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 In this paper we propose a new approach for the dynamic of drug delivery systems, assimilated to 

complex systems, approach based on concepts like fractality, non-differentiability, multiscale evolution. The 

main advantage of using these concepts is the possibility to eliminate the approximations used in the 

standard approach by replacing complexity with fractality, that impose, in mathematical terms, the 

mandatory use of non-differential character of defined physical quantities. The theoretical model presented, 

validated for other physical systems, demonstrates its functionality also for drug delivery systems, 

highlighting, in addition, new insights in the complexity of this system. The spatio-temporal scales of system 

evolution are characterized through fractality degree, as a measure of the complexity of the phenomena 

occurring at each scale. The numerical analysis of the experimental showed that the overall drug release 

kinetic can be obtained by composing “smaller release kinetics” occurring at scales appropriate for each 

phase of the drug release mechanism, phases whose expansion depends on system density. Moreover, the 

uncertainties in establishing the exact limits of the phases were removed by applying the principle of scales 

superposition, resulting a global fractality degree corresponding to the entire release kinetics. Even if the 

theoretical model is perfectible by identifying constants specific to each delivery system, this paper is 

intended to be the beginning of an alternative approach of drug delivery mechanism. 

 

 

 

1. Introduction 

Drug delivery systems (DDS) are complex systems, due to the 

large number of particles among which multiple and interrelated 

interactions occur; moreover, the complexity degree increases 

when DDS releases the encapsulated drug, due to the additional 

interactions with the environment. 

Complex systems are very favourable medium for the 

appearance of instabilities that imply both chaos and self-

structuring through generation of ordered complex structures.
1
 In 

the classical concepts, the theoretical models are build on the 

assumption that the dynamics of system particles occur on 

continuous and differentiable curves, so that they can be described 

in terms of continuous and differentiable motion variables (energy, 

momentum, density, etc.), exclusively dependent on the spatial 

coordinates and time. In reality, the complex system dynamics 

proves to be much more complicated and the classical theoretical 

models failed in the attempt to explain all of the aspects of the 

complex system dynamics, as illustrated by experimental 

observation. These difficulties can be overcome in a 

complementary approach, using fractal concepts, defined for the 

first time by Mandelbrot.
2
 He introduced the term “fractal” to 

describe “exotic” shapes that did not fit the patterns of Euclidian 

geometry, such as irregular geometrical objects, cells of living 

organisms, human arterial, neural network, convoluted surface of 

the brain, etc. Such structures often possess invariance under 

changes of the scale of the magnification, which can be captured 

well by the fractal geometry, an extension of the conventional 

Euclidean geometry that allows the measures to change in a non-

integer or fractional way when the unit of measurements changes. 

Fractal analysis has proven to be a useful tool in describing different 

systems from physics
3,4

, chemistry
5,6

, biology
7,8

, medicine
9,10

. 

Moreover, depth analysis of different systems evolution showed 

that most of the phenomena are nonlinear and, therefore, new 

mathematical tools to describe and explain their evolution and 

properties were required. These have been provided by the Scale 

Relativity Theory (SRT)
11

 and by the Extended Scale Relativity 

Theory (ESRT). 

These new concepts resulted in new ways of approaching 

different phenomena, including in the science and technology of 

drug delivery from polymeric matrices. The results of the 

increasingly more studies made in the last decade, on different DDS 

types: particles
12,13

, hydrogels
14-16

, liposomes
17,18

 proved the fractal 
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approach to be a successful one in the field of pharmaceucetical 

nanotechnology and pharmacokinetics
19

. 

The purpose of this study is to apply a non-linear theoretical 

model to a drug release phenomena having in view a confirmation 

of the multi-scale evolution and of the “scales superposition 

principle” in complex systems. 

 

2. Theoretical considerations 

2.1. Non-linear theoretical model 

The evolution patterns in complex systems can be characterized 

by to various degrees of freedom associated to different time 

resolution scales. Such an assumption can be sustained by a typical 

example, i.e. the collision processes in complex system: between 

two successive collisions the trajectory of the complex system 

particle is a straight line, but all the collision impact points form an 

uncountable set of points, that defines a fractured line, whose non-

linearity level depends on the time taken into consideration. 

From the above example, emerged the assumption that the 

motions of the complex systems particles take place on continuous, 

but non-differentiable curves, named fractal curves. Since the non-

differentiability, assimilated with fractality, appeared as a 

fundamental property of the complex system dynamics, a 

corresponding non-differentiable physics was necessary and it was 

systematically developed using Nottale’s scale relativity theories
11

 

or Extended Scale Relativity Theory, i.e. the Scale Relativity Theory 

(SRT) with an arbitrary constant fractal dimension
20

. Therefore, a 

Euclidean dynamics of a complex system with external constraints 

was replaced with the fractal dynamics of a complex system free of 

any external constrains. Practically, the motion with constrains in 

the Euclidean space, i.e. on continuous and differentiable curves, 

was replaced by a motion free of constrains in the fractal space, i.e. 

on continuous, but non-differentiable curves. To do this, the 

correspondence between the interaction processes and the 

“fractality” of the motion trajectories was admitted.
21-23 

The non-linear theoretical model proposed in this work is based 

on the assumption that all the motions of complex system particles 

take place on continuous, but non-differentiable curves (fractal 

curves). In this hypothesis, some consequences of non-

differentiability are evident: 

i) any continuous, but non-differentiable curve of the complex 

system particles (fractal curve) is explicitly scale resolution 

t dependent, i.e., its length tends to infinity when t tends to 

zero;
2
 

ii) the physics of the complex system phenomena is related to 

the behavior of a set of functions during the zoom operation of the 

scale t ; then, through the substitution principle, t will be 

identified with dt , i.e., dtt   and, consequently, it will be 

considered as an independent variable
11

; 

iii) the complex system dynamics is described through fractal 

variables, i.e., functions dependent on both the space-time 

coordinates and the scale resolution since the differential time 

reflection invariance of any dynamical variable is broken;
11

 

iv) the differential of the spatial coordinate field is expresses as 

the sum of the two differentials, one of them being scale resolution 

independent (differential part), and the other one being scale 

resolution dependent (fractal part);
11

 

v) the fractal part of the spatial coordinate field satisfies the 

fractal equation     FD/1ii dtdt,td    , where i

  are constant 

coefficients through which the fractalisation type is specified and 

FD  defines the fractal dimension of the fractal motion curve;
23

 

vi) the complex velocity field can written as i

F

i

D

i iVVV 


, 

where he real part i

DV  is differentiable and scale resolution 

independent (differentiable velocity field), while the imaginary one 
i

FV  is non-differentiable and scale resolution dependent (fractal 

velocity field);
11

 

vii) in the absence of any external constrains, an infinite 

number of fractal curves can be found relating any pair of points, 

and this is true on all scales. Then, in the fractal space, all complex 

system particles are substitutes with the fractal curves and any 

external constraint is interpreted as a selection of fractal curves. 

The infinity of fractal curves in the bundle, their non-

differentiability, and the two values of the derivative imply a 

generalized statistical fluid like description (fractal fluid);
11

 

viii) the complex system dynamics can be described through a 

covariant derivative: 

  
kl

lk1D2

i

i

t Ddt
4

1
V

dt

d
F 





/     (1) 

where lkD  are compounds like kl

 , kl

 , etc..
23 

Considering the functionality of a scale covariance principle (the 

complex system physics laws are invariant with respect to scale 

transformations), the transition from the dynamics of the classical 

complex system physics to the dynamics of the non-differentiable 

(fractal) complex system physics can be implemented by replacing 

the standard time derivative dtd  by the non-differentiable 

operator dtd


.
21-23

 Thus, this operator plays the role of the 

covariant derivative, namely, it is used to write the fundamental 

equations of complex system dynamics in the same form as in the 

classic (differentiable) case. Under these conditions, applying the 

operator (1) to the complex velocity field, in the absence of any 

external constraint and for motions more complex than the 

Brownian one, i.e. motions on Levy curves, the fractal curves of the 

motion have the form: 

  
0VdtiVVV

dt

Vd i

kl

1D2i

l

li

t

i

F 







/
   (2) 

Previous result shows that the local acceleration, the 

convection and the dissipation make their balance in any point of 

the non-differentiable curve 
21-23

. Moreover, the presence of the 

complex coefficient of viscosity-type indicates that the complex 

system is a rheological medium, so it has memory, as a datum, by 

its own structure. 
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For irrotational motions, the complex velocity field 


iV  was 

chosen in the form   





ln
/ i1D2i Fdti2V   and the 

standard equation of motion for the “one body problem” in ESRT 

can be written as: 

     
0

2

U
dtidt t

1D2

l

l2D42 FF 


   (3) 

where ln defines the scalar potential of the complex velocity 

field, U  is an external scalar potential and   is the coefficient of 

the fractal-non fractal transition.
23 

If  iSexp  with   the amplitude and S  the phase 

of  , the complex velocity field takes the form 

  





ln
/ i1D2i Fdti2V   with the real part 

(   
Sdt2V i1D2i

D
F 
/

 ) and the imaginary one 

(   
 ln

/ i1D2i

F
FdtV 
 ). Substituting (3) in (2) and separating 

the real and the imaginary parts, up to an arbitrary phase factor 

which may be set to zero by suitable choice of the phase of  , we 

obtained:
 

   UQVVV ii

Dl

l

D

i

Dt      (4) 

  0V i

D

i

t          (5) 

with Q  the specific non-differentiable (fractal) potential:
23 

      i

Fi

1D2Fl

l

Fl

l
2D42 Vdt

2

VV
dt2Q FF 










 (6) 

 Equation (4) represents the specific momentum conservation 

law, while equation (5) represents the states density conservation 

law. Equations (4)-(6) define the fractal hydrodynamic model in 

ESRT and imply the followings: 

i) any complex system particle is in a permanent interaction 

with a fractal medium through the specific non-differentiable 

potential (6); 

ii) the complex system can be identified with a fractal fluid 

(non-differentiable fluid), the dynamics of which is described by the 

fractal hydrodynamic model; 

iii) the fractal velocity field i

FV  does not represent actual 

motion, but contributes to the transfer of the specific momentum 

and to the energy focus; this may be seen clearly from the absence 

of i

FV  from the states density conservation law and from its role in 

the variational principle. 

iv) any interpretation of the specific fractal potential should 

take cognizance of the “self” nature of the specific momentum 

transfer. While the fractal energy is stored in the form of the mass 

motion and fractal energy is stored in the form of the mass motion 

and fractal potential energy, some is available elsewhere and only 

the total is conserved. It is the conservation of the fractal energy 

and the fractal momentum that ensures fractal reversibility and the 

existence of fractal eigenstates, but denies a Levy motion fractal 

force of interaction with an external medium.
23

 

The fractal hydrodynamic solution for the free particle was 

obtained in the one-dimensional case of equations (4) - (6), in the 

absence of any external constraint ( 0U  ) and led, by an 

adequate dimensioning, both to the states density: 

     


































2

2
212

1
1N




 exp,   (7) 

and velocity: 

  
21

1
V









,        (8) 

where  ,  are “extrinsic” variables, involving in “coordinates 

space” (  of space type and   of temporal type) and 

  2D4 Fdt


  an “intrinsic” variable, of fractal type, named 

fractality degree, which implies “diffusion” type processes in scale 

space.
11

 We present in Fig. 1 the three (alongside with the contour 

curves) and two dimensional dependences of states density of 

“extrinsic” variables   and  for a constant value of the “intrinsic” 

fractal variable   ( .const ); basically, we are talking about a 

spatio-temporal “diffusion” on curves of equal fractality (same 

degree of self-interaction at constant scale resolution). 

 It can be noted that in the point of coordinates    0,0t,   

the states density has a maximum value with a similar decreasing 

evolution both in space and in time 

 

 

Fig. 1. Three (alongside with the contour curves) and two 

dimensional dependences of states density on “extrinsic” variables 

  and  for a constant value of the fractality degree 1  
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 In Fig. 2 the three (alongside with the contour curves) and two 

dimensional dependences of states density of the “extrinsic” 

temporal variable  and of the “intrinsic” fractal variable  , for a 

constant value of the “extrinsic” spatial variable   ( .const ) 

are represented; basically, we are talking about a mixed “diffusion”, 

of temporal-fractal type, on curves of equal position. It can be 

noted that, in a given point, a higher value of fractality degree, 

determined by the greater complexity of the phenomena involved, 

implies a decrease in the maximum density of states, characteristic 

to the equilibrium state, through self-organization. Moreover, it 

appears faster at higher fractality degree. 

 

2.2. Model validation 

 The drug delivery systems used for the validation of the 

theoretical model are chitosan based hydrogels: chitosan-gelatin 

and chitosan-poly(vinyl alcohol)(PVA) cross-linked with sodium 

sulphate (Na2SO4) and sodium tripolyphosphate (TPP), for which 

the polymer mass ratios and the ionic cross-linking agent amount 

were modified for the optimization of their properties, i.e. high 

mechanical stability and prolonged drug release. 

 

  Fig. 2. Three (alongside with the contour curves) and two 

dimensional dependences of states density on “extrinsic” variable 

  and the “intrinsic” fractal variable   in a given point 1  

  

 The hydrogels were loaded with calcein and the release kinetics 

were analyzed. The procedure applied for obtaining the hydrogels 

and for studying the drug release is not the subject of this paper, 

but is described in a previous work.
24

 

 Since, for one group, all of the samples show similar evolution, 

regardless of the polymers ratio and cross-linker type, for each 

group, one sample was chosen to illustrate the experimental 

release kinetics (Fig. 3). 

 The analysis of all release kinetics showed that: 

i) hydrogels with PVA (CP group) have similar evolution to 

that of hydrogels with gelatin (CG group), for the same ionic cross-

linker, with differences in time intervals for each of phase of 

evolution, (see, in Fig. 3, CG-S1 vs. CP-S4 and CG-T2 vs. CP-T4); this 

was attributed to the fact that on the one hand, PVA does not 

participate in ionic crosslinking and, on the other hand, gelatin 

cross-linking degree is low, so that the main component that 

participate at cross-linking, and therefore, cause hydrogel density, is 

chitosan; 

ii) samples cross-linked with TPP have lower release efficiency 

compared to those cross-linked with Na2SO4, because TPP is a 

stronger cross-linker than Na2SO4, and, therefore, hydrogels with 

TPP have a more dense network (see, in Fig. 2, CG-S1, CP-S4 vs. CG-

T2, CP-T4).
15

 

 Four consecutive phases were identified in the drug release 

mechanism (for a better understanding, the phases were delineated 

by the surrounding areas in Fig. 4): 

i) burst effect phase (I) in which a fast drug release occurs in a 

very short time, induced by the concentration gradient; 

ii) swelling phase (II), with a moderate drug release rate, up to 

the constant plateau; 

iii) equilibrium phase (III), for which concentration of released 

drug is constant; 

iv) degradation phase (IV), characterized by a decrease of 

released calcein, determined by a reverse process: released calcein 

bonding to the polymer fragments resulted from hydrogel 

degradation.
15

 

  The time threshold for each of the phases were determined 

by following the inflection points from the release kinetics and the 

time intervals for each phase are presented in Table 1. 

 

 

 

 

 

 

Fig. 3. Phases demarcation in drug release mechanism 
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Sample 
group 

Phase I Phase II Phase III Phase IV 

CG-S 

0 …..130 
min. 

130 min. 
… 3 days 

3 ..... 6 days 6 ….. 24 days 

CG-T 130 min. 
… 4 days 

4 ..... 9 days 9 ….. 24 days 

CP-S 130 min. 
… 2 days 

2 ..... 4 days 4 .... 24 days 

CP-T 130 min. 
… 3 days 

3 ......6 days 6 .....24 days 

Table 1. Time intervals for the phases of drug release mechanism 
 

Considering that the system (hydrogel in the fluid release 

medium) is a complex one, we will regard it as a fractal fluid and the 

complexity induced by the multitude of concurrent and interrelated 

interactions between components, that makes their outcome very 

difficult, almost impossible, to quantify, will be replaced by 

fractality. In other words, the drug particle will be considered a free 

particle (with no external constraint) in a fractal fluid, and its 

evolution must be analyzed using the tools of continuous, but non-

differentiable physics presented in Section 2.  

To apply the fractal hydrodynamic solution for the free particle 

(7), to our systems, we set the following correspondences: 

i) the normalization will be carried out in relation to the 

maximum possible value, for each of the variables; 

ii)  , the non-dimensional space coordinate, will be set to its 

maximum value 1 , assuming sampling for measuring the 

amount of drug released is done at the farthest point from the 

loaded hydrogel; 

iii)  , the non-dimensional time coordinate, will be evaluated 

in relation to the maximum time of determinations, i.e., in our case 

maxtt , with tmax= 24 days; 

iv)   ,N , the states density, is equivalent, in our opinion, to 

efficiency of drug release,    MM,N t , where 
tM  is the 

amount of drug released at time t  and 
M  the amount of drug 

released as time approaches infinity, i.e. the maximum possible 

value; 

 The fractality degree,   2D4 Fdt


 , is a measure of self-

interaction between structural units of the complex system, whose 

positioning compared with a value equal to 2 of the fractal 

dimension of the motion curve can indicate the type of dominant 

process taking place in the system. Thus: 

 if 1 , that is for 2DF  , non-correlative type processes, 

local, which manifests at the small spatial scales; 

 if 1 , that is for 2DF  , quantum type processes, that 

depend on previous dynamic states of the system; 

 if 1 , that is for 2DF  , correlative type, which is 

manifested in large spatial scales throughout the system.
2,25

 

Therefore, through the fractality degree, as a measure of self-

interaction between structural units of the complex system, at a 

given resolution scale, will be reflected only its local properties. 

Each of the phases previously mentioned can be associated to a 

different fractality degree, each induced by the complexity of the 

phenomena that evolves within it. A short review of the succession 

of phenomena involved in drug release shows that polymer swelling 

is the most important one and present in all phases, besides others, 

such as drug dissolution and diffusion (in the burst effect, swelling 

and equilibrium phases), polymer erosion and chemical reactions 

(in degradation phase). System self-organization by establishing a 

balance in the ratio between these phenomena determines the 

values of fractality degree. 

In order to determine the fractality degree for each phase, the 

experimental data were fitted to equation (7), separately for each 

time interval from Table 1, and the values for which the correlation 

coefficients had the highest value were selected and presented in 

Table 2. 

 The theoretical graphics (obtained by composing the curves 

given by (7) for each phase, i.e. for the fractalities from Table 2) are 

represented in Figs. 4. The correlation coefficients with the 

experimental data are higher than 0.9 and for a better comparison, 

the experimental release kinetics are also illustrated in Figs. 4. We 

mention that the continuity of the theoretical graphics was assured 

by a convenient choice of normalization factors for each phase. 

 
 

a) 

Sample 
code 

Fractality 
degree I 

Fractality 
degree II 

Fractality 
degree III 

Fractality 
degree IV 

CG-S1 5 45 25 58 

CG-S2 4 45 25 46 

CG-S3 6 46 25 64 

CG-S4 3 45 24 36 

CG-T1 2 26 13 13 

CG-T2 2 24 13 11 

CG-T3 2 18 9 10 

CG-T4 3 18 10 16 

b) 

Sample 
code 

Fractality 
degree I  

Fractality 
degree II  

Fractality 
degree III 

Fractality 
degree 

IV 

CP-S1 4 100 71 45 

CP-S2 4 100 50 45 

CP-S3 3 100 60 41 

CP-S4 3 100 70 41 

CP-T1 5 70 41 40 

CP-T2 3 80 41 25 

CP-T3 3 60 37 24 

CP-T4 2 50 35 19 

 Table 2. The values of fractality degree for each phase of drug 
release for CG samples (a) and CP samples (b) 
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Figs. 4. Experimental release kinetics and theoretical graphics, 

obtained by composing the plots for different fractality degrees, i.e. 

for different local scales 

 
 An analysis of the values from Table 2 shows that the samples 

cross-linked with TPP, the stronger crosslinker, (CG-T and CP-T 

samples) manifest fractalities smaller than those cross-linked with 

Na2SO4 (CG-S and CP-S samples), an expected result because the 

first ones have more denser, compact networks and their evolution 

(swelling rate and capacity, degradation rate) is slower, and 

therefore the complexity, equivalent to fractality degree, induced 

by these, is lower. The same cause can explain the smaller values 

for CG samples compared to CP samples, since at first ones both 

chitosan and gelatin participates at croslinking, while at the last 

only chitosan, and therefore the network is less compact. Within a 

sample group, the values are not very different because of the small 

differences in sample composition, that does not influence the 

global system evolution, but overall, the same reasoning is 

available. 

 Since in scale space the functionality of the 

expansion/contraction operator ln  is admitted, the intrisec 

resolution variable (the fractality degree), i.e the function that 

operates in scales space will not be  , but ln . Therefore, it 

must be chosen in the form ,.......,

1

2

2
0

1

1
S

SS









 

11
. By means of 

such procedure, the acceptance of the “scales superposition 

principle”
2, 11

 implies the functionality of the relation:
 

0

nS

1nS

nS

1S

2S

0

1S

t
lnln....lnlnlnln

n

1i

i
















 






. 

where 
0

 is the absolute fractality degree (reference scale)
11

. 

 In our case, the global scale fractality degree for the entire drug 

release mechanism, considering as reference the scale of the first 

phase, can be determined by the relation 

1
S

4S

t 


  . 

 By means of such procedure, the particular values, determined 

from the values of fractality degree for each phase, from Table 2, 

are given in Table 3. 

 
a)          b) 

 
Table 3. The values of global fractality degree for the drug relese for 
CG samples (a) and CP samples (b) 
 

 The validity of the superposition principle is demonstrated by 

the correlation between the theoretical graphics, given by (7) for 

global scales from Table 3, and experimental kinetics, shown in Figs. 

5, with correlation factors between 0,8 and 0,9. 

 All the above confirm the validity of the theoretical model and 

of the scales superposition principle. 

 

Sample 
code 

Global fractality 
degree 

CG-S1 11,6 

CG-S2 11,5 

CG-S3 10,7 

CG-S4 12,0 

CG-T1 6,5 

CG-T2 5,5 

CG-T3 5,0 

CG-T4 5,3 

Sample 
code 

Global fractality 
degree 

CP-S1 11,3 

CP-S2 11,3 

CP-S3 13,7 

CP-S4 13,7 

CP-T1 8,0 

CP-T2 8,3 

CP-T3 8,0 

CP-T4 9,5 
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Figs. 5. Experimental release kinetics and theoretical 

graphics, obtained for the global fractality degree values 

 

 

3. Comparison with the existing models. Advantages and 

disavantages 

Mathematical modelling of drug release kinetics aims to provide 

a basis for the study of mass transport mechanisms that are 

involved in drug release. In general, diffusion, erosion, and 

degradation are the most important mechanisms and should be 

considered in developing the mathematical models. 

In spite of the complexity of the phenomena involved in drug 

release mechanisms, most of the mathematical expressions used in 

pharmaceutics to describe the kinetics of drug release from a large 

variety of devices are rather simple: power laws (Higuchi
26

, 

Korsmeyer and Peppas
27

, Peppas–Sahlin
28

) or exponential laws 

(Weibull
29

). These are empirical models, easy to use, but limited by 

certain approximations. For example, in order to apply Higuchi 

relation, one must impose that the diffusivity coefficient is 

constant, there is perfect sink at the interface and no swelling and 

erosion of the matrix takes place
26

. In addition to these, for 

Korsmeyer and Peppas equation, swelling rates are assumed 

constant in all direction and possible transition from the glassy to 

the rubbery state of the polymer are not considered
27

. Moreover, 

any of the models don’t consider the erosion of the polymer.  

The present theoretical model overcomes these limitation by 

eliminating the approximations and taking into considerations all 

the phenomena involved in drug release mechanism (diffusion, 

swelling, dissolution, erosion), generating thus a high degree of 

complexity. In order to manage this, the complexity degree was 

replaced with fractality degree and the concepts from SRT were 

applied. Althrough the mathematics seems complicated, this model 

can open new perspectives on the release mechanisms. One 

example, for this particular system, the global system evolution can 

be considered the result of the superposition of „paralel” evolutions 

at different spatio-temporal scales. 

Moreover, the extensively used empirical models can be 

deducted as consequences of the fractal type dependences for 

dynamics variables, such as energy, density, momentum, mass. 

Thus, if we operate only in scale space, then an usual fractal 

denpendence of the type: FD1i
Q

i
 , where 

i
Q  is the 

dynamic variable,   este the resolution scale, 
F

D  is the fractal 

dimension and 
i
  are constant coefficients whose explicit form is 

given by the fractalization type
2, 11

, can led to power laws. For 

example, if we consider:  tM
i

Q  ,  M
i
 , t , 

FD1 , the general form of the simple power laws, i.e. 

Higuchi, Korsmeyer and Peppas equations, 


t

M

)t(M




, can be 

obtained (Mt is defined as the amount of drug released at time t, 

M∞ the amount of drug released as time approaches infinity, α a 

constant). Moreover, by admiting the superposition scales principle, 

the cumulative power laws as Peppas-Sahlin, Alfrey can be 

deducted. 

A Weibull type law is the result of a dynamic in space scale of 

the drug release phenomen, admitting a simultaneous functionality 
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of covariance scale principle and of an action-reaction type 

principle. But this aspect requires a more elaborate demonstration, 

which is beyond the scope of this work and will be documented in a 

forthcoming paper. 

Therefore, we consider this model a step forward in the theory 

of drug release mechanism, due to its high degree of generality and 

its possibility to discover new insights on the drug release 

mechanism. 

 

 Conclusions 
 Depending on the characteristics of drug delivery system, the 

spatio-temporal expansion of the phases varies, resulting in 

decreasing or increasing drug release rates. But, for all types of drug 

delivery systems, the succession of phenomena is similar:  

(i) upon contact with the release medium, suddenly, water 

diffuses into drug delivery system and the drug molecules into 

release medium. This the burst effect phase, that takes place at a 

small spatio-temporal scale, and, as consequences, characterized by 

small fractality degree; 

(ii) with increasing water content, the mobility of polymer 

chains and, also, drug molecules, increases. This is the swelling 

phase and its spatio-temporal scale depends on the speed of the 

“swelling front”, which separates the swollen from non-swollen 

polymer matrix, strongly influenced by its density. Its degree of 

fractality is considerably higher than that of the first phase, and, 

moreover, the highest of all, indicating a high complexity of the 

phenomena; 

(iii) after the polymer matrix is completely swollen, the 

equilibrium phase is achieved, for which the drug concentration in 

the release environment is constant, i.e. release rate is zero; in this 

case, the fractality degree has an approximate average value 

compared to the other ones; 

(iv) when the front which separates the drug delivery system 

from the release medium, called “erosion front”, starts moving, the 

degradation phase begins. As in the swelling phase, its spatio-

temporal scale depends on the “erosion front” movement and is 

strongly influenced by its polymer matrix density, and, in addition 

to it, by the number of bonds formed between polymer fragments 

and drug molecules. 

(v) the moving fronts, swelling and erosion, are those that 

determine the spatio-temporal expansion of each phase. This 

delimitation of phases can be considered rough, since, at least, in 

the transition intervals, the phases can overlap. To overcame this 

aspect, difficult to predict, the scales superposition principle, 

proved its functionality. 

(vi) the global system evolution can be considered the result of 

the superposition of „paralel” evolutions at different spatio-

temporal scales. 
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