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To Grow is Not Enough: The Impact of Noise on Cell Environmental Response and Fitness 

 

Identifying mechanisms that govern cell cycle regulation is one of the fundamental questions in biology. 

In this paper, using a combination of modeling and microfluidic experiments in the test system of E. coli, 

we find that increased noise the cell cycle time, while negatively impacting the overall cell growth rate, 

correlates to improved adaptability of the cell to changing environments. This suggest that stochastic 

noise in the cell cycle has an evolutionary role: a more variable cell cycle allows the cell to respond more 

efficiently to environmental changes. 
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To Grow is Not Enough: Impact of Noise on Cell Environmental Response and Fitness

Nash Rochman1, Fangwei Si2 and Sean X. Sun2,3
1Department of Chemical and Biomolecular Engineering,

2Department of Mechanical Engineering and Biomedical Engineering, Johns Hopkins University

Quantitative single cell measurements have shown that cell cycle duration (the time between cell
divisions) for diverse cell types is a noisy variable. The underlying distribution is mean scalable with
a universal shape for many cell types in a variety of environments. Here we explore through both
experiment and theory the response of these distributions to large environmental perturbations. In
particular, we discuss how the stochasticity of the ensemble may be related to the response. Our
findings show that slow growing, noisy populations are more adaptive than those which are fast
growing. We suggest that even non-cooperative cells in exponential growth phase may not optimize
fitness through growth rate alone, but also optimize adaptability to changing conditions. In this
work, we wish to emphasize that in a manner similar to genetic evolution, noise in biochemical
processes may be important to allow for cells to adapt to rapid to environmental changes.
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FIG. 1. (A) Cartoon of the Mother Machine (B) An image displaying E. coli cells in the microchannels. The scale bar is 5
microns. (C) E. coli cell cycle duration distributions (CCDDs) measured at constant nutrient conditions. See the Supplementary
Materials (SM) section III for more details. (D) Measured variance of the cell cycle duration. (E) Coefficient of Variation
(CV) of the cell cycle duration: CV is roughly constant across all conditions. Please see Fig. S1 panel B for a direct overlay of
the distributions displayed in (C) and scaled by the respective mean values.

I. INTRODUCTION

The concept of biological fitness is a starting point of discussion in many questions in evolutionary biology [1]. At
the most basic level, fitness is still often defined to be the“birth-rate” or the rate at which new individuals are added
to the population. Cooperative and mutlicellular systems may require a more complicated definition; but often even
these phenomena are shown to derive from the maximization of total sustainable single-cell number [2–5]. In the case
of non-cooperative, single-cell species (e.g. bacteria at low cell density), fitness as birth-rate is accepted. For such
a population during exponential growth, the number of cells in an ensemble can be well described as a function of
time if we know the initial number N0, and the cell cycle duration τ , yielding N(t) = N0 exp(ln(2)t/τ). In this way
the constant r = ln(2)/τ , often labeled the“growth-rate”, is used to measure fitness - the larger r and the faster an
organism grows, the fitter it is.
However, the growth rate for a single cell is often hard to define. Experiments conducted in constant environments

maintained in microfluidic devices (so called “Mother Machines”) show that the cell cycle duration [6] is stochastic and
exhibits large variations for both prokaryotes and eukaryotes [7]. Thus one should consider a statistical distribution
of cell cycle durations P (τ), where τ is the time between 2 successive cell divisions (septum formations). Owing to
the fact that synthesis of new proteins and replication of DNA require finite time, there is perhaps a physical lower
limit for the cell cycle duration, τ∗ (dependent on the environment), below which no intact cells can divide. From an
evolutionary perspective, we quickly see that to optimize fast growth, P (τ) should be a narrow distribution centered
as close to τ∗ as possible; however, the measured distribution for E. coli stands in stark opposition to this idea [6, 7]
(Fig. 1), exhibiting a significant variance in τ . Quite strikingly, P (τ) is mean scaleable [8, 9]: the coefficient of

variation CV =
√

〈δτ2〉/〈τ〉 where δτ = τ − 〈τ〉 and

〈τ〉 =
∫

dττP (τ) (1)

is generally a constant across a wide variety of conditions, with shape conservation spanning cell types from E. coli to
human dermal fibroblast cells [7]. In Fig. 1 we display the distributions and corresponding statistics for the ensembles
investigated in this work and verify that they reflect the features discussed here.

These observations, in conjunction with established cell cycle models [10, 11] and more recent experimental results
for protein synthesis and volume regulation, have given rise to the present discussion about whether a cell is best
described as regulating its time until division, a“timer” mechanism; volume at division, a“sizer” mechanism; or mass
added over a single generation, a “constant adder” mechanism [12–14].
Nevertheless, stochasticity in the cell cycle dynamics and heterogeneity in cell growth rate seems universal, which

begs the question “Why is this important?” Specifically, we wish to probe the effects of programmed non-genetic
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heterogeneity apparent in this trend: that slow growing cultures exhibit greater variability in their cell cycle regulation.
Perhaps, the costs/benefits of this noise may be better understood in a non-constant environment: we show below
that slower growing cultures under stressed conditions are able to return to a fast growth state when introduced
to rich media at a greater rate than faster growing, less-stressed cultures. Perhaps fitness, even for exponentially
growing cultures, should take adaptability to environmental variability as well. The question we will focus on for
this investigation is, “does increasing the noise in the mechanisms regulating the cell cycle correlate with decreased
cell fitness?” We would like to note here that we will talk about adaptation to environmental shock throughout the
paper and before we continue want to state we will use this definition for “adaptable”: a culture is considered to be
adaptable if it is able to maintain the highest growth rate possible for as long as possible.

II. METHODS

A. Experimental design

We grew E. coli in the Mother Machine and collected single cell cycle duration data. We grew cells in five different
types of media, performed step changes in the growth medium, and measured how cells responded to these sudden
environmental changes. (See SM section III.) Fig. 3 shows how the CCDDs changed over time. For each experiment,
the distribution is initially constant and stable before the sudden environmental change. After the change, the
distribution shifted over time, and eventually reached the new stable distribution for the new environment. We find
that the cell cycle duration trajectories for individual cells follow a similar trend but include significant noise (Fig. 3
insets).
We observed the response of CCDDs ρ(τ, n) in a series of step change experiments where for time t < 0 cells were

exposed to a constant environment, and at t = 0 the environment was altered in such a way that the new mean cell
cycle duration was measurably different. (See SM section III.) The results are for E. coli in a Mother Machine, but
we also conducted a series of bulk temperature shift experiments to compare with the microfluidic results (See SM
Section V). Fig. 3 shows the results of the eight environmental shift experiments conducted. The top row contains
relaxation experiments where the cells were grown in suboptimal conditions including one nutrient limited and three
hypertonic solutions (where the osmolarity was increased with the addition of Sorbitol) before shifting the media to
the optimal environment (in diluted LB medium) for fast growth. The bottom row are the reverse, stress experiments.

To compare the efficiency of response across all experiments, we proposed to examine the quantity, ∆,

∆ =

〈

1

λ

∫ λ

0

τ(t)dt

〉

−max(µi, µf ) (2)

where the environment step change occurred at t = 0, λ = 500 min. is the minimum period for all eight experiments
to complete the response to their new environments, and the average 〈〉 is taken over all cells. (Note that the trends
observed are maintained over a wide range of λ. See SM section IV.) µi,f is the steady state average cell cycle duration
before and after the step change, respectively. When ∆ is large and positive, the cells respond so inefficiently that
during response they grow even slower than in the stressed condition. When ∆ is large and negative, the cells are
able to remain or enter in the fast growth state for the majority of the response period.

B. Model derivation

Here we present a short derivation of the generational transition probability, M , with minimal context. The
biological assumptions used to motivate the form of M are contained in Results. For an integrated treatment, please
see SM section II. For a collection of mother cells, we consider a sequence of cell cycle times (τ1, τ2, . . . ) and the
corresponding cell cycle duration distributions indexed by generation, ρ(τ, n). In general, ρ(τ, n) can change from a
generation to the next, and the generational dynamics can be described by a Markovian stochastic model for ρ(τ, n),
which describes the change of this distribution in terms of a transition probability, M ,

ρ(τ ′, n+ 1) =

∫

dτM(τ → τ ′;φ)ρ(τ, n) (3)

where M depends on the current environment described by φ. M describes the probability of a daughter cell to divide
after duration τ ′ given that the mother cell divided after duration τ . Note for a constant environment, the Markovian
dynamics at long times will arrive a steady distribution, which is what we have called P (τ) in the Introduction. Eq.
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13 is simply a statement of probability conservation; and by developing a model for M , we can predict how cells can
respond to environmental changes over time.
We take into account two sources of regulation for cell cycle duration - optimization of protein synthesis rates to

the current environment (instantaneous information), and the maintainence of proteome similarity to the mother cell
(inherited information). Our form of the transition probability consists of one gaussian term to handle inheritance
and another to handle instantaneous optimization with respect to the current environment. This form was assumed to
admit an analytic solution, and also is consistent with experimental measurements of this transition probability from
our data. To include inheritance, we consider the cycle duration τ ′ (of the daughter cell) to be normally distributed
with mean τ (the cycle duration of the mother cell) and some unknown variance σ2

2 :

M2(τ → τ ′) = A exp

[

− 1

2σ2
2

(τ ′ − τ)2
]

(4)

This term suggests that the daughter cell cycle cannot be too different from the mother cell since a part of the
proteome is inherited. To include the optimization of DNA/protein synthesis with respect to the current environment,
the transition probability should be of the form

M1(τ
′) ≡ 1√

2πσ1

exp

[

− 1

2σ2
1

(τ ′ − µ(φ))
2
]

(5)

where µ(φ) is the average cell cycle duration of a cell in environment φ at steady state. The total transition probability
from τ of the mother cell to τ ′ of the daughter cell should balance the inherited information with the process of
protein/DNA synthesis. Therefore we expect

M(τ → τ ′) ∼ M1(τ
′)M2(τ → τ ′) (6)

There is a problem with this construction, however, because taking a look at the product of our two transition
probabilities (where the normalization is absorbed into the constant A):

M(τ → τ ′) = A exp

[

− 1

2σ2
1

(τ − µ)
2

]

exp

[

− 1

2σ2
2

(τ ′ − τ)2
]

(7)

we can see that the most probable state for τ ′ is always between τ and µ regardless of the value of σ1 or σ2. In
general, there may be a negative correlation between adjacent generations at steady state and in order to construct
the most general form for the transition probability that can reproduce these dynamics, we will also include some
current state (τ) dependence in the term representing instantaneous information:

M1(τ → τ ′) ≈ A exp

[

1

2σ2
1

(τ ′ + ατ − (1 + α)µ)
2
]

(8)

The biological motivations behind this is discussed further in the Results section and the SM. Putting together both
terms (instantaneous and inherited information), we arrive at our desired transition probability:

M(τ → τ ′) ∝ exp

[

− (τ ′ + ατ − (1 + α)µ(φ))2

2σ1(φ)2

]

× exp

[

− (τ ′ − τ)2

2σ2(φ)2

]

(9)

where σ1, σ2 are positive constants describing the noise, and µ is the mean cell cycle duration for a given condition φ.
σ1, σ2 and µ all depend on the current environmental variable φ. α is a constant between 0 and 1, representing the
fraction of the cell cycle after DNA replication has terminated and before septum formation. See SM section II for
more details. The first term represents adaptability - increasing its weight (decreasing σ1) is equivalent to boosting
the amount of information a cell may obtain about its environment. Conversely, the second term represents stability
and increasing its weight (decreasing σ2) is equivalent to increasing the similarity between mother and daughter cells.
When the environment is constant, dynamics generated by M must produce the steady state CCDD, P (τ). Therefore,
(σ1, σ2, µ) are determined by the environment and their corresponding steady state distributions. Indeed, for constant
environmental conditions, the model predicts that the correlation of cell cycle duration is,

C(n) = 〈δτ(0)δτ(n)〉/〈δτ2(0)〉 =
[

1/σ2
2 − α/σ2

1

1/σ2
2 + 1/σ2

1

]n

(10)

Since (σ1, σ2) depend on environmental conditions, this result is a way to use steady state cell cycle correlations to
obtain M . In addition, it is possible to explicitly obtain transition probabilities from the experimental data. Figure 4
shows an overlay of our model M and the data collected for the initial and final distributions of three representative
experiments. For a more complete comparision see Fig. S1. (SM section II B), and Figs. S6, S7 (SM section IV C).
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III. RESULTS

A. Growth rate is inversely correlated with CCDD variance

We first sought to determine how the variance of the cell cycle duration distribution (CCDD) correlates with
the mean ensemble growth rate. The duration distribution is best described as a shifted gamma distribution:

1
Γ(K)θK (τ − τ∗)

K−1
e−

τ

θ , where θ and K are parameters. The mean growth rate r of the population is obtained

by solving [7]

τ∗r +K ln (1 + r/θ) = ln 2 (11)

P (τ) is bounded on the left due to the finite time required to construct a new cell as discussed above. Given this
minimum time τ∗, one may calculate the maximum growth rate for a given variance 〈δτ2〉 by changing parameters
(K, θ). In Fig. 2, we set τ∗ to be length of the shortest observed cell cycle and numerically calculated the maximum
growth rate for variances ranging over experimentally observed values. Over this range, the maximum growth rate
diminished by a factor of three as we increased 〈δτ2〉. Clearly, for this case of fixed τ∗, increased noise in the regulation
of the cell cycle correlates with a lower growth rate. It is also important to note that cell division dynamics in E.

coli appears to be ergodic: each individual mother cell explores the entire distribution and if data from a single cell is
collected over a long period of time, the resultant distribution appears to match that of a collection of many cells at
a single time, shown in Fig. 2. This suggests that there are no “persistor cells” that grow very slowly at all times to
benefit the collective culture when subjected to harsh environments. More generally, it can be shown that given any
CCDD with finite width, there exists a narrower one which attains the same growth-rate or greater (SM section I).
We note that the existence of “persistor cells” has been confirmed [15–18] in specialized cases and that these cells play
an important role in culture survivability. From our analysis of division phenotypes in the mother machine, however,
they do not contribute significantly to the measured CCDD.
Thus, if an environmentally dependent τ∗ is assumed, the population growth-rate is not improved by increasing the

noise in the cell cycle duration distribution and from the usual definition of fitness, this would suggest cells should
narrow this distribution to maximize the mean growth rate. However, there is an alternative hypothesis recently
presented [19, 20]. Suppose that the minimum time for a single cell cycle is not governed by some lower bound τ∗,
but instead that the mean cell cycle time, 〈τ〉 is evironmentally limited. In the case where the cell cycle distribution
is not mean scaled, and the CV varies (it has been shown [19, 20] that in some environments the CV is more variable
than in the conditions we tested); the growth rate is positively correlated with the CV. In fact one may explictly
express, using the von Foerster equation when ρ(τ) is gamma distributed and unbiased (i.e. M(τ → τ ′) = ρ(τ ′)),

the growthrate as a function of the mean and CV: r = 1
〈τ〉CV 2 (2

CV 2 − 1). It is clear from this formulation that the

growthrate is positively correlated with the CV. This phenomenon has been investigated in both bacterial systems
without the consideration of epigenetic inheritance [19] and in yeast including epigenetic inheritance [20] which seems
to magnify the effect. We focus on the case where the CV is roughly constant and without the consideration of
epigenetic inheritence; but for cases where the CCDD are poorly mean scaled, epigenetics make a big impact, or the
mean cycle duration is limited while τ∗ is effectively zero, we want to make it clear to the reader that the results of
this paper are incomplete and wish to direct them to the work referenced above [19, 20].

Alternatively this noise may be intrinsic to underlying molecular mechanisms; and stochasticity is prevalent in gene
expression [21, 22], polymerase activity [23], and chemotaxis [24, 25]. Cells might require higher energy consumption
(sacrificing energy efficiency which carries its own evolutionary importance [26]), or an increase of τ∗ (increasing mean
duration) to minimize noise. Here we probe the potential costs for the observed programmed non-genetic heterogeneity
assuming an environmentally dependent τ∗.

B. Cell response rate is inversely correlated to mean growth rate and positively correlated to noise

We observed the response of CCDDs ρ(τ, n) in a series of step change experiments where for time t < 0 cells were
exposed to a constant environment, and at t = 0 the environment was altered in such a way that the new mean cell
cycle duration was measurably different. (See SM section III). The results are for E. coli in a Mother Machine, but we
also conducted a series of bulk temperature shift experiments to compare with the microfluidic results (See SM Section
V). Fig. 3 shows the results of the eight environmental shift experiments conducted. The top row contains relaxation
experiments where the cells were grown in suboptimal conditions including one nutrient limited and three hypertonic
solutions (where the osmolarity was increased with the addition of Sorbitol) before shifting the media to the optimal
environment (in diluted LB medium) for fast growth. The bottom row are the reverse, stress experiments. The model
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FIG. 2. (A) The maximum ensemble growth rate, r, where r is solved according to τ∗r+K ln (1 + r/θ) = ln 2, when τ∗ = 12min
(the shortest division recorded) and K and θ are allowed to vary, as a function of variance (experimentally observed values
are circles). (B) Single cell cycle duration trajectories (from 3 separate cells in the mother machine). The dotted line is the
average duration. (C) The CCDD histogramed from single mother cells over different generation intervals (dotted line is the
full distribution corresponding to the CCDD collected from the entire ensemble).

is able to predict the time course of cell response, including the overshoots observed in severe stress conditions (Fig.
3)

The trend across the top row in Fig. 3 is clear: as the magnitude of the shift increases (left to right), the response
speed (change in the mean divided by the time over which the change occurred) increases as well. A complementary
trend may be observed on the bottom row: as the severity of the stress increases (left to right), the response speed also
increases. (See Fig. 4A). However, while for the relaxation experiments (top row) response speed directly correlates
with adaptability, for the stress experiments (bottom row) this is not the case. We consider an adaptable cell to be one
which responds “efficiently” to environmental changes in terms of its growth rate alone. (Here we observe negligible
filamentation rates and cellular aging is not an issue as cells were only followed for fewer than fifty generations.) Thus
an efficient response is considered to be one where the growth rate is as high as possible for as long as possible. In the
case of the relaxation experiments (top row), the faster the response speed, the greater the adaptability as a greater
response speed allows the cell to spend more time in a fast growth state. For the stress experiments (bottom row) the
reverse is true: the greater the response speed, the less time the cell is able to remain in the fast growing state. In
fact, we have observed that for severe environmental stresses, cells respond so inefficiently that they attain a growth
rate during the period of response which is even lower than that of the final stable growth rate (e.g. Fig. 3 last panel).
Thus, to compare the efficiency of response across all experiments, we proposed to use a new quantity, ∆,

∆ =

〈

1

λ

∫ λ

0

τ(t)dt

〉

−max(µi, µf ) (12)

where the environment step change occurred at t = 0, λ = 500 min. is the minimum period for all eight experiments
to complete the response to their new environments, and the average 〈〉 is taken over all cells. (Note that the trends
observed are maintained over a wide range of λ. See SM section IV.) µi,f is the steady state average cell cycle duration
before and after the step change, respectively. When ∆ is large and positive, the cells respond so inefficiently that
during response they grow even slower than in the stationary state corresponding to the stressed condition. When ∆
is large and negative, the cells are able to remain or enter in the fast growth state for the majority of the response
period. We analyze these results in the context of a phenomenological model introduced below.
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FIG. 3. Eight step environmental change experiments. The experimental distributions (here fitted to Gamma distributions and
smoothed; see Figure S5 for a direct comparison with the raw data) are displayed using colors with highest probability in red
and lowest probability in blue. The black lines are the model predictions for the average. The insets are representable single
cell trajectories. The magnitude of the environmental shock increases from left to right across the figure in both rows. The
difference in the mean stationary CCDD from the start of the experiment to the finish is approximately: for experiments 1&2
20min., 3&4 40 min., 5&6 80 min., and 7&8 150 min. Please see SM section IV for more details.

C. Phenomenological cell cycle state model

As introduced in the Methods section, we consider a sequence of cell cycles (τ1, τ2, . . . ) and the change of the
cell cycle distribution over generations, ρ(τ, n) where n is the index of generation. For a constant environment at
long times, cells are at steady state in the Mother Machine, and ρ(τ, n) ≡ P (τ) shown in Fig. 1. For a changing
environment, we consider a Markovian stochastic model for ρ(τ, n), which describes the change of this distribution
from one generation to the next as

ρ(τ ′, n+ 1) =

∫

dτM(τ → τ ′;φ)ρ(τ, n) (13)

where M is the transition probability, which depends on the current environment described by φ.
In constructing M , we considered the following: organismal survival depends on two broad qualities - stability and

adaptability. Stability is a measure of short-term fitness, how precisely a system can maintain conditions optimized
for a constant environment. Adaptability is a measure of long-term fitness, how quickly a system is able to achieve
optimized conditions when introduced to a new environment. For example, in the context of genetic evolution, a
more mutable genome offers an organism less stability but improved adaptability over many generations both through
simply allowing for greater genetic diversity at any given time [27, 28] and high mutation rates [29, 30]
Motivated by these ideas in conjunction with the “constant-adder model” [12–14] and older foundational work [31],

we propose the following approximate Gaussian model for the cell cycle dynamics.
We take into account two sources of regulation for cell cycle duration - optimization of protein synthesis rates to

the current environment (instantaneous information), and the maintainence of proteome similarity to the mother
cell (inherited information). Let us begin with the shorter argument - the comparison of proteome composition
between mother and daughter cells. We assume that the greater number of proteins shared between the mother and
daughter cell, the smaller the difference between their cycle durations. As proteome inheritance is roughly normally
distributed, we approximate the cycle duration τ ′ (of the daughter cell) to be normally distributed with mean τ (the
cycle duration of the mother cell) and some unknown variance σ2

2 . At the beginning of a cell cycle, a cell’s proteome
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is entirely inherited from proteins present in the mother cell. One source of noise inherited from the mother is due to
protein partitioning. The probability of inheriting m proteins from a mother cell containing N proteins is given by
the symmetric binomial distribution P (m) = N !

m!(N−m)!
1
2N

For N very large, this distribution is well approximated by

a Gaussian distribution of mean N
2 and variance N

4 . These inherited proteins constitute roughly half of the cell’s final
proteome (or the proteome of the cell at the time of its division) though this fraction differs based on the number
of proteins inherited. Taking these considerations into account, we expect the term representing the regulation of
proteome similarity between mother and daughter cells to take the form:

M2(τ → τ ′) = A exp

[

− 1

2σ2
2

(τ ′ − τ)2
]

(14)

It is unclear if this partition noise bears significant weight on the CCDD, but it may be noted that if it does, it is
likely there will be an anticorrelation between sister cell cycle durations.
Now we will handle the optimization of protein synthesis. Let us begin by describing the simplest construction of

the constant-adder model: let us define a mean protein/DNA synthesis rate of k proteins/DNA per minute, and say
that the cell must synthesize additional N proteins/DNA during its cell cycle. From a uni-directional stochastic mass
accumulation model we get a gamma distribution for the probability of reaching size N at time t (for N ≥ 1):

π(N, t) =
kN+1

Γ(N + 1)
tNe−kt (15)

with a mean of µ = N+1
k

and variance σ2
1 = N+1

k2 (See SM Section II). Since k depends on the environmental condition
φ, both µ and σ1 depend on φ. As long asN ≫ 1, this distribution is suitably symmetric, and we may well approximate
the transition probability with a Gaussian function (in terms of t ≡ τ ′) with the given mean and variance:

π(N, t) ≈ M1(τ
′) ≡ 1√

2πσ1

exp

[

− 1

2σ2
1

(τ ′ − µ)
2
]

(16)

As mentioned in the Methods section, we maintain some current state dependence in the adaptive term so that we
may allow for a negative correlation between adjacent generations at steady state, as predicted by the constant adder
model. Work has shown[6, 12] subsequent cell cycle durations to be anticorrelated (i.e if τ is above the mean, the
most probable state for τ ′ is below the mean. The biological motivation for our implementation of the current state
(τ) dependence is described below:
In what follows we will describe what may be the original “sizer”, or mass-accumulation, model described by Bremer

and Chuang in 1981 [31]. We do not wish to imply that we believe the “sizer” model to be a good substitute for the
“constant adder” that has proven so robust in recent studies [12, 13], but merely that when interpreted as a product
of two weighted regulatory tendencies (mass-accumulation and proteome maintenance), the “constant adder” can be
even more widely applied to cell populations experiencing variable environmental conditions. We begin by breaking
down the cell cycle into three smaller stages. Consider the cell cycle to be composed of three periods τA, before the
initiation of DNA replication, τB , during replication, and τC after replication:

τ = τA + τB + τC (17)

Bremer and Chuang found that the time between associated points in replication from generation to generation (e.g.
the time between the initiation of replication in the mother cell and daughter cell or termination of replication between
cells) were highly conserved. (We would like to note that there were other studies conducted which focused on similar
issues around the same time [32] though, to our knowledge, recent interest in the topic has depreciated. Nonetheless,
there has been more modern work [33] focusing on the tight regulation of the DNA replication time in cyanobacteria
partly aimed to probe where this regulation breaks down.) This implies (where generation n is denoted τn):

τB = constant ≡ B (18)

and furthermore:

τCn−1 + τAn = constant ≡ D (19)

So we can write down an expression for the nth division time in terms of the preceding n− 1 division time:

τn = τAn + τBn + τCn =
(

D − τCn−1

)

+B + τCn = (D +B) + τCn − τCn−1 (20)
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Now, D +B is simply the mean the total cycle time (relabeling it µ). With this we have:

τn = µ+ τCn − τCn−1 (21)

Continuing, we know τCn is just some fraction α1 of the total mean and similarly τCn−1 is some fraction α2 of the total
division time τn−1:

τn = µ+ α1µ− α2τn−1 (22)

Approximating the fraction of the cell cycle accounted for by region C as constant across each generation, i.e. α1 =
α2 ≡ α yields:

τn = µ+ αµ− ατn−1 = µ+ α (µ− τn−1) (23)

We note that this may be a very poor approximation under certain conditions. We merely make this assumption to
reduce the complexity of the model and provide an analytical solution. Therefore, on average, we have

〈τn〉 = µ+ αµ− ατn−1 = µ+ α (µ− 〈τn−1〉) (24)

Similarly, we want an expression for the variance:

σ2 (τn) = σ2
(

µ+ τCn − τCn−1

)

= σ2
(

µ− τCn−1

)

+ σ2
(

τCn
)

= σ2
(

τCn
)

≡ σ2
1 (25)

Applying the stochastic protein synthesis argument above restricted to period C yields:

M1(τn−1 → τn) ≈ A exp

[

1

2σ2
1

(τn + ατn−1 − (1 + α)µ)
2

]

(26)

We have provided physiological motivation for a weighted averaging of the current state and the mean of the total
distribution; however, as we are primarily interested in a generalizable phenomenological model and are unable to
retrieve the value for α from experiment, we will use the symmetric average α = 1 during data fitting for simplicity.
Though this parameter selection loses physiological significance, the trends observed do not meaningfully change when
a smaller alpha value is used. The total transition probability from τ of the mother cell to τ ′ of the daughter cell
should balance the inherited information with the process of protein/DNA synthesis. Therefore we expect:

M(τ → τ ′) ∝ exp

[

− (τ ′ + ατ − (1 + α)µ(φ))2

2σ1(φ)2

]

× exp

[

− (τ ′ − τ)2

2σ2(φ)2

]

(27)

where σ1, σ2 are positive constants describing the noise, and µ is the mean cell cycle duration for a given condition φ.
σ1, σ2 and µ all depend on the current environmental variable φ. α is a constant between 0 and 1, representing the
fraction of the cell cycle after DNA replication has terminated and before septum formation. See SM section II for
more details.

D. Model and experiment comparison

Our model has four parameters, α, µ, σ1, and σ2. As mentioned above, because we are unable to retrieve the value
of α from experimental data, we assume α = 1 for all experiments. µ is always set to be the mean of the CCDD
corresponding to the stationary distribution. The values selected for σ1 and σ2 are at the heart of our discussion
since the adaptability of the culture depends on the relative weight of these terms. We may express σ1 and σ2 given
only µ for the stationary distribution, CV for stationary distribution, and a third quantity Π: σ1 =

√

2 (1 + Π)CV µ,

σ2 =
√

2 (1−Π)CV µ. Π is retrieved from the steady state autocorrelation function C(n) = Πn, or directly from the
experimental response curve, 〈τn〉 = 〈τn−1〉Π, where the index is taken to be over generations succeeding the switch
i.e. n = 0 corresponds to the generation over which the environmental switch occurs. Please see SM section IV for
more details regarding the fitting. We compare both fits in SM section IV C Figs. S6 and S7.

When we fit directly to the experimental response curve, since the experiment is a step change, we use the mean
and CV of the final stationary distibution. It may be noted that in Fig. 3 we show the result corresponding to the
case where Π is fit directly to the experimental response curve. Fig. 4 shows an overlay of our model M and the data

Page 10 of 14Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



10

τ

0 50 100 150

ρ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Experiment 1

τ

0 50 100 150

ρ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Experiment 2

τ

0 200 400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Experiment 7

Gen. 1

Expmt.

Model

Gen. 5

Expmt.

Model

ρ

FIG. 4. Comparisons between model and experiment of the initial (generation 0) and final distributions (first generation at
which the population is equilibrated to the final state) from three representative experiments. The x-axis is τ (min.): the cell
cycle duration and the y axis is ρ (1/min.): the probability density. The three experiments displayed are, from left to right:
Experiment One, nutrient increase; Experiment Two, nutrient decrease; and Experiment Seven, the removal of the highest
osmotic stress tested.

collected for the initial and final distributions of three representative experiments. For a more complete comparision
see Fig. S1. (SM section II B). The model is able to well fit and replicate, quantitatively, the response curve for
both the mean and variance of the CCDD. It may be noted that while the model does recapture the nonmonotonic
responses associated with strong osmotic shock from rich to stressed conditions (experiments 6 and 8), it does not
lend itself to a clear interpretation regarding the mechanism behind this behavior. We intepret the overshoot of the
final mean cycle duration to be attributible to the cell slowing division in order to restructure its proteome to fit the
new condition (perhaps the synthesis of more active pumps to remove the osmolite); however, we cannot provide a
more detailed explanation.
Our experiments show, the response speed increases with increasing environmental shock severity over all trials

which implies two things: firstly, the the stronger the osmotic shock, or nutrient depletion, the faster the culture leaves
the fast-growth state (which may be unsurprising). Secondly, this means that when stressed cells are introduced to a
rich environment, the slower they are growing before the environmental switch, the faster the rate of response. On the
other hand, we find that ∆ for the shock and relaxation experiments display two opposing trends: as the severity of
the environmental change, measured as |µi − µf | increases, ∆ decreases for the relaxation experiments and increases
for the stress experiments (See Fig. 5B). Clearly the response efficiency cannot be predicted from the severity of the
environmental change alone. If nongenetic heterogeneity plays a role in cell adaptation, there is a parameter that
should be well correlated with response efficiency, σ2. As σ2 (calculated from the initial state) increases, the similarity
between mother and daughter cells decreases - which should make the cell more adaptable. We find that this agrees
with experiment: as σ2 increases, ∆ decreases (Fig. 5C). σ2 is not the ideal parameter for comparison, however,
since it cannot be directly measured experimentally. It would be better if the same trend could be observed for the
total variance, 〈δτ2〉, of the cycle duration distribution. Here we may utilize a result from the constant-adder model,
which predicts that the autocorrelation function is conserved across different environmental conditions [12]. Given the
autocorrelation function we can derive σ2 with the variance of the ensemble. As the variance increases, σ2 increases
(Fig. 5D). Thus we know if σ2 must be large for an efficient response, the variance must also be large for an efficient
response. We find that this well agrees with experiment: as the variance of the initial CCDD increases, ∆ decreases
(Fig. 5E).

IV. DISCUSSION

We may now return to answer our original question,“does increasing the noise in the mechanisms regulating the cell
cycle correlate with decreased cell fitness?” We have discussed how increased non-genetic heterogeneity does indeed
decrease the mean ensemble growth rate, and thus correlates with decreased cell fitness in this way; however, this noise
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FIG. 5. (A) Average cell response speed vs shock severity: |µf − µi|. (B) ∆ vs. shock severity |µf − µi|. (C) ∆ vs σ2 for the
initial ensemble before the step change. (D) σ2 vs. variance of the cell cycle duration 〈δτ2〉 derived from the autocorrelation
function before the step change. (E) ∆ vs variance (bars denote standard deviation). As the variance of the initial CCDD
before the environment change increases, ∆ decreases, and thus the response efficiency improves. Theory results are displayed
as red lines or stars.

does not seem to impair cell adapatability. Perhaps most strikingly, we see that cell response rate from a stressed
condition to rich media is inversely correlated to the mean ensemble growth rate before the switch and positively
correlated to the noise before the switch. Thus increasing the variance of the CCDD, attributable to increasing
non-genetic heterogeneity of the culture, actually correlates with improved adaptability of the cell to environmental
changes. In this way increasing the noise may actually correlate with improved cell fitenss. This may be because with
increased noise, cells can explore a wider range of phenotypes and some are already well suited for a new environment
before it is introduced.

This idea falls into a rich discussion which seems to be gaining momentum: that even the simplest biological systems
with minimal cooperativity exhibit mechanisms which limit growth for single cells at short times to boost long term
growth. This is observed in budding yeast [2] where cells which cluster due to gravity selection exhibit an increased
death rate. Clearly increasing the death rate for an individual cell lineage is deleterious for the growth of that lineage;
however, it turns out that this phenomenon leads to a higher overall cell density and longer term growth rate due to
the intrinsic geometric confinement of the yeast budding pattern. Similar spatial patterning is observed in slime molds
[3] where cells will actually synchronize their cycles which does not confer any clear single-cellular benefit though it
does contribute to pseudo-multicellular phenomena. These cooperative phenomena are observed in bacteria as well.
Recent investigation has probed what situations give rise to the emergence of a decoupling between the fitness of a
collective and its constituent individuals [4]. In a similar vein, it has been shown that bacteria will sometimes select
to signal for slow growth while still at low density so that metabolism homeostasis may preserved for a longer period
of time entering stationary phase at high densities [5]. We think the phenomena described in this work are interesting
in part because they do not appear to rely on cell-cell communication (growth in the mother-machine has limited
signalling due to the low occupation of each microchannel and the high flow rate through the main channel hindering
signalling between channels); yet they still fall into this class of ideas: long term bulk growth rate is improved through
mechanisms which hinder short term single cell growth (in our interpretation, due to noise).

In other stochastic systems, the fluctuation dissipation theorem (FDT) expresses a similar concept. However, we
have not proved this connection conclusively, since in E. coli, 〈δτ2〉 is positively correlated with the mean division
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time and one could also argue that a slower dividing cell responds efficiently. Alternatively, it could be due to the
difference in the magnitude of the shift: larger environmental shocks resullt in faster response due to improved sensing.
Though we interpret this improvement to be due to the noise, even if this effect is a product of the mean cell cycle
duration or the magnitude of the environmental shift, we hope our presentation of this phenomenon will motivate
further investigation. The conclusive proof that this phenomenon is due to noise alone requires comparison between
strains that divide with the same mean, but different 〈δτ2〉. Such a construct is currently not available to us.

On much shorter time scales, noise in protein expression [34] has proven to be important for cellular robustness
[35] and displayed clinical relevance: increasing the stochasticity of protein expression can help combat dormant
pathogens such as HIV [36]. Here we showed that these short term fluctuations in the biochemical regulation of the
cell cycle are correlated with the ability of a cell to adapt to a changing environment, analogous to the long term
genetic adaptations[37] and complementary to long term memory of a periodic, flucuting environment[38, 39]. Our
results here provide some motivation for the mean-scaling (or fixed CV) of CCDDs and their universal shape: when
growing fast, cells may benefit most from stability where a greater gain may be achieved from optimizing growth
for the current and immediate environment; however when growing slowly, cells might benefit more from improving
their adaptability so that when superior growth conditions are presented they may respond efficiently to best utilize
the new environmental conditions. When the mean cell cycle duration is large, it most benefits the population to be
heterogeneous. When the mean is small it is best for the population to be homogenous.
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