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Abstract

Although time-dependent density functional theory (TDDFT) has become the tool of choice for

real-time propagation of the electron density ρN (t) of N -electron systems, it also encounters prob-

lems in this application. The first problem is the neglect of memory effects stemming from the,

in TDDFT virtually unavoidable, adiabatic approximation, the second problem is the reliable

evaluation of the probabilities Pn(t) of multiple photoinduced ionization, while the third problem

(which TDDFT shares with other approaches) is the reliable description of continuum states of the

electrons ejected in the process of ionization. In this paper time-dependent Dyson orbital theory

(TDDOT) is proposed. Exact TDDOT equations of motion (EOMs) for time-dependent Dyson

orbitals are derived, which are linear differential equations with just static, feasible potentials of

the electron-electron interaction. No adiabatic approximation is used, which formally resolves the

first TDDFT problem. TDDOT offers formally exact expressions for the complete evolution in

time of the wavefunction of the outgoing electron. This leads to the correlated probability of single

ionization P 1(t) as well as the probabilities of no ionization (P 0(t)) and multiple ionization of n

electrons, Pn(t), which formally solves the second problem of TDDFT. For two-electron systems

a proper description of the required continuum states appears to be rather straightforward, and

both P 1(t) and P 2(t) can be calculated. Because of the exact formulation, TDDOT is expected to

reproduce a notorious memory effect, the ”knee structure” of the non-sequential double ionization

of the He atom.
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I. INTRODUCTION

Real-time propagation of the electron density ρN(x1, t) provides valuable information

about dynamics of N -electron systems in strong rapidly changing electric fields. It is applied

to simulate multiphoton ionization of atoms [1–4], while the related power spectrum |µ(ω)|2

of the dipole moment µi(t) =
∫

riρ
N(x1, t)dx1 describes high-harmonic generation in atomic

systems [4, 5]. Electronic dynamics with fixed nuclei serves as a first stage of the simulation of

similar processes in molecules [4, 6]. Coupling to nuclear dynamics provides not only more

complete simulation of the electronic dynamics but also the description of photoinduced

molecular dissociation [7] and isomerisation [8].

For real-time propagation of ρN(x1, t) a dynamical orbital approach, time-dependent

density functional theory (TDDFT) [3, 9–15] has become the tool of choice. In TDDFT

ρN(x1, t) is expressed as the sum

ρN(x1, t) =
N
∑

j

|φj(x1, t)|2 (1)

of the densities of the occupied Kohn-Sham (KS) orbitals φj(x1, t), which are obtained from

the TDDFT equations of motion (EOMs)

i
∂φj(x1, t)

∂t
= {−1

2
∇2 + vext(x1, t) +

∫

ρN(x2, t)

|r1 − r2|
dx2 + vxc[ρ

N ; ΨN(0),ΦN(0)](x1, t)}φj(x1, t).

(2)

The driving force of evolution in (2) is the external potential vext(x1, t), which includes the

contribution from the applied electric field, while the third term in the figure brackets is the

Hartree potential. The fourth term is the local exchange-correlation potential, which is a

functional of the density, the initial state ΨN(0) of the interacting system with the density

ρN(x1, 0), and the initial state ΦN(0) of the KS non-interacting system with the same density

[16–18]. At present, direct construction of the complicated functional vxc[ρ
N ; ΨN(0),ΦN(0)]

appears to be not feasible. Then, in order to make the propagation with the EOMs (2)

possible, the adiabatic approximation is employed, in which the xc potential is evaluated

instantaneously as the ground-state functional v0xc[{φj(t)}] of the density ρN(t) or the orbitals
{φj(t)} at the time t

vxc[ρ
N ; ΨN(0),ΦN(0)](x1, t) ≈ v0xc[{φj(t)}](x1, t). (3)
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Since not even for the ground state the exact functional v0xc[{φj}] is known, it itself is,

usually, replaced with an approximate functional v0,apprxc ({φj}) of some DFT approximation.

The resultant adiabatic EOMs

i
∂φj(x1, t)

∂t
≈ {−1

2
∇2 + vext(x1, t) +

∫

ρN(x2, t)

|r1 − r2|
dx2 + v0,apprxc ({φk(t)})(x1, t)}φj(x1, t) (4)

are coupled non-linear differential equations with respect to the time-dependent KS orbitals

{φj(t)}, which are solved with one of the standard or especially designed techniques of

numerical integration [19].

The first problem of standard TDDFT is the lack of the so-called memory effects. The

memory effect is the influence on the dynamics of an electronic system of the dependence

of vxc[ρ
N ; ΨN(0),ΦN(0)](x1, t1) evaluated at t1 on the densities ρN(t) obtained at earlier

times t < t1. What is called the adiabatic approximation (4), is essentially ignoring this

dependence on t < t1 and just using ρ(t1). This can seriously affect the quality of simulated

electronic dynamics [3, 18, 20, 21]. The paradigmatic memory effect is the famous ”helium

knee” indicating an enhancement of the non-sequential double ionization of the He atom

by several orders of magnitude over what sequential ionization models would predict [3, 4].

A second problem TDDFT is facing here is the reliable evaluation of the correlated time-

dependent probabilities P n(t) of multiple ionizations, which in the case of He reduces to

estimation of the probabilities P 1(t) and P 2(t) of single and double ionization, respectively.

Usually, these probabilities are estimated in TDDFT in a rather crude independent-particle

approximation. Note, that time-dependent Hartree-Fock (TDHF) theory, which has been

also applied to real-time simulation of electronic dynamics [22–26], has these two problems as

well. Then, because of this, standard TDDFT and TDHF approaches fail to reproduce the

knee structure of P 2(t) as a function of the intensity of an applied field [3, 4]. There is also

a third problem with the application of TDDFT to photoionization, which it shares with all

other theoretical approaches to photoionization. This is the important problem of reliable

representation of continuum states of ejected electrons. This can be solved completely by

using grid based techniques [12, 14, 19], which become very cumbersome in more dimensions,

or by choosing sufficiently flexible basis functions, such as provided by angular momentum

expansion around the nuclei and the molecular centre and B-spline functions for the radial

functions [6, 27], or by choosing mixed basis set representations of Gaussians or Slaters at

the nuclear centres and plane waves or Coulomb waves for the outgoing electron [28–32].
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In spite of all these problems, useful information about electronic dynamics can be ob-

tained already in a rather crude single-active-electron (SAE) approximation [1, 2, 6], which

provides a considerable simplification of the EOMs (4). SAE employes frozen static Hartree

and xc potentials

i
∂φj(x1, t)

∂t
≈ {−1

2
∇2 + vext(x1, t) +

∫

ρN(x2, 0)

|r1 − r2|
dx2 + v0,apprxc ({φk(0)})(x1)}φj(x1, t), (5)

which turn (4) into uncoupled linear differential equations (5) with respect to the time-

dependent KS orbitals {φj(t)}, so that in SAE individual KS orbitals are propagated inde-

pendently.

In this paper time-dependent Dyson orbitals are introduced and it is shown that these

orbitals provide both a theoretically appealing description of the time-evolution of the one-

electron state of the electron that is ejected and a practical means of simulating this process.

The time-dependent Dyson orbital theory (TDDOT) formally resolves the memory and

multiple ionization problems (first and second of the above mentioned TDDFT problems) in

the general N -electron case. In the special two-electron case of the He atom the formalism

becomes particularly simple and allows investigation of truncation errors (in the limitation

of summations over the ion states) and progressive uncoupling approximations in the spirit

of the SAE approximation, e.g. uncoupling the propagation of a specific DO, e.g. the DO

d0 corresponding to the ion ground state ΨN−1
0 (which at t ≈ 0 is practically the 1s orbital)

from other DOs. Note, that in the physics literature DOs (or Feynman-Dyson amplitudes)

are introduced as the residues in the spectral expansion of the electron propagator [33–

35]. Applications in chemistry have concentrated on momentum densities and ionization

phenomena [36–43]. We note that these calculations were concerned with the static Dyson

orbitals, the amplitudes of the overlap between the ground-state N -electron wave function

ΨN and the cationic ground- and excited-state (N − 1)-electron wave functions Ψ
(N−1)
j

dj(x1) =
√
N

∫

Ψ
(N−1)∗
j (x2, ...,xN)Ψ

N(x1,x2, ...,xN)dx2...dxN . (6)

They can be obtained from one-electron equations (the “orbital Dyson equations”), which

feature the energy-dependent self-energy, but they can also be calculated straightforwardly

from good wavefunctions for the neutral starting system and the ionized system according to

Eq. (6). Katriel and Davidson [44] derived energy-independent but coupled equations for the

static Dyson orbitals. These static Dyson orbitals are actually very close to the occupied

4
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Hartree-Fock and Kohn-Sham orbitals [45]. We stress that we are dealing in this paper

with time-dependent one-electron states, which only at t = 0 coincide with the familiar

Dyson orbitals. In Section II the time-dependent DOs dj(x1, t) are introduced, with the

sum of the DO densities giving the time-dependent electron density ρN(t). The EOMs

of TDDOT are derived with the projection and partial integration of the time-dependent

Schrödinger equation for an N -electron wave function ΨN(t), which is expanded in terms

of the eigenstates of the time-independent (N − 1)-electron Hamiltonian and the time-

dependent DOs dj(x1, t). In spite of being exact, these EOMs (similar to the SAE EOMs

(5)) contain just static potentials of the electron-electron interaction, and this solves the

memory problem mentioned above. In the case of a time-independent Hamiltonian the

EOMs describe stationary temporal oscillations of the DOs with frequencies equal to the

corresponding vertical ionization potentials (VIPs). The TDDOT EOMs reduce in this case

to the static one-electron equations for the ground-state DOs [44]. In Section III application

of TDDOT to real-time simulation of electronic dynamics is discussed and the matrix form

of the TDDOT EOMs is presented. The matrix elements of their static electron-electron

potentials can be precalculated and later used at all times during propagation, which offers

an efficient propagation technique. A particularly promising application of TDDOT is the

simulation of the dynamics of photoinduced ionization. In the general N -electron case

TDDOT offers a method for the calculation of the time-dependent correlated probability of

single ionization P 1(t) as well as the probabilities P n(t) of multiple ionization of n electrons,

the second problem mentioned above. In the case of a two-electron system (the He atom)

the calculation of P 1(t) and P 2(t) appears to be particularly straightforward. The cation

states of the DO expansion reduce to hydrogenic orbitals, which could be extended with

the well-known hydrogenic continuum states of the He2+ ion to obtain a set of cation states

that affords the simulation of double ionisation. Then, TDDOT is expected to successfully

reproduce the ”helium knee” in the experimental ion yield curves [46].

5
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II. EOMS OF TDDOT

The main ingredient of TDDOT proposed in this paper, the time-dependent DO dj(x1, t),

is introduced in analogy to the stationary case [39, 44, 45] as the amplitude of the overlap

dj(x1, t) =
√
N

∫

Ψ
(N−1)∗
j (x2, ...,xN)e

iE
(N−1)
j tΨN(x1,x2, ...,xN , t)dx2...dxN (7)

between the time-dependent state ΨN(t) and Ψ
(N−1)
j e−iE

(N−1)
j t, the latter describes temporal

oscillations of an eigenstate of the time-independent (N − 1)-electron Hamiltonian

Ĥ(N−1) =
N−1
∑

l=1

{−1

2
∇2

l + vext(xl)}+
N−2
∑

l=1

N−1
∑

m>l

1

|rl − rm|
, (8)

with Ψ
(N−1)
j being the stationary cation state with the energy E

(N−1)
j . In (7) the wave

function ΨN(t) is the solution of the time-dependent Schrödinger equation for the N -electron

system

i
∂ΨN(x1,x2, ...,xN , t)

∂t
= ĤN(t)ΨN(x1,x2, ...,xN , t); Ψ

N(x1,x2, ...,xN , 0) = ΨN
0 (x1,x2, ...,xN)

(9)

with as initial state at t = 0 the time-independent ground state ΨN
0 with the energy EN

0 .

The Hamiltonian ĤN(t) in (9) contains the time-dependent external potentials vext(xl, t)

ĤN(t) =
N
∑

l=1

{−1

2
∇2

l + vext(xl, t)}+
N−1
∑

l=1

N
∑

m>l

1

|rl − rm|
(10)

together with the kinetic operators in its first sum, while its third sum combines the electron-

electron interaction operators.

We derive the TDDOT EOMs for the DOs (7) from the N -electron Schrödinger equation

(9) with the expansion of ΨN(t) in terms of the stationary cation states Ψ
(N−1)
k e−iE

(N−1)
k

t

and the DOs dk(x1, t)

ΨN(x1,x2, ...,xN , t) =
1√
N

∑

k

dk(x1, t)Ψ
(N−1)
k (x2, ...,xN)e

−iE
(N−1)
k

t. (11)

At t = 0 this is the familiar time-independent “Dyson expansion” of the ground state

wavefunction in ion states times Dyson amplitudes [44]. When t → ∞ the propagation of

the wavefunction in time will lead to a superposition of ion states times the one-electron

state (orbital) describing the emitted electron, which is by definition the time-dependent

6
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DO dk(x1, t). The probability to find the system (atom or molecule) ionized at time t to

the stationary ion state Ψm(x1,x2, ...,xN , t)e
−iE

(N−1)
m t is equal to the norm of dm(x1, t),

Pm(t) =

∫

dx1, · · · dxN |〈dm(x1, t)Ψ
(N−1)
m (x2, ...,xN)e

−iE
(N−1)
m t|ΨN(x1,x2, ...,xN , t)〉|2

=

∫

|dm(x1, t)|2dx1 (12)

One often considers the probability of finding the system in ion state

Ψm(x1,x2, ...,xN , t)e
−iE

(N−1)
k

t times a “free” electron in a plane wave (or orthogonal-

ized plane wave, or Coulomb wave) ψk(x1, t) with wavevector k (energy |k|2/2),

Pm(k)(t) = |〈ψk(x1, t)Ψ
(N−1)
m (x2, ...,xN)e

−iE
(N−1)
m t|ΨN(x1,x2, ...,xN , t)〉|2

= |〈ψk(x1, t)|dm(x1, t〉|2 (13)

When we are just interested in the appearance of ion state ΨN−1
m we have to integrate over

all possible one-electron states {ψk(x1, t)} which gives the same result as (12)

Pm(t) =

∫

dk|〈ψk(x1, t)Ψ
(N−1)
m (x2, ...,xN)e

−iE
(N−1)
m t|ΨN(x1,x2, ...,xN , t)〉|2

=

∫

dk〈dm(x1, t|ψk(x1, t)〉〈ψk(x1, t)|dm(x1, t〉 =
∫

dx1|dm(x1, t)|2 (14)

where completeness of the set {ψk(x1, t)} has been used. The time-dependence of the

dm(x1, t) and their relative amplitudes, and thus the relative probabilities, are determined

by the shape and magnitude of the applied perturbing field. In the so-called “sudden ap-

proximation” the probability of ionization to ion state ΨN−1
m is taken proportional to the

norm of the corresponding Dyson orbital at t = 0, Pm =
∫

dx1|dm(x1, 0)|2 [37]. This approx-
imation is applied with high-energy ionization, but it would be possible, according to Eq.

(12), to obtain probabilities without such approximation, as a function of time and of the

nature of the applied field, if we could describe the time-dynamics of the time-dependent

Dyson orbital we have defined. Suppose we have a system that is reasonably well described

by an independent particle model both in the ground state and in the ionized state (a good

Hartree-Fock molecule and simple orbital ionization to a frozen orbital (Koopmans) ion state

or relaxed orbital ion state). In that case the t = 0 DO are just the occupied orbitals in

the ground state determinant, and in the correlated wavefunction they will still be approx-

imately equal to those orbitals [45]. Then the time evolution of the time-dependent DO

would describe the photoionization process as the evolution of a one-electron state from a

7
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ground state orbital, to the fully propagated orthogonalized continuum state dm(x1, t→ ∞)

for the emitted electron. We will consider in the Discussion section how to treat multiple

(or no) ionization probabilities.

In order to develop solvable equations for the time evolution of the DO {dk(x1, t)} we intro-

duce the following partitioning of the Hamiltonian (10)

ĤN(t) = {−1

2
∇2

1 + vext(x1, t) +
N
∑

l=2

1

|r1 − rl|
}+ Ĥ(N−1)(x2, ...,xN) +

N
∑

l=2

∆vext(xl, t), (15)

where ĤN−1 is the time-independent (N−1)-particle Hamiltonian with the time-independent

potentials vext(xl), l = 2 · · ·N and eigenfunctions ΨN−1
k . The figure brackets in (15) contain

all operators acting on the first electron, while ∆vext(t) is the time-dependent change of the

external potential

∆vext(x, t) = vext(x, t)− vext(x). (16)

Inserting the expansion (11) and the partitioning (15) in (9), multiplying by
√
NΨ

(N−1)∗
j eiE

(N−1)
j t, and integrating over the coordinates x2, ...,xN , one obtains the fol-

lowing equations

i
√
NeiE

(N−1)
j t

∫

Ψ
(N−1)∗
j (x2,x2, ...,xN)

∂ΨN(x1,x2, ...,xN , t)

∂t
dx2...dxN

= {−1

2
∇2

1 + vext(x1, t) +

∫

ρ
(N−1)
j (x2)

|r1 − r2|
dx2 +∆j(t) + E

(N−1)
j }dj(x1, t)

+
∑

k 6=j

ei(E
(N−1)
j −E

(N−1)
k

)t{
∫

ρ
(N−1)
jk (x2)

|r1 − r2|
dx2 +∆jk(t)}dk(x1, t). (17)

Substituting expansion (11) into the left hand side, these equations can be written in the

form of EOMs for the DOs dj(t) with static potentials for the electron-electron interaction

i
∂dj(x1, t)

∂t
= {−1

2
∇2

1 + vext(x1, t) +

∫

ρ
(N−1)
j (x2)

|r1 − r2|
dx2 +∆j(t)}dj(x1, t)

+
∑

k 6=j

ei(E
(N−1)
j −E

(N−1)
k

)t{
∫

ρ
(N−1)
jk (x2)

|r1 − r2|
dx2 +∆jk(t)}dk(x1, t), (18)

where ∆j(t) and ∆jk(t) are the time-dependent scalar functions coming from interaction of

∆vext(t) with ρ
(N−1)
j and ρ

(N−1)
jk

∆j(t) =

∫

ρ
(N−1)
j (x2)∆vext(x2, t)dx2 (19)

8
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and

∆jk(t) =

∫

ρ
(N−1)
jk (x2)∆vext(x2, t)dx2. (20)

In (18)-(20) ρ
(N−1)
j is the electron density of the cation state Ψ

(N−1)
j

ρ
(N−1)
j (x2) = (N − 1)

∫

|Ψ(N−1)
j (x2, ...,xN)|2dx3...dxN , (21)

while ρ
(N−1)
jk is the transition density between the cation states Ψ

(N−1)
j and Ψ

(N−1)
k

ρ
(N−1)
jk (x2) = (N − 1)

∫

Ψ
(N−1)∗
j (x2, ...,xN)Ψ

(N−1)
k (x2, ...,xN)dx3...dxN . (22)

From (7) and (11) follows, that the sum of the densities of the DOs dj(t) yields the total

electron density ρN(x1, t) of the wave function ΨN(t)

ρN(x1, t) =
∑

j

|dj(x1, t)|2. (23)

Note the principal difference between the derivation of the EOMs in the proposed TD-

DOT and the TDDFT EOMs (2) [9]. The Kohn-Sham (KS) orbitals of TDDFT represent

the corresponding non-interacting system, which is introduced through the action functional.

Then, the stationary action principle is applied [9] and the orbital EOMs are obtained with

the functional differentiation of the action with respect to the time-dependent density. In

contrast to this, the time-dependent DOs are defined in (7) through the wave functions

of the time-dependent N -electron and time-independent (N − 1)-electron interacting sys-

tems, so that no auxiliary non-interacting system is required. Then, the EOMs of TDDOT

are obtained directly in (9)-(18) from the corresponding projected and partially integrated

N -electron time-dependent Schrödinger equation, in which the wave function is expanded

according to (11) and the Hamiltonian is partitioned according to (15).

In the special case of the time-dependent Schrödinger equation with a time-independent

Hamiltonian

ĤN =
N
∑

l=1

{−1

2
∇2

l + vext(xl)}+
N−1
∑

l=1

N
∑

m>l

1

|rl − rm|
(24)

its solution ΨN(t) exhibits temporal oscillations with the exponential prefactor only

ΨN(x1,x2, ...,xN , t) = e−iEN
0 tΨN

0 (x1,x2, ...,xN). (25)

9
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Then, from the DO definition (7) follows that dj(t) acquires in this case the simple complex

exponential for the oscillations in time

dj(x1, t) = dj(x1)e
iIjt (26)

The frequency Ij is equal to the vertical ionization potential (VIP), Ij = E
(N−1)
j − EN

0 . In

(26) dj(x1) is the conventional stationary DO (6). Insertion of (26) in Eq.(18), in which the

scalar functions ∆j(t) and ∆jk(t) are absent because the Hamiltonian is time-independent

in this case, yields the stationary equations for the static DOs dj(x1) [44].

{−1

2
∇2 + vext(x1) +

∫

ρ
(N−1)
j (x2)

|r1 − r2|
dx2}dj(x1) +

∑

k 6=j

∫

ρ
(N−1)
jk (x2)

|r1 − r2|
dx2dk(x1) = −Ijdj(x1).

(27)

This provides an energy-independent potential instead of the energy-dependent self-energy

operator in the traditional Dyson equation. It does couple, as do the time-dependent

equations (18), the different DOs by the coupling terms with ρ
(N−1)
jk .

The EOMs (18) are the key equations of TDDOT and they constitute the main result

of the paper. Their remarkable feature is that they contain just static potentials of

the electron-electron interaction and they could be classified as coupled homogeneous

linear partial differential equations. Contrary to the TDDFT EOMs (3), no adiabatic

approximation is employed. Thus, the memory problem of standard TDDFT mentioned in

the Introduction is not present in TDDOT. We also note that the equations not only hold

for primary ion states (resulting from orbital ionizations), as in the case of the (SAE to) the

time-dependent KS orbital equations (5), but are just as well applicable for Dyson orbitals

corresponding to satellite ion states, resulting from an orbital ionization plus an excitation.

The equations (18) are completely general, the DOs that result are only determined by

the applied field (the potential vext(x, t)). An intriguing possibility is to study the relative

probabilities of ionization to specific ion states as a function of the frequency of the

applied radiation, which may sweep through resonance with the subsequent ion states, or

alternatively to study the relative probabilities of the first set of ionizations (valence and

subvalence) as a function of the energy of the radiation, e.g. ranging from UPS energies to

typical XPS energies. A prerequisite is of course an accurate solution method (see section
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III).

One may also consider simplification of the full set of equations (18). For instance, one

could work towards a type of SAE approximation by first simplifying the present TDDOT

EOMs by replacing in Eq. (18) for a particular dj(t), all other DOs dk(t), k 6= j with

the time-independent DOs dk(x1)e
iIkt, which correspond to the initial time-independent

potential (retaining of course the exponential time factor of the stationary orbital). With

this, Eqs. (18) are simplified to

i
∂dj(x1, t)

∂t
= {−1

2
∇2

1 + vext(x1, t) +

∫

ρ
(N−1)
j (x2)

|r1 − r2|
dx2 +∆j(t)}dj(x1, t)

+
∑

k 6=j

eiIjt{
∫

ρ
(N−1)
jk (x2)

|r1 − r2|
dx2 +∆jk(t)}dk(x1), (28)

which are uncoupled inhomogeneous linear partial differential differential equations with

the last sum representing the free terms. We may also call them single active electron

(SAE) equations, like (5), but note that they are for the time-dependent Dyson orbital and

incorporate the Coulomb potential of the density of the corresponding ion state ΨN−1
j , not

the Coulomb potential of the ground state density ρN(x). They also retain time-dependent

potentials vext(x1, t) and ∆j(t). Possible application of the TDDOT EOMs to real-time

simulation of the electronic dynamics will be discussed in the next section.

III. DISCUSSION

For applications, propagation of the one-electron functions {dk(x1, t)} on a 3D grid would

give complete flexibility to the evolving Dyson orbitals. It is also possible to operate with

the matrix form of the proposed TDDOT EOMs, which is obtained with the expansion of

the time-dependent DOs dj(t) in a convenient time-independent orthonormal basis {φν}

dj(x1, t) =
∑

ν

Cνj(t)φν(x1), (29)

where Cνj(t) are the elements of the DO evolution matrix C(t). This introduces the well

known problem of the representation of a continuum wavefunction, into which the DOs evolve

in the course of time, with a suitable basis. Solutions for continuum electron wavefunctions

have been obtained with mixed basis sets of atom based functions (Gaussians or Slater-type
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orbitals) and plane waves [28–32], and rather successfully, for small molecules, with very

flexible B-spline representation of the radial part of spherical harmonic expansions [6, 27].

Inserting the expansion (29) in the TDDOT EOMs (18) and integrating it with φ∗
µ, one

obtains their matrix form

iĊµj(t) =
∑

ν

{Cνj(t)[δµν(∆j(t)) + hµν(t) +W j
µν ] +

∑

k( 6=j)

ei(E
(N−1)
j −E

(N−1)
k

)tCνk(t)[δµν∆jk(t) +W jk
µν ]}.

(30)

Here, hµν(t) are the matrix elements of the time-dependent one-electron operator

hµν(t) =

∫

φ∗
µ(x1){−

1

2
∇2

l + vext(x1, t)}φν(x1)dx1, (31)

W j
µν are the elements of the static potential of ρ

(N−1)
j

W j
µν =

∫

φ∗
µ(x1)

ρ
(N−1)
j (x2)

|r1 − r2|
φν(x1)dx1dx2, (32)

and W jk
µν are those of the static potential of ρ

(N−1)
jk

W jk
µν =

∫

φ∗
µ(x1)

ρ
(N−1)
jk (x2)

|r1 − r2|
φν(x1)dx1dx2. (33)

With (23) and (29), the matrix form ρNµν(t) of the time-dependent density reads

ρNµν(t) =
∑

j

Cνj(t)C
†
jµ(t). (34)

The form of the linear matrix EOMs (30) provides a perspective on the application of TD-

DOT to real-time simulation of electronic dynamics. This simulation includes the following

stages:

1) At the preliminary stage the N -electron ground state ΨN
0 and a chosen numberM > N

of the ground and excited stationary (N − 1)-electron states Ψ
(N−1)
j and their energies EN

0

and E
(N−1)
j are obtained with a standard ab initio configuration interaction (CI) or coupled

cluster (CC) calculation. Also, the orbitals to be used in the propagation equations (30)

are to be determined. The actual basis to be used may be the {φν} of the chosen static

basis set, that has for instance been used in the ab initio calculations, or it may be a basis

of linear combinations of the primitive basis that diagonalizes a convenient one-electron

hamiltonian (Hartree-Fock or Kohn-Sham), plus some set of continuum functions. The
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quantities obtained are used to calculate the initial evolution matrixC(0), the cation electron

density ρ
(N−1)
j and transition densities ρ

(N−1)
jk as well as the matrix elements W j

µν and W jk
µν

of the static electron-electron interaction potential.

2) At the real-time propagation stage the evolution matrix C(t) is propagated through a

number of time steps tn with a numerical solution of the matrix TDDOT EOMs (30). In or-

der to accomplish this, the one-electron elements hµν(tn), the phase factors e
i(E

(N−1)
j −E

(N−1)
k

)t,

and the scalar functions ∆j(tn), ∆jk(tn) are evaluated at the time tn, while the pre-calculated

matrix elements W j
µν and W jk

µν are used in (30).

With this, the present TDDOT offers a viable computational scheme. Indeed, the expen-

sive ab initio approach is employed only in the preliminary stage. Also, during the bottleneck

real-time simulation of electronic dynamics only relatively inexpensive orbital propagation

is performed, which requires re-calculation of simple one-electron integrals with the external

potential, while the same pre-calculated matrix elements of the static electron-electron inter-

action potentials are used at all time steps tn. Since the EOMs (30) are linear equations for

the evolution matrix elements Cνj(t), one can expect a rather stable propagation according

to these equations. Obviously, the exact TDDOT requires the full expansion (11) with an

infinite number of time-dependent DOs dj(t). Of course, the application of the TDDOT

scheme would be particularly profitable, if for a reasonably accurate simulation only a fairly

small number M of the DOs would have to be retained.

The TDDOT EOMs (30) can be further simplified with the SAE approximation of

Eqs.(28). Inserting the expansion (29) in (28), one obtains the following inhomogeneous

TDDOT-SAE matrix equations

iĊµj(t) =
∑

ν

{Cνj(t)[δµν(∆j(t)) + hµν(t) +W j
µν ] +

∑

k 6=j

eiIjtCνk(0)[δµν∆jk(t) +W jk
µν ]}, (35)

where the last sum represents their free terms. Because the generic TDDOT-SAE equations

(28) are uncoupled, the matrix TDDOT-SAE EOMS (35) are partitioned into uncoupled sub-

sets of equations for the independent propagation of the expansion coefficients of individual

DOs dj(t).

Coupled to nuclear dynamics, the matrix TDDOT EOMs could be applied to simulate

photoinduced molecular dissociation and isomerisation. In particular, such simulation of the

induced dissociation of the H2 molecule and isomerisation of the diimide N2H2 molecule could

be compared with the corresponding TDHF and TDDFT simulations of Refs.[7, 8]. Note,
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that in the case of a two-electron system X (for instance, X=H2) the TDDOT EOMs (30)

are especially simple. Indeed, in this case the static cation state Ψ
(N−1)
j in the DO expansion

(11) reduces to the ground-state wave function (orbital) ψj(x1) of the one-electron cation

X+. Then, the cation density ρ
(N−1)
j in the matrix elementW j

µν of (32) reduces to the density

of the orbital ψj(x1), while the transition density ρ
(N−1)
jk in the matrix element W jk

µν of (33)

turns to the product of the corresponding orbitals.

The very structure of TDDOT provides an especially interesting perspective on its ap-

plication to real-time simulation of the electron dynamics of ionization induced by a strong

rapidly changing electric field. Indeed, the expansion (11) can be rewritten as a weighted

sum of normalized functions ΘN
j (t)

ΨN(x1,x2, ...,xN , t) =
1√
N

∑

j

√

nj(t)Θ
N
j (x1,x2, ...,xN , t), (36)

which are the products of the normalized DO dj(x1, t)/
√

nj(t) and Ψ
(N−1)
j

ΘN
j (x1,x2, ...,xN , t) =

dj(x1, t)
√

nj(t)
Ψ

(N−1)
j (x2, ...,xN)e

−iE
(N−1)
j t, (37)

where nj(t) is the DO norm

nj(t) =

∫

|dj(x1, t)|2dx1. (38)

The expansion (36) can be interpreted as the partitioning of ΨN(t) into ”channels” of

ionization to various cation states Ψ
(N−1)
j . In its turn, the normalized DO dj(x1, t)/

√

nj(t)

can be interpreted as the state of the electron that is being ejected during ionization to the

ion state Ψ
(N−1)
j . In the course of the simulated ionization, the DOs experience gradual

delocalization, with diminishing norm for the DOs starting out at t = 0 as practically

Hartree-Fock or Kohn-Sham orbitals (we mentioned the identity of the DOs at t = 0 with

the orbitals if the wavefunction is approximated as a determinant). For satellites the DOs

start out with very low norm (norm zero within the determinantal approximation [45]), and

will acquire increasing norm. For long-time simulation the inclusion of sufficient continuum

states of various energies in the basis set expansion (29) (the third problem mentioned

in the Introduction) will be mandatory. We have mentioned the alternative option of

representation of the TDDOT EOMs (18) on a three-dimensional grid in 3D physical space

with the fully numerical solution of these equations.
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Note, that simulation of multiple ionization will require also the inclusion of unbound

cation states in the DO expansion (11). The present TDDOT allows in the first place

evaluation of the correlated probability P 1(t) of a single ionization of an N -electron system

at the time t. The expression for P 1(t) reads [4]

P 1(t) = N

∫

Ω

dx1

∫

V

dx2...

∫

V

dxN |ΨN(x1,x2, ...,xN , t)|2, (39)

where the entire physical space R is subdivided into a chosen finite volume V and the outside

space Ω, R = V + Ω. The electrons in the region Ω are assumed to be ejected, while those

inside the volume V are considered to be bound. Inserting the expansion (11) in (39), one

obtains the TDDOT expression for P 1(t)

P 1(t) =
∑

j,k

ei(E
(N−1)
j −E

(N−1)
k

)t

∫

Ω

dx1d
∗
j(x1, t)dk(x1, t)

∫

V

dx2...

∫

V

dxNΨ
(N−1)∗
j (x2, ...,xN)Ψ

(N−1)
k (x2, ...,xN

(40)

The cation states Ψ
(N−1)
j in (40) are available from the above mentioned stage 1) of the

calculations, while the DOs dj(t) are obtained with their propagation at the stage 2). If

the cation states are continuum states, i.e. bound states of the +2 ion times a free electron

wavefunction, corresponding to two-fold ionization (and similar for multiple ionization), they

would at least have one electron in a continuum state with negligible amplitude in the volume

V , so the integrals over V will yield zero. So with V a limited volume, sufficient to practically

fully contain the bound ion states, the summation over cation states ΨN−1
j reduces to one

over bound cation states. This is also implied when we are considering the probability of

single ionization, where the cation remains behind in a bound state. Orthogonality between

the bound cation states is obtained by integration over the volume V , and the probabilities

of single ionization (P 1), no ionization (P 0), and multiple ionization (P>1) become

P 1(t) =

∫

Ω

dx1

∑

j∈B

|dj(x1, t)|2, P 0(t) =

∫

V

dx1

∑

j∈B

|dj(x1, t)|2, P>1 = 1− P 1 − P 0 (41)

where j runs over the set B of bound singly ionized (+1) ion states. Note that the

outer space Ω in Eq. (41) has to be the space complementary to a space V in which

the bound states are fully contained, at least to the extent that the integrals over the

bound states in Eq. (40) yield orthogonality to high precision. The present formalism

then naturally covers the traditional photoelectron experiment which measures single
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ionization events. We may ask at any time t for the probability to detect an emitted

electron in some free electron state ψk (a plane wave or, more accurately, an orthogonalized

Coulomb wave in the +1 field of the cation left behind), and the cation in some state

ΨN−1
j , i.e. the system in state ψk(x1, t)Ψ

N−1
j (x2, · · ·xN)e

−iEN−1
j t. The inner product

〈

ψk(x1, t)Ψ
N−1
j (x2, · · ·xN)e

−iEN−1
j t

∣

∣

∣
ΨN(t)

〉

yields with expansion (11) 〈ψk(x1, t)|dj(x1, t)〉.
Of course, depending on the frequency (energy) of the ionizing radiation and the energy

of the ion state, dj(x1, t) will develop into free electron states of specific energy, and only

corresponding ψk will give a finite matrix element. We have noted that the total probability

of finding the system in cation state ΨN−1
j (x2, · · ·xN)e

−iEN−1
j t regardless of the state of the

ejected electron is obtained by summing (integrating) over all free electron states, giving
∫

dx1

∫

dk| 〈ψk(x1, t)|dj(x1, t)〉 |2 =
∫

dx1|dj(x1, t)|2 on account of the completeness of the

set of free electron states {ψk}. In the traditional sudden approximation this is already

evaluated at time t = 0, i.e. for the initial Dyson orbital, and provides an estimate of the

relative intensities of the various peaks in the spectrum in the case of very high energy

radiation. Taking into consideration the different types DOs, this affords the differentiation

between primary ionizations and satellites. A primary ionization is an “orbital ionization”

characterized by an ion wavefunction which can be reasonably approximated by a single

determinant with a single orbital removed and the others possibly relaxed but recognizable.

Its DO resembles closely the Hartree-Fock orbital that is vacated (the Hartree-Fock orbitals

are the Dyson orbitals in a frozen-orbital approximation to the ion states). For satellites

(primary ion states plus an excitation which are close in energy to some other primary

ion state) the Dyson orbital at t = 0 has, for correlated wavefunctions, the same shape

as the orbital corresponding to the main peak to which it is a satellite, but with (much)

reduced amplitude (the DOs are not normalized), see Ref./ [45] for discussion. It would

be zero in the frozen orbital determinantal approximation for ground state and ion (there

are no satellites in the Koopmans’ approximation) but will be different from zero in a

relaxed orbital and in particular in a correlated treatment of the ion state. The present

formalism affords a study of these features in a photoionization spectrum either without

approximation or with limitations of the number of ion states included in the coupling (Eq.

(18)) or in the free terms of the uncoupled treatment (Eq. (28)). Also the effect of more or

less sophistication in the treatment of the ion states (Koopmans’ approximation, SCF with

orbital relaxation, correlated) can be investigated.
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The present TDDOT formalism also covers the simulation of the modern very short

and strong laser pulse experiments which allow for multiple ionization. Note, that the

total number N e of electrons ejected from the volume V because of all kinds of single

and multiple ionizations is given by the integral of the electron density ρ(x1, t) over the

outer region Ω [4]. Using the probabilities P n(t) of ejection of n electrons, we have for the

expectation value of N e

〈N e〉 =
N
∑

n=0

P n(t)n =

∫

Ω

ρ(x1, t)dx1 =

∫

Ω

∑

j

|dj(x1, t)|2dx1, (42)

which is the integral over the outer space of the standard expression of the electron density

written as a sum of squares of Dyson orbitals, now time-dependent. The electron density

in the outer space can be larger than 1 if the summation over j in (42) includes ion states

which are continuum states, i.e. ion states that describe a doubly (or higher) ionized bound

ion and one (or more) outgoing electrons. The norms of the Dyson orbitals belonging to

such continuum ion states give the probability to find doubly (or higher) ionized ions and

two (or more) electrons in the outer space. Then, from (40) and (42) follows that TDDOT

allows also the evaluation of the number N>1 of electrons ejected in multiple ionizations

〈N>1(t)〉 ≡
N
∑

n=2

P n(t)n = 〈N e(t)〉 − P 1(t) =

∫

Ω

dx1

∑

j /∈B

|dj(x1, t)|2 (43)

The summation over j (in fact, an integration) runs over all the unbound +1 ion states,

i.e. states that have a bound multiply charged ion (n-fold ionized atom or molecule, n =

2 · · · (N − 1)) and n − 1 other free electrons (the n-th outgoing electron is the one already

described by dj(x1, t)). We can also focus on one individual multiple ionization yield P n,

with n one of the numbers in the range 2 · · · (N − 1). TDDOT at least formally resolves

for the general N -electron case the problem of the evaluation of such an individual multiple

ionization yield, one of the problems mentioned in the Introduction. For such a specific

probability P n, n > 1 we need to take those terms in the sum over j /∈ B in Eq. (43) which

refer to states with (n − 1) free electrons and a bound atomic or molecular ion state of

(N − n) electrons, with charge +n. We call this the set UB(+n) of unbound ion states and

write

P n(t) =

∫

Ω

dx1

∑

j∈UB(+n)

|dj(x1, t)|2 (44)
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With this differentiation of the summation over the unbound states in Eq. (43) into subsets

we formally solve the problem of obtaining individual P ns.

In the special case of two-electron systems Eq. (43) reduces to the expression for the

individual probability P 2 (and P 0 can be obtained from the sum rule
∑2

n=0 P
n(t) = 1). As

was mentioned earlier in this Section, the cation states Ψ
(N−1)
j reduce in this case to the

one-electron states (orbitals) of the cation, ψj(x1). In the basis set expansion for the DO

we would then need, as always, functions that can represent continuum wave functions, e.g.

by inclusion of unbound orbitals in the basis set expansion (29), which should be Coulomb

waves in the +1/r field of the cation. Grid-based propagation of the DOs would obviate this

basis set problem, of course. For the multiple ionization a second set of continuum states are

needed, namely the continuum states of the cation have to be included in the expansion (11).

In e.g. the He case these are the well known unbound states of the one-electron hydrogenic

system [47, 48], i.e. the Coulomb waves in the +2/r field of the bare nucleus. This will

be sufficient for the rigorous description of electron ejection in the process of non-sequential

double ionization. Since there is no adiabatic approximation, there is not a memory problem

(the first problem mentioned in the Introduction for applications of TDDFT) and TDDOT

is expected to correctly reproduce the ”helium knee” structure.

IV. CONCLUSIONS

In this paper time-dependent Dyson orbital theory (TDDOT) has been proposed for real-

time simulation of the photoionization process, i.e. the full dynamics of electron ejection

from an atom or molecule. To this end a time-dependent extension of the Dyson orbital

(DO) concept is introduced. The time-dependent DOs are defined by projection of the

generic time-dependent wavefunctionfunction ΨN(t) onto the the stationary cation states

Ψ
(N−1)
j . The defining formula (7) for the time-dependent DOs dj(x1, t) leads to the master

equations of motion for the DOs, the TDDOT EOMs (18), which describe the evolution in

the course of time of the one-electron state of the electron being ejected from the initial static

Dyson orbital (very similar to a Hartree-Fock or Kohn-Sham orbital) into the plane wave

like state of the final ionized electron. Remarkably, the equations of motion only require

static electron-electron interaction potentials, but the price to be paid is coupling of the

various one-electron equations, and therefore accurate solutions of the different ion states

18

Page 18 of 21Physical Chemistry Chemical Physics



that are included in the coupled equations are required. Importantly, the present TDDOT

fully covers the memory effects and does not resort to the adiabatic approximation, thus

resolving the first of the mentioned problems of conventional TDDFT.

The master equations (18) have been cast into the convenient form (30) of the EOMs

for the evolution matrix C(t) in a basis, which can readily include the continuum functions.

This ensures the adequate representation in TDDOT of continuum wave functions, into

which the DOs evolve in the course of time. The linear form of the TDDOT EOMs suggests

a stable propagation of the DO evolution matrix elements Cνj(t).

Partitioning (36) of the generic function ΨN(t) into ionization ”channels” makes the

application of TDDOT to real-time simulation of the electron dynamics of ionization by a

strong rapidly changing electric field especially promising. The present formalism covers the

single ionization events of traditional photoelectron spectroscopy. The total probabilities

P 1(t) and P 0(t) (Eq.41) of single ionization and no ionization at a particular time t as well

as the probabilities of individual primary ionizations and satellites are evaluated from the

densities |dj(x1, t)|2 of the propagated DOs associated with the corresponding bound cation

states. The TDDOT formalism also covers multiple ionizations by very short and strong

laser pulses. The total number (43) of electrons ejected in all multiple ionizations and the

individual probabilities P n(t) (Eq.44) of n-tuple ionization are evaluated from the densities

of the DOs associated with the relevant unbound cation states. This resolves the second of

the above mentioned TDDFT problems.

Real-time simulation of the paradigmatic non-sequential double ionization of the He atom

offers an efficient simple test for the present TDDOT formalism. In this two-electron case

all wave functions employed in TDDOT reduce to well-known orbitals. These are the the

orbitals of the discrete spectrum of the He+ ion as well as the unbound Coulomb waves in

the +1/r field of He+ and those in the +2/r field of the bare helium nucleus. Due to the

above mentioned resolution of the memory problem, TDDOT is expected to reproduce a

notorious memory effect, the ”knee structure” of P 2(t) as a function of the intensity of an

applied field.
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