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     Abstract 

In this article we consider two coupled tetrameric mixed-valence (MV) units 

accommodating electronic pairs which play role of cells in molecular quantum cellular 

automata. It is supposed that the Coulomb interaction between instantly localized electrons 

within the cell markedly inhibits the transfer processes between the redox centers. Under this 

condition, as well as due to the vibronic localization of  the electronic pair, the cell  can 

encode the binary information which is controlled by the neighboring cells.  We show that 

under certain conditions the two low lying vibronic spin levels of the cell  (ground and first 

excited) can be regarded as originating from an effective spin-spin interaction. The last is 

shown to depend on the internal parameters of the cell as well as on the induced polarization. 

Within this simplified two-level picture we evaluate the quantum entanglement in the system 

represented by the two electrons in the cell and show how the entanglement within the cell 

and concurrence can be controlled via polarization of the neighboring cell and temperature.  

1. Introduction 

Entanglement is one of the fundamental and most intriguing phenomenon lying in core of 

the quantum-mechanical description of the matter (see books [1, 2]).  Quantum entanglement 

is now in focus of a wide area of research dealing with the applications in quantum 

computing, cryptography, communication, teleportation and related issues [3-5]. The main 

effects of entanglement have been detected experimentally with photons [6, 7], electrons and 

molecules [8].   Recently,  the problem of  entanglement  became a fascinating part  of  a 
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wide area of molecular magnetism [9-12]  since the magnetic clusters have been proposed as 

novel objects  for spin-based implementation of quantum-information processing  [13-20].  

 Engineering the coupling between molecular spin qubits by coordination chemistry have 

been thoroughly discussed in Ref. [21, 22] with the emphasis on antiferromagnetic Cr7Ni 

rings ([NH2Pr2][Cr7NiF8(O2CCMe3)16] and [NH2Pr2][Cr7NiF8(O2CCMe3)15(O2CC5H4N)]) 

which behave as effective spin-1/2 systems.  In particular, Cr7Ni–Cu–Cr7Ni fragment can be 

represented as a system for investigating tripartite entanglement in molecular spin qubits for 

which the numerical simulation of entangled states has been performed [21,22]. Spin 

triangles as optimal units for molecule-based quantum gates have been proposed in Ref. [18].  

The  latest achievements in this area was marked by the design of  molecular prototypes for 

spin-based CNOT and SWAP quantum gates [23],  chemical engineering of heterodimetallic 

lanthanide complexes  mimicking  two-qubit molecular spin quantum gates [24],  modular 

design of molecular qubits [25]. 

Quantum entanglement in binuclear nitrosyl iron complexes [Fe2(C3H3N2S)2(NO)4] and 

[Fe2(SC3H5N2)2(NO)4] has been considered in Ref. [20]  where the temperature dependence 

of entanglement has been expressed in terms of the magnetic susceptibility for a Heisenberg 

dimer. Observation of room-temperature entanglement between single defect spins in diamond was 

an important step towards the development of quantum information technologies [26].  The concepts 

of quantum entanglement and quantum discord in different materials with ferro- and 

antiferromagnetic coupling have been reviewed in Ref. [27] along with the examples 

demonstrating the presence of non-local quantum correlations.   

Development in the field of quantum computing have been strongly impacted by the 

paradigm of quantum-dot cellular automata (QCA) [28], a scheme for molecular electronics 

in which information is transmitted and processed through electrostatic interactions in an 

array of cells [28-31]. The semiconductor- (or metal) based QCA have been realized as dots  

 

Figure 1. Two  charge distributions encoding binary 1 and 0 in a four-dot QCA cell or in  a 

molecular QCA cell composed of four redox centers in a square mixed-valence 

molecule.  Black balls-dots or redox centers accommodating electrons, white balls-

“empty” dots (redox centers).   
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composing wires and majority gates on a silicon substrate . The binary information (1 and 0) 

is encoded in the two antipodal  charge configurations of a four-dot cell (Fig. 1) and can be 

transmitted via Coulomb interaction between the neighboring cells. The complex circuits are 

built as grids of the logical gates such as majority gates, fun-out, invertors, wires, etc. [28-

30].   

More recently the promising idea to use the molecules instead of dots has been 

proposed and thoroughly discussed [31-33]. Molecular QCA are expected to result in further 

miniaturization of microelectronic devices and in a substantial increase of their advantages, 

such as ultra-high device densities and room-temperature operation.  As a single molecule 

implementation of QCA it has been proposed to use 1,4-dialyl butane radical cation 

consisting of butyl bridge linking the two allyl groups accommodating the electrons [34]. 

Then, the problem of  molecular QCA and other attractive candidates for molecular cells 

have been proposed and discussed in detail in Refs. [35-44].  Examples include mixed-

valence (MV) complex [{(η
5
-C5H5)Fe(η

5
-C5H4)}4(η

4
-C4)Co(η

5
-C5H5)]

2+
 [38] as well as

  
 

tetra-ruthenium 2Ru(II)+2Ru(III) complexes assembled as two coupled Creutz-Taube dimers 

in the center-bridged and side-bridged square-planar tetramers [45].   

Since MV cell for molecular QCA contains two electrons (or holes) delocalized over 

four metal sites it would be interesting to find out whether these two electrons (two state 

systems like two qubits) can be entangled.  In the present article we develop a vibronic model 

which adequately describes the low lying energy pattern of the cell and takes into account the 

cell-cell interaction. We show that under certain conditions implied by interrelation between 

the electron transfer parameters, vibronic coupling and Coulomb repulsion between itinerant 

electrons the energy pattern of the cell involves well isolated spin- singlet and spin-triplet 

vibronic levels. This is shown to be just a necessary condition for an effective spin coupling 

similar to that observed in spin-dimers for which the existence of quantum entanglement was 

demonstrated [20].  We consider quantum entanglement in the tetrameric  MV cell (“output 

cell” ) coupled to the neighboring cell (“input cell”) having a certain polarization associated 

with a particular distribution of the electronic density. In this way one can reveal the 

temperature dependence of quantum entanglement in “output” cell calculated at different 

polarizations of the “input” cell as well as the critical temperature (below which quantum 

entanglement can exist) as function of the cell parameters. It is demonstrated a possibility of 

tuning of quantum entanglement in molecular QCA based on mixed-valence tetrameric units 

via proper polarization of the “input” cell.  
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2. Vibronic model of polarized mixed valence two-electron square cell 

The vibronic model of a MV square planar cell has been developed in our recent papers 

[46, 47].
  
Hereafter we will only briefly describe the key interactions involved in the model 

with emphasis on aims of the present consideration. There are three key interactions which 

act in an isolated MV cell, namely, the electrostatic interaction between the electrons, 

electron transfer and vibronic interaction. Conventionally, the  electron transfer facilitates  the 

delocalization between the redox centers, while the vibronic coupling is responsible for the 

self-trapping, competing thus with the electron transfer. The  Coulomb repulsion plays a 

special role distributing the electron density on the most remote sites which is specially 

important for the encoding of information. Thus, the interactions so far mentioned have 

distinct key physical meanings and, hence, they are inherent in MV system,  although their 

specific manifestations depend on  the  topology and electronic structure of the system.  

Although the number of the parameters within the semiempirical approach is rather large they 

should be taken into account for the physically justified description of the MV cell. 

Hopefully, the microscopic analysis together with the analysis of experimental data can shed 

light on the real interrelation between these parameters.         

As usually, we will first consider the energy pattern of the system providing that the 

position of the ions of the cell are fixed (electronic problem) and then the interaction of the 

electrons with the molecular vibrations will be taken into account.  

2.1. Electronic interactions within the cell.  The main electronic intracell interactions 

and corresponding parameters are schematically shown in Fig. 2. There are six possibilities to 

distribute two extra electrons between four sites.  Two of these distributions correspond to the 

localization of the two electrons in the distant (d) antipodal positions (along the diagonals of 

the square), while the remaining four distributions are those in which the two itinerant 

electrons are localized at the nearest neighboring (n) sites (along the edges of the square cell).  

The interelectronic Coulomb repulsion energies Ud   and  Un  for the electronic distributions 

of  d  and  n -types  are different with  Un  > Ud   because the Coulomb repulsion tends to keep 

the two itinerant  electrons as far as possible.  Thus the d and n -type distributions form the 

ground and excited Coulomb multiplets of the cell, respectively. The only intracell 

Coulombic parameter that is important here is the energy gap U =Un – Ud   between these two 

Coulomb multiplets (Fig. 2a). 
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(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

Figure 2. Illustration of the key electronic interactions in the square-planar MV molecular 

QCA cell with two extra electrons: (a) Coulomb gap between n and d – multiplets, 

where the numbers in the parentheses are the multiplicities (numbers of the electronic 

distributions); (b) electron transfer along the edge of the cell; (c) electron transfer along 

the diagonal of the cell. 
 

Then we assume that electrons can jump from the occupied site to the empty one within 

the cell. This one-electron hopping can occur along the edge (Fig. 2b) or along the diagonal 

(Fig. 2c) of the square cell, with corresponding electron transfer parameters being denoted as 

tn and td respectively. These transfer integrals are quite similar to those involved in Hubbard-

type Hamiltonians widely used in solid state physics.  The physical roles of the tn and td 

transfer processes are quite different. The jumps of the  tn type transform a certain antipodal 

charge configuration into a neighboring one (Fig.2b), while td  transfer switches between two 

different n- configurations (Fig. 2c). The interrelation between these parameters is  crucially 

dependent of the topology of the system which in its turn determines the network of the 

efficient transfer pathways. Relevant examples of the two types of MV tetra-ruthenium 

complexes are given in Refs. [46, 47] , where one can find references on the original papers 

about these compounds.  

The electronic wave-functions corresponding to a definite localization of the electronic 

pair and spin S of the electronic pair can be expressed in terms of the bi-electronic Slater 

determinants as follows: 

     
1

0 ,    1, 1 ,
2

ij i j i j ij S i jS S M                (1) 
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where only spin-triplet wave-function with maximal spin projection is given.  The set of 

indices {i, j}  run over the sites A, B, C and D,   and   are the spin-orbitals with “spin-up” 

and “spin-down”, correspondingly. The distant pairs {A, C} and {B, D} relate to the states 

belonging to the ground Coulomb manifold, while the neighboring pairs {A, B}, {B, C}, {C, 

D}, and {A, D} are those for the excited manifold. It is easy to imagine that any one-electron 

transfer process occurring within the ground manifold results in the Coulombic excitation of 

the two-electron MV square. Hence the one-electron transfer processes nt  and dt  can 

transform the two ground states  AC S ,  BD S  (with the same spin  S) into each other 

only through several steps via the states belonging to the excited manifold. We will assume 

here that the intra-site Coulomb energy U significantly exceeds the transfer parameters nt  

and dt .  Otherwise the transfer processes would not be able to localize the electrons at the  

antipodal positions so that the cell could store information. We referred this most relevant 

case to as “strong U -approximation” [46,47]  for which  the perturbation theory  (with the 

smallness  parameters Utn , Utd ) is applicable. Since we are interested to deal with  the 

low lying levels it is reasonable to obtain the effective Hamiltonian  acting in the reduced 

subspace of ground Coulomb manifold composed of the wave-function of the d-pairs. As 

usually, the effective Hamiltonian can be deduced with the use of the projection operator. For 

example, in the case under consideration within which  all unperturbed energies are equal to 

U,  the second order term can be expressed as: 




 ΗΗΗ
U

eff

1
,                                                                                                  (1) 

where Η  is the exact Hubbard Hamiltonian which take into account all transfer processes 

(Eq. (2) in Ref. [46]) and the summation is performed over excited states  .  In this way 

one can obtain the following matrix representation of the electronic Hamiltonian of the cell 

projected onto the space of  d-states.  The blocks with S= 0 and S= 1  defined in the basis 

 AC S ,  BD S  are the following: 

     
2 24 4

0 1 2 ,     1 ,n d n
c e Z c e

t t t
S S

U U U

 
        

 
H 1 σ H 1      (2)            

where Zσ is the Pauli matrix,  e1  is the unit 22- matrix, and the nonvanishing terms in  the 

perturbation series (up to the third order terms, which are  proportional to  Utn
2

 and 

Utt dn
2

)  are  retained. It is to be noted  that the transfer parameter dt  does not contribute to 
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the spin triplet states, while in spin singlet states it appears in the third order of perturbation 

theory. The contributions of nt  appears in both spin-triplet (second order contribution) and 

spin-singlet (second-order and third-order contributions) states. The Hamiltonian, Eq.(2),  

 

 

Figure 3. Scheme of the low lying levels of the tetrameric MV cell illustrating 

the role of the  transfer parameter  dt . 

 

describes the low-lying part of the electronic energy pattern of the MV cell that (as follows 

from Eq. (2))  consists of the double degenerate spin-triplet with the energy 24 nt U  and two 

spin-singlets having the energies 0 and   UtUt dn 218 2   as schematically shown in Fig. 

3 for the cases  0dt , 0dt  and 0dt . One can see that the positions of the levels are 

independent of the sign of nt , while the sign of dt  affects the position of the ground level as 

shown in Fig. 3.  

 One can see a significant difference between the spin-triplet and spin-singlet states, 

namely, for S = 1 the off-diagonal matrix elements connecting the states  1AC S   and 

 1BD S   are zero, while for S = 0 such matrix element is nonvanishing and contains both 

second and third order contributions. On the contrary, the electron transfer ( nt ) contributes 

only to the diagonal matrix elements in the  1c S H -block. This second order contribution 

corresponds to the two-step electron transfer process in course of which the electron jumps 

with the excitation U to the neighboring site (first step) and then jumps back to the initial site 

restoring the ground manifold (second step).   It is important to note that  difference between 

the states with S = 1 and  S = 0  is of crucial importance for our consideration, because it 

means that the cells in spin singlet and spin triplet states possess different polarizabilities 

under the action of quadrupole electric field induced by the neighboring cell. In fact it is more 
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easy to polarize the cell in S = 1 state because of the absence of extra-diagonal resonance 

matrix elements promoting electron delocalization. 

2.2. Cell-cell coupling.  Now let us consider the Coulomb interaction of cell 1 with the 

neighboring cell 2 having a definite polarization 2P . The polarization of a cell can be 

characterized by  a scalar quantity P  [31] which can be regarded as a normalized measure of 

the degree to which the electron densities are localized in antipodal positions along the 

diagonals (AC or BD, Fig. 3) of a square planar four-dot cell.  According to this definition the 

value 2P  can be written as 

   
2

A C B D

A B C D

P
   

   

  


  
, (3) 

where i  is the electronic density on the site i.  Since we are dealing with the polarization 

relating to the ground (distant pairs) distributions of the electronic density, one can put 

A C     and 1B D       ( 0 1  ) and, therefore, 2 2 1P    or  21 2P   . 

Providing  0 and 1 the cell 2 is fully polarized along the diagonals, the corresponding 

polarizations take on the values -1 and +1. It was shown [47], that the Hamiltonian of the cell 

1 polarized by the quadrupole Coulombic field created by the cell 2 prepared in a certain 

polarization 2P  can be presented in the following matrix form in the  AC S ,  BD S - 

basis: 

1

2
c c zu H σ . (4) 

In this expression   2AC BDu U U  , where ACU  and  BDU  are the energies of the Coulomb 

repulsion between the cell 1, in which the two extra electrons are localized along the 

diagonals AC  and  BD, respectively,  and the polarized cell 2 possessing some definite 

arbitrary polarization 2P .  As it follows from this definition the value u  depends on 2P  as 

well as on the geometrical parameters of the system. To find this dependence we consider the 

charge distributions corresponding to the Coulomb energies ACU  and  BDU   which are shown 

in Figs. 4a  and 4b. Then one can derive the parameter u  in terms of polarization 2P  and 

intra- and intercell distances b and c  (Fig. 2) as follows: 

     
2

2
2 2 2 22 2

1 1 1 1 1 1

2 2 222 2
u P e

b c b c cb cb c b b c b

 
      
      

.    (5) 
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It is to be noted that the parameter u  is proportional to the polarization 2P . 

 

 
(a) 

 
(b) 

Figure 4.  Charge distributions corresponding to the Coulomb energies ACU  (a)  and  

                BDU  (b). 

 

 The quadrupole Coulombic field of the cell 2 lowers the symmetry of the cell  1 and 

splits the orbitally degenerate spin triplet into two levels with the energies 24 nt U u   and 

mixes the two spin singlets giving rise to the energies 

 

1 2
2 224 16

1 2 1 2
4

n d n dt t t tu

U U U U

    
        

    
.                                                         

One can see that the Coulomb forces stabilize spin-singlet and spin-triplet levels, the last 

stabilization proves to be more strong. It should be noted that at a definite value of u the S=0 

and S=1 levels cross. 

2.3. Vibronic coupling.  An important ingredient of the model of MV cell is the 

vibronic coupling which strongly influences the degree of electron localization by producing 

the so-called self-trapping effect. The model for the vibronic coupling in molecular QCA  

based on MV square planar cells was developed in our recent articles [46,47]. We have 

demonstrated that within the strong U limit the bi-electronic formation of the cell is coupled 

to the only vibrational mode Q in the Piepho,  Krausz and Schatz (PKS) model [48] 

conventionally used when describing the MV compounds.  The “out-of-phase” vibrational 
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mode Q (having gB1 symmetry in the point group D4h)  can be imagined as expansion of the 

first ligand coordination spheres for two antipodal sites (say, A and B) accompanied by 

simultaneous compression of the coordination spheres for other pair of antipodal sites (C and 

D) or vice versa as shown in Fig. 5).  
 

 

Figure 5. Schematic representation of the atomic  displacements in the active 

mode Q of  a square-planar cell.  
 

The matrix of the vibronic Hamiltonian in the basis  AC S ,  BD S is given by [47]: 

vib zQ H σ , (6) 

where  is the dimensionless vibrational coordinate and   is the vibronic coupling 

parameter defined as usually in PKS model for MV compounds. In particular case of a 

tetrameric system this definition is given in Ref.[7] (for the sake of brevity we will not repeat 

it here).  In the case of spin singlets (first formula  in Eq. (2)) the interaction with this 

vibration results in the pseudo Jahn-Teller effect. Finally, one has to take into account also 

the Hamiltonian  

2
2

2
  

2
Q eQ

Q

  
  

 
H 1  (7) 

describing the free harmonic oscillations with the frequency    associated with the Q -mode.  

Then with allowance of all above described interactions the S- block of the matrix of the full 

Hamiltonian includes electronic Hamiltonian of  a cell, Coulomb field of the neighboring 

cell, free vibrations of the cell and vibronic coupling:   

    vibc c c QS S    H H H H H . (8) 

 This Hamiltonian represents a matrix in the electronic space  AC S ,  BD S , were the 

functions   AC S ,  BD S  are the bi-electronic Slater determinants composed of the 

Q
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orbitals localized on the sites A,C and  B,D correspondingly and adapted to S=1 and S=0 spin 

symmetry.  

3. Vibronic energy pattern of a polarized mixed valence  cell  

Numerical diagonalization of the Hamiltonian gives the spin-vibronic energy pattern of 

the cell. The two electronic states with S = 1 are not mixed by the Q -mode and therefore one 

can apply the shift transformation to the coordinate Q  and to pass from the basis 

   1AC nS Q  ,    1BD nS Q   to the basis  

 1AC nS Q


 


 
  

 
,         1BD nS Q


 



 
  

 
 . 

In this basis the equilibrium positions of the harmonic oscillators are shifted to the adiabatic 

potential minima. The matrix  tot 1S H  proves to be diagonal and one immediately obtains 

for the spin-vibronic levels with S=1 the energies  24 1 2nt U u n    .  

In case of spin-singlets no analytical solution is available and one has to solve the 

dynamic pseudo-Jahn-Teller vibronic problem. In the numerical diagonalization of the matrix 

 tot 0S H  we have taken 200 vibrational levels (nmax=199) that is quite enough to 

reproduce the lowest spin-vibronic energy levels with a  good accuracy. 

The energy levels  S and corresponding vibronic wave-functions  S  (=1, 2…) 

obtained in this way give information about the cell.  Particularly, the knowledge of the 

wave-functions of the cell makes it possible to evaluate the distribution of the electronic 

density within the cell and its polarization. By considering the cell in the Coulombic field 

created by the neighboring cell one can find the polarization P1 as function of polarization P2 

of the neighboring cell. This is the so the called cell-cell response function that is one of the 

key characteristic determining the functionality of molecular QCA. The cell-cell response 

function in molecular QCA based on the vibronic model of MV cells was discussed in Ref. 

[47]. Here we will focus on the quantum entanglement in the cell 1 and its dependence on the 

polarization of the cell 2.  

The typical patterns of the spin-vibronic energy levels of the cell 1 calculated as 

functions of the polarization P2 of the neighboring cell are shown in Fig. 6. We use for the 

vibronic coupling parameter and vibrational quanta the values 
1200 cm   and 

1300 cm  , which are in the range of typical values of these parameters. The intra-cell 

distance is taken to be 
o

3.5 Ab   (within the range of typical intra-cluster metal-metal  
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distances  in molecular magnetic clusters [10, 11] ), while the used inter-cell distance 
o

6 Ac   

it taken to assure an efficient influence of the neighboring cell 2 on the properties of the cell 

1. The last distance is close to that used in Ref.  [32]  as a distance between the driver and 

output cell in molecular QCA.  To estimate the order of magnitude of the parameter Utn
24  

one can  assume that  a typical value of  U  is 10,000 cm
-1   

while for MV metal clusters  the 

transfer parameter can be approximately 1000 cm
-1 

and therefore .1004 12  cmUtn   This 

value preserves  the conditions under which the perturbation scheme (strong U – limit) works 

properly.  

Depending on the parameter dt  one can distinguish two types of the energy patterns 

which are shown in Figs. 6a and 6b. Thus, when 0.075dt U   (Fig. 6a) and providing P2=0 

the ground level is spin-singlet. Polarization of cell 2 ( 2 0P  ) induces the polarization of the 

cell 1 and, thus, gives rise to the stabilization of both lowest spin singlet and spin triplet  
 

 

 
        (a) 

 

 
          (b) 

Figure 6. Low-lying vibronic energy levels of cell 1 calculated as a function of the 

polarization P2 of cell 2 with ,1004 12  cmUtn ,300 1 cm ,200 1 cm  

o

3.5 Ab  , 
o

6 Ac    and  0.075dt U   (a) or 0dt U   (b). Coloring:  S = 1 - red 

lines, S = 0 - blue lines; the energy of the ground state is chosen as the reference 

level. 

levels.  One can see that the triplet is stabilized stronger and so the increase of P2 leads to the 

decrease of the energy gap    1 11 0J S S      between the lowest vibronic spin singlet 

and spin triplet.  Finally, at some critical value of P2 these levels cross and the spin triplet 
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becomes the ground state which means that the energy gap J  at this point becomes negative. 

On the contrary, for the case of 0dt U   shown in Fig. 3b (the diagonal electron transfer is 

vanishing, for instance, due to the absence of the bridge mediating this transfer) the cell-cell 

interaction does not lead to the crossing of the levels with S = 0 and S = 1 even at maximally 

polarized cell 2 (|P2|=1) although the energy gap in this case is strongly reduced. 
 

3.  Quantum entanglement in a polarized cell 

A remarkable feature of the energy patterns in Fig. 6 is that in both cases for large 

enough values of polarization |P2| (roughly, larger than 0.1) the low-lying part of the energy 

spectra comprises two isolated levels (spin singlet and spin triplet), while the rest of the spin-

vibronic levels are significantly higher in energy. This low-lying part of the energy pattern 

can be thus regarded as a result of an effective exchange coupling of the electronic spins in 

the cell.  This coupling can be described by the effective Heisenberg-Dirac-Van Vleck 

exchange Hamiltonian of the form 

1 22eff J H s s  , (10) 

in which 1 2 1 2s s   and J  is just the above described energy gap between the lowest spin-

singlet and spin-triplet levels. The dependences of the parameter J  on the polarization P2 

calculated for the  two above considered cases are shown in Fig. 7.  It  is  seen from Fig. 3a 

 
 

 

         (a) 

 

 

           (b) 

Figure 7. Effective exchange parameter for cell 1 calculated as function of polarization P2 

with the same sets of parameters as in Fig. 6a and 6b. 

that for 0.075dt U   the exchange coupling is antiferromagnetic (J < 0) in the weak 

polarization region, while for |P2| above some critical value  ( 0.21) this interaction becomes 
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ferromagnetic. In case 0dt U   (Fig. 7b) variation of the polarization P2 cannot change the 

sign of the exchange parameter which remains always negative.  At the same time 

polarization tends to suppress the antiferromagnetic coupling between the spins and therefore 

in both cases the inter-cell interaction produces ferromagnetic effect. 

The above introduced approximate two-level picture based on the effective exchange 

Hamiltonian, Eq. (10), allows us to significantly simplify the evaluation of quantum 

entanglement. For the two-qubit systems (bi-spin system in the case under consideration)  the 

entanglement of formation is related to the concurrence C as follows [1]: 

 21
1 1

2
E h C

 
   

 
. (11) 

 

In Eq. (11) the function h(x) is the von Neumann entropy for a binary probability distribution: 

       2 21 1h x x log x x log x     . (12) 

 

The concurrence depends on the density matrix of the system. Under the condition of thermal 

equilibrium the density matrix for a Heisenberg dimer with spins 1/2 (Bleaney–Bowers 

dimer) that is described by the exchange Hamiltonian, Eq. (10),  has the following form: 

 

 

0 0 0

0 01
exp

0 0

0 0 0

eff

B

p
T

pZ k T

 
 

      
  
 
 

H
ρ

v

w

w

v

 , (13) 

 

where the basis , , , and   is used. Here the value 

3
3exp exp

2 2B B

J J
Z

k T k T

   
     

   
 (14) 

 

is the partition function.   In Eq. (14)  the following notations are used: 
 

1
exp ,

2

1
exp cosh ,

2

1
exp sinh .

2

B

B B

B B

J

Z k T

J J
p

Z k T k T

J J

Z k T k T

 
  

 

   
    

   

   
    

   

v

w

 (15) 
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One can prove [20] that in this particular case the concurrence can be calculated with the aid 

of the expression 
 

 2max , 0 ,C  w v    (16) 

 

that is the particular case of well-known Wootters formula for bipartite (two-qubit) 

entanglement [49,50].  It directly follows from Eqs. (15) and (16) that in the case of 

ferromagnetic exchange one finds that  C = 0 at all temperatures and hence, according to Eq. 

(11), no entanglement can exist in this case.  Providing antiferromagnetic exchange one 

obtains from Eqs. (15) and (16) the following expression for the concurrence [20]: 

 

 

2
1 3exp

,   ,
2

1 3exp

         0,      ,

B

E

B

E

J

k T
C T T T

J

k T

C T T T

 
  

  
 

  
 

 

 (17) 

From. Eq. (17) one can see that the value  

 

2
.

ln 3
E

B

J
T

k
  (18) 

is the critical temperature above which the entanglement disappears.  

Figure 5 presents the temperature dependence of quantum entanglement evaluated at 

different values of P2 with the aid of Eqs. (11), (17) and with the use of the  calculated 

dependences J (P2) (Figure 7). Providing 0.075dt U   (Figure 5a) and weak polarization 

 

 

(a) 

 

 

(b) 

Figure 8. Temperature dependences of quantum entanglement in cell 1 calculated at different 

polarizations P2 with the same sets of parameters as in Fig. 6 a and 6b. 
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 |P2|=0.1  the system  is fully entangled (E = 1) in the low-temperature limit when only the 

spin-singlet state is thermally populated. Then, with the increase of the temperature the value 

of  E decreases and disappears at approximately 13.5 KET  . Providing stronger polarization 

(case of |P2|=0.15 in Fig. 8a) the temperature at which entanglement disappears is lower 

 K6ET . Finally,  providing strong enough polarization (case of |P2|=0.3 in Fig. 8a) no 

entanglement exists even at zero temperature. This is evidently because of the fact that at 

such polarization the effective exchange coupling is ferromagnetic and the ground state is 

spin-triplet level which corresponds to  unentangled states.  In contrast, providing 

0.075dt U  (Fig. 8b) the system proves to be entangled in the low-temperature limit even 

for maximal polarization |P2|=1, but the critical temperature ET  in this case is strongly 

reduced (from around 44 K for |P2|=0.1 to around 9K for |P2|=1). In general, one can see that 

the increase of polarization of the neighboring cell tends to destroy the quantum 

entanglement. 

 
 

 

Figure 9. Critical temperature of entanglement in the cell 1 calculated at two different values 

of dt U  shown in the figure. The remaining parameters are the same as those in 

Figure 6. 

 

An additional illustration of this statement is provided by Fig. 9 in which the critical 

temperature ET  is shown as function of |P2|  which varies in the range 11.0 2  P . For both 

considered values of parameters dt U   and for 0dt U   the temperature ET
 
decreases with 

the increase of  |P2|,  but for 0.075dt U   it vanishes at the critical value of |P2| at which the 
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ground state changes the spin from S = 0 to S = 1, while providing 0dt U   the temperature 

ET  slowly goes down with the increase of |P2| and reaches a finite value 9K  at |P2|=1. 

4. Influence of the electron transfer and vibronic coupling on quantum 

entanglement  

 

As far as the model is based on the parametric Hamiltonian it seems to be reasonable 

to reveal the effects of different parameters involved in the model on the main characteristics 

of the entanglement. First, let us examine the influence of the transfer parameter  Utn
2

on the 

effective exchange effJ . For small values of Utn

24 the electron deloclization in the spin-

singlet states is not too pronounced and so the low-lying levels belonging to S = 1 and S = 0 

manifolds are stabilized almost equally under the action of the input cell. As a result the 

singlet-triplet gap proves to be almost unaffected by P2 (Fig. 10a). For this reason the critical 

temperature and the entanglement  are only weakly dependent on P2 and, as a consequence,  

   

 

(a) 

 

 

(b) 

Figure 10. Effect of the parameter Utn

24  on the effective exchange coupling  2PJeff  (a) 

and on the dependences  2PTE  (b): 0Utd ,  0 , the values of Utn

24  are 

indicated in the plots. The distances b and c are the same as  in Figure 6.   

 

the external field control of the entanglement in this case is hindered. This is clearly seen 

from Fig. 10b related to the case of vanishing diagonal transfer (the inclusion of the non-zero 

diagonal transfer does not change this general conclusion). Additionally, for small Utn

24  - 

values the singlet-triplet gap is also small and hence the temperature TE  proves to be very 

low. 
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Effect of the vibronic coupling is illustrated by Figures 11 and 12.  When the vibronic 

coupling is strong enough it significantly suppresses the electron delocalization in the spin-  

 

 

(a) 

 

 

(b) 

Figure  11. Effect of the parameter    on the dependences  2PJeff  (a) and  2PTE  (b) 

calculated with  0Utd . The values of   are indicated in the plots, the remaining 

parameters are the same as those in Fig. 6.   

 

singlet states making them more similar to the spin-triplet states which do not exhibit any 

electron delocalization in the strong-U  approximation.  Due to that in the case of strong 

vibronic coupling the action of the input cell almost equally stabilizes the low lying levels of 

S=1 and S=0 sets, that means that the singlet-triplet gap is almost independent on polarization  
 

 

(a) 

 

 

(b) 

Figure 12. Effect of the parameter    on the dependences  2PJeff  (a) and  2PTE  (b) 

calculated with 0750.Utd  . The values of   are indicated in the plots, the 

remaining parameters are the same as those in Fig. 6.   
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P2.  For this reason, the critical temperature and the entanglement are weakly dependent on 

P2 in the limit of strong vibronic coupling. This observation is common for the both 

considered cases 0dt  and 0dt  ( 0Utd and 0750.Utd  in Figures 11 and 12), 

although the td transfer leads to remarkable qualitative effects which are visible when 

comparing Figures  12 and 13. Thus providing 0750.Utd   and strong vibronic coupling 

the spin-triplet is the ground state in the isolated cell (i.e. when  P2=0). The action of the 

input cell (P20) results in the additional stabilization of  the S=1 level  and, thus, the 

entanglement does not occur at any values of  P2.   Providing moderate vibronic coupling the 

spin-singlet is the low lying level, and just in this case the input cell is able to change the 

ground spin level under the action of the input cell. The spin-crossover occurs at some critical 

value of P2, which increases with the decrease of the vibronic coupling, so that when the 

spin-triplet becomes the ground state the entanglement disappears.  

5. Summary 

We have considered a tetrameric MV units accommodating electronic pair which play role 

of cells in molecular QCA. The theoretical  model includes the  key interactions which act in 

an isolated MV cell (output cell) , namely, the electrostatic interaction between the electrons, 

electron transfer and vibronic interaction. It is assumed that the input cell produces the 

electrostatic field which acts on the output cell.  As in earlier papers it is supposed that the 

Coulomb interaction between instantly localized electrons within the cell is strong enough to 

localize the electronic pair in antipodal positions. Under this condition, as well as due to the 

vibronic localization of the electronic pair, the cell can encode the binary information which 

is controlled by the neighboring cells.  We show that under certain conditions the low lying 

spin-vibronic  levels of the cell affected by the field of the neighboring cell can be regarded 

as originating from an effective Heisenberg-type spin-spin  interaction with the effective 

exchange parameter being dependent on the polarization of the neighboring cell.  This 

physical situation is favorable for the observation of the controllable quantum entanglement 

of the two electrons in the output cell whose characteristics are closely related to the sign and 

strength of such spin-spin interaction [20].   

The effective spin-spin coupling is shown to depend on the internal parameters of the cell 

(transfer parameters, vibronic coupling) as well as on the degree of the induced polarization. 

Within a simplified two-level picture of the low lying vibronic levels we evaluate the 

quantum entanglement system represented by the two electrons in the cell and show how the 

entanglement and  concurrence can be controlled in a voluntary manner via the polarization 
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of the neighboring  cell and temperature. The influence of the electron transfer (in particular, 

transfer pathways) and vibronic coupling  on the quantum entanglement was examined in 

detail. A possibility to control the entanglement by the applied electric field has been 

proposed [51].  Since the Coulomb interaction of the neighboring cells in QCA schemes is, in 

general, strong, one can expect that the influence of the field can be much enhanced. Overall, 

a possible existence and, especially, control of the entanglement in the molecular MV cells of 

QCA opens new perspectives in molecular spintronics and information technologies. Finally, 

it is to be noted that the present study is focused on the molecular problem, so that the 

remaining question related to the properties of the systems under consideration in solid state 

or/and on the surface remains open. We hope to consider in future the problem of relaxation 

(peculiar to solids) and behavior of the cells on the surface. 

Acknowledgment 

We thank Prof. E. B. Fel’dman for helpful discussion. A.P. thanks the Supreme Council for 

Science and Technological Development of the Republic of Moldova (CSSDT Project No. 

15.817.02.06F) for financial support. 

References  

1. M.A. Nielsen, I.L. Chuang,  Quantum Computation and Quantum Information,  

Cambridge Univ. Press, Cambridge,  2000. 

2. R. Vathsan , Introduction to Quantum Physics and Information Processing, CRC Press, 

Taylor & Francis Group, 2016. 

3. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation 

and Quantum Computation, Eds.:  D. Bouwmeester,  A. Ekert,  A. Zeilinger, Springer, 

Berlin, 2000.   

4. A.A. Kokin, Solid State Quantum Computers on Nuclear Spins, Computer Science 

Institute, Russian Academy of Sciences, Moscow, 2004  (in Russian). 

6. K.A. Valiev, Quantum computers and quantum computations, Usp. Fiz. Nauk , 2005, 

175 (1), 3-39   [Phys.-Usp.,  2005, 48 (1), 1-36].  

7. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, New high-intensity source of 

polarization-entangled photon pairs, Phys. Rev. Lett, 1995,  75,  4337–4341. 

8. Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briege,  J.-W. Pan, 
 
Experimental 

demonstration of five-photon entanglement and open-destination 

teleportation,  Nature,  2004, 430, 54-58. 

Page 20 of 24Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

http://www.nature.com/nature/journal/v430/n6995/full/nature02643.html
http://www.nature.com/nature/journal/v430/n6995/full/nature02643.html
http://www.nature.com/nature/journal/v430/n6995/full/nature02643.html


 

21 
 

9. M . Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw,  A. Zeilinger, Wave–

particle duality of C60 molecules,  Nature, 1999, 401, 680–682.  

10. A. Bencini, D. Gatteschi,  EPR of Exchange Coupled Systems, Dover, Mineola, NY, 

2012. 

11. D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, 

2006. 

12. C. Benelli, D. Gatteschi,  Introduction to Molecular Magnetism, From Transition Metals 

to Lantanides, Willey-VCH, Chennai, Singapore, 2015. 

13. Molecular Cluster Magnets, Ed.:  R.E.P Winpenny, World Scientific Series in 

Nanoscience, Vol. 3, 2011. 

14. M.N. Leuenberger, D. Loss, Quantum computing in molecular magnets, Nature , 2001, 

410, 789-793. 

15. F. Meier, J. Levy, D. Loss, Quantum computing with antiferromagnetic spin clusters, 

Phys. Rev. B, 68, 134417-134432, 2003. 

16. F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G.Amoretti, S. Piligkos,  

G. Timco, R. E. P. Winpenny, Molecular Engineering of Antiferromagnetic Rings for 

Quantum Computation, Phys. Rev. Lett., 2005, 94, 207208-4. 

17. M. Affronte, I. Casson, M. Evangelisti, A. Candini, S. Carretta, C. A. Muryn, S. J. Teat, J. 

Timco, W. Wersndorfer, and R. E. P. Winpenny, Linking rings through diamines and 

clusters: Exploring synthetic methods for making magnetic quantum gates, Angew. 

Chem., Int. Ed., 2005, 44, 6496-6500.   

18. W. Wersndorfer, Molecular Magnets: A long-lasting phase , Nat. Mater. 2007, 6, 174-

176, 

19.  S. Carretta, P. Santini, G. Amoretti, F. Troiani, M. Affronte, Spin triangles as optimal 

units for molecule-based quantum gates Phys. Rev. B, 2007, 76, 024408-5.  

20. S. M. Aldoshin,  E.B. Feldman, M. A. Yurishchev,  Quantum Entanglement in Nitrosyl 

Iron Complexes,    J. Exp. Theor. Physics, 2008, 107, 804–811. 

21. G.A. Timco, S. Carretta, F. Troiani, F. Tuna, R. J. Pritchard, C.A. Muryn, E. J. L. 

McInnes, A. Ghirri, A. Candini, P. Santini, G. Amoretti, M. Affronte, R.E.P. Winpenny,  

Engineering the coupling between molecular spin qubits by coordination chemistry,  

 Nature Nanotechnology , 2009, 4, 173-178.  

22. A. Candini, G. Lorusso, F. Troiani, A. Ghirri, S. Carretta,  P. Santini,  G. Amoretti,  C.  

Muryn,  F. Tuna, G. Timco, E.J.L. McInnes, R.E.P. Winpenny, W. Wernsdorfer,  

Page 21 of 24 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

http://onlinelibrary.wiley.com/doi/10.1002/anie.200502505/full
http://onlinelibrary.wiley.com/doi/10.1002/anie.200502505/full


 

22 
 

M. Affronte, Entanglement in supramolecular spin systems of two weakly  coupled 

antiferromagnetic rings (Purple-Cr7Ni),  Phys. Rev. Lett., 2010, 104, 037203-4.  

23. F. Luis, A. Repollés, M. J. Martínez-Pérez, D. Aguilà,  O. Roubeau,  D. Zueco,   

      P. J. Alonso, M. Evangelisti,  A. Camόn,  J. Sesé,  L. A. Barrios,  G. Aromí,  Molecular 

prototypes for spin-based CNOT and SWAP quantum gates,  Phys. Rev. Lett., 2011, 107, 

117203-4.  
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