwhile, significant spectral intensity and peak shift were also observed in response to different concentration of spiked PSA (Figure 4b). Good linearity between the logarithmical concentration of PSA and the corresponding peak shifts was obtained (Figure 4c). These results strongly indicated the potential applicability of the proposed plasmonic ELISA for the identification of disease biomarkers at an ultralow concentration with the naked eye.



**Figure 4** Photographs (a), UV-vis spectra (b), and calibration curve (c) of the proposed plasmonic ELISA for visual detection of PSA spiked in human serum. Concentrations of PSA in sample 1 to 8 are 0, 0.001, 0.01, 0.1, 1, 10, 100, and 200 pg/mL, respectively. Error bars represent standard deviation of three replicates.

# Conclusions

In summary, this work demonstrated a strategy for conducting multicolor ELISA based on enzyme-triggered growth of AuNRs. ALP was used as an enzyme-label probe to specifically and efficiently catalyze the dephosphorylation of ascorbic acid-phosphate to produce ascorbic acid. The produced ascorbic acid was then used to trigger the growth of AuNRs. Our investigation revealed that different amount of ascorbic acids would produce AuNRs with different size and aspect ratios. As a result, vivid color displays were observed in response with a varied concentration of ALP. It is worth to note that ALP has been widely used in commercial ELISA kits as enzyme labels to detect a large number of

disease biomarkers. Therefore, our approach can well accommodate conventional ALP-based ELISA to develop new multicolor ELISA methods for the detection of all kinds of analytes. The proposed multicolor ELISA can be detected with the naked eye with an ultrahigh sensitivity, e.g. we demonstrated the visual detection of PSA in human serum down to  $1 \times 10^{-15}$  g/mL, which was much lower than current state-of-the-art ELISA approaches detected with a sophisticated readout.

# Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (21277025, 21275031, 21375021, 21575027), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R11), and the Foundation of Fujian Educational Committee (JA12039, JA13024).

### References

| 1.  | X. Zhang, J. Yin and J. Yoon, Chem. Rev., 2014, 114, 4918-4959.                                         |
|-----|---------------------------------------------------------------------------------------------------------|
| 2.  | H. N. Kim, W. X. Ren, J. S. Kim and J. Yoon, Chem. Soc. Rev., 2012, 41, 3210-3244.                      |
| 3.  | L. Guo, A. R. Ferhan, H. Chen, C. Li, G. Chen, S. Hong and D. H. Kim, Small, 2013, 9, 234-240.          |
| 4.  | L. Guo, J. A. Jackman, HH. Yang, P. Chen, NJ. Cho and DH. Kim, Nano Today, 2015, 10, 213-239.           |
| 5.  | T. Wei, T. Dong, Z. Wang, J. Bao, W. Tu and Z. Dai, J. Am. Chem. Soc., 2015, 137, 8880-8883.            |
| 6.  | Q. Xu, S. Lee, Y. Cho, M. H. Kim, J. Bouffard and J. Yoon, J. Am. Chem. Soc., 2013, 135,                |
|     | 17751-17754.                                                                                            |
| 7.  | Z. Zhang, D. S. Kim, CY. Lin, H. Zhang, A. D. Lammer, V. M. Lynch, I. Popov, O. Š. Miljanić, E. V.      |
|     | Anslyn and J. L. Sessler, J. Am. Chem. Soc., 2015, 137, 7769-7774.                                      |
| 8.  | C. P. Y. Chan, W. C. Mak, K. Y. Cheung, K. K. Sin, C. M. Yu, T. H. Rainer and R. Renneberg, Annu. Rev.  |
|     | Anal. Chem., 2013, 6, 191-211.                                                                          |
| 9.  | S. Ge, F. Liu, W. Liu, M. Yan, X. Song and J. Yu, Chem. Commun., 2014, 50, 475-477.                     |
| 10. | N. R. Pollock, J. P. Rolland, S. Kumar, P. D. Beattie, S. Jain, F. Noubary, V. L. Wong, R. A. Pohlmann, |
|     | U. S. Ryan and G. M. Whitesides, Science translational medicine, 2012, 4, 152ra129-152ra129.            |
|     |                                                                                                         |

# Analyst

| 11. | L. Guo, Y. Xu, A. R. Ferhan, G. Chen and DH. Kim, J. Am. Chem. Soc, 2013, 135, 12338-12345.                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 12. | J. Shen, Y. Li, H. Gu, F. Xia and X. Zuo, Chem. Rev., 2014, 114, 7631-7677.                                                                  |
| 13. | S. K. Vashist, E. Lam, S. Hrapovic, K. B. Male and J. H. Luong, Chem. Rev., 2014, 114, 11083-11130.                                          |
| 14. | P. L. White, C. Parr, C. Thornton and R. A. Barnes, J. Clin. Microbiol., 2013, 51, 1510-1516.                                                |
| 15. | K. Eyer, S. Stratz, P. Kuhn, S. Kuster and P. Dittrich, Anal. Chem., 2013, 85, 3280-3287.                                                    |
| 16. | N. Yanagisawa and D. Dutta, Anal. Chem., 2012, 84, 7029-7036.                                                                                |
| 17. | A. D. Warren, S. T. Gaylord, K. C. Ngan, M. Dumont Milutinovic, G. A. Kwong, S. N. Bhatia and D. R.                                          |
|     | Walt, J. Am. Chem. Soc., 2014, 136, 13709-13714.                                                                                             |
| 18. | D. Liu, Z. Wang, A. Jin, X. Huang, X. Sun, F. Wang, Q. Yan, S. Ge, N. Xia and G. Niu, Angew. Chem.                                           |
|     | Int. Ed., 2013, 52, 14065-14069.                                                                                                             |
| 19. | E. P. Preece, B. C. Moore, M. E. Swanson and F. J. Hardy, Environ. Monit. Assess., 2015, 187, 1-10.                                          |
| 20. | Z. Zhu, Z. Guan, D. Liu, S. Jia, J. Li, Z. Lei, S. Lin, T. Ji, Z. Tian and C. J. Yang, <i>Angew. Chem. Int. Ed.</i> , 2015, 54, 10448-10453. |
| 21. | J. Hu, T. Wang, J. Kim, C. Shannon and C. J. Easley, J. Am. Chem. Soc., 2012, 134, 7066-7072.                                                |
| 22. | P. D. Howes, S. Rana and M. M. Stevens, <i>Chem. Soc. Rev.</i> , 2014, 43, 3835-3853.                                                        |
| 23. | Y. Song, YY. Huang, X. Liu, X. Zhang, M. Ferrari and L. Qin, Trends Biotechnol., 2014, 32, 132-139.                                          |
| 24. | R. de la Rica and M. M. Stevens, Nat. Nanotechnol., 2012, 7, 821-824.                                                                        |
| 25. | R. de la Rica and M. M. Stevens, <i>Nat. Protoc.</i> , 2013, 8, 1759-1764.                                                                   |
| 26. | D. Cecchin, R. de La Rica, R. Bain, M. Finnis, M. Stevens and G. Battaglia, Nanoscale, 2014, 6,                                              |
|     | 9559-9562.                                                                                                                                   |
| 27. | XM. Nie, R. Huang, CX. Dong, LJ. Tang, R. Gui and JH. Jiang, Biosens. Bioelectron., 2014, 58,                                                |
|     | 314-319.                                                                                                                                     |
| 28. | Y. Xianyu, Z. Wang and X. Jiang, Acs Nano, 2014, 8, 12741-12747.                                                                             |
| 29. | K. Simons and E. Ikonen, Nature, 1997, 387, 569-572.                                                                                         |
| 30. | S. B. Ficarro, M. L. McCleland, P. T. Stukenberg, D. J. Burke, M. M. Ross, J. Shabanowitz, D. F. Hunt                                        |
|     | and F. M. White, Nat. Biotechnol., 2002, 20, 301-305.                                                                                        |
| 31. | K. Poelstra, W. W. Bakker, P. A. Klok, J. Kamps, M. J. Hardonk and D. Meijer, Am. J Pathol., 1997,                                           |
|     | 151, 1163-1169.                                                                                                                              |
| 32. | B. Nikoobakht and M. A. El-Sayed, Chem. Mater., 2003, 15, 1957-1962.                                                                         |
| 33. | Z. Guo, X. Fan, L. Xu, X. Lu, C. Gu, Z. Bian, N. Gu, J. Zhang and D. Yang, <i>Chem. Commun.</i> , 2011, 47, 4180-4182                        |
| 34. | Y. Wang, S. Guo, H. Chen and F. Wang, J. Colloid Interface Sci., 2008, 318, 82-87.                                                           |
| 35. | C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica and G. M.                                        |
|     | Whitesides, Angew. Chem. Int. Ed., 2010, 49, 4771-4774.                                                                                      |
| 36. | W. Jiang, Z. Wang, R. C. Beier, H. Jiang, Y. Wu and J. Shen, <i>Angl. Chem.</i> , 2013, 85, 1995-1999.                                       |
| 37. | A. Schaap, H. Akhavan and L. Romano, <i>Clin, Chem.</i> , 1989, 35, 1863-1864.                                                               |
| 38. | A. Havat, G. Bulbul and S. Andreescu, <i>Biosens, Bioelectron.</i> , 2014, 56, 334-339.                                                      |
| 39. | A. Havat and S. Andreescu. <i>Anal. Chem.</i> , 2013, 85, 10028-10032.                                                                       |
| 40. | N. R. Jana, L. Gearheart and C. J. Murphy, <i>Adv. Mater.</i> , 2001, 13, 1389.                                                              |
| 41. | C. K. Tsung, X. Kou, Q. Shi, J. Zhang, M. H. Yeung, J. Wang and G. D. Stucky, J. Am. Chem. Soc                                               |
|     | 2006, 128, 5352-5353.                                                                                                                        |
|     |                                                                                                                                              |
|     |                                                                                                                                              |

**Analyst Accepted Manuscript** 

# Analyst

