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Computational Prediction of Virus-Human Protein-Protein
Interactions using Embedding Kernelized Heterogeneous Data
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Pathogenic microorganisms exploit host cellular mechanisms and evade host defense mechanisms through molecular

DOI: 10.1039/x0xx00000x pathogen-host interactions (PHIs). Therefore, comprehensive analysis of these PHI networks should be an initial step for

www.rsc.org/ developing effective therapeutics against infectious diseases. Computational prediction of PHI data is gaining increasing
demand because of scarcity of experimentally-found data. Prediction of protein-protein interactions (PPIs) within PHI
systems can be formulated as a classification problem, which requires the knowledge of non-interacting protein pairs. This
is a restricting requirement, since we lack datasets which report non-interacting protein pairs. In this study, we formulated
the “computational prediction of PHI data” problem using embedding kernelized heterogeneous data. This eliminates the
above-mentioned requirement and enables us to predict new interactions without randomly labeling protein pairs as non-
interacting. Domain-domain associations are used to filter the predicted results leading to 175 novel PHIs between 170
human proteins and 105 viral proteins. To compare our results with the state of the art studies whose approach is using a
binary classification formulation, we modified our settings to consider the same formulation. Detailed evaluations are
conducted and our results provide more than 10 percent improvements for accuracy and AUC (area under the receiving
operating curve) results in comparison with the state of the art methods.

evaluating all possible PHIs, which is extremely unjustifiable,
Introduction computational approaches can pave the way for these
experiments by predicting high potential PHIs. Computational

A global rise of human infectious disease outbreaks brings the i ) e . ) )
studies for evaluating protein interactions and their associated

necessity of facing these major health threats more than ever?!.
Emerging viral diseases such as MERS (Middle East Respiratory
Syndrome), Hepatitis C, HIN1 influenza, Ebola and other major
viral infections like HIV cause serious morbidity and mortality
rates worldwide. United States recently warned about growing
hepatitis C outbreak in several states. Currently, South Korea is
experiencing a deadly outbreak of MERS. The similarities
between MERS and SARS (Severe Acute Respiratory Syndrome)
which occurred in Hong Kong and Singapore in 20032 emphasize
the importance of a thorough understanding of the underlying
mechanisms to prevent their recurrence in the future.

Systems biology is widely accepted as a promising approach to
reveal characteristics of diseases through molecular interaction
networks. Interactions between proteins of pathogens and
hosts are the crucial parts of the infection mechanisms3. This
motivates researchers to focus on studying pathogen-host
interactions (PHIs) whose experimental verification is

networks have been initiated more than a decade ago*. Most of
the corresponding studies primarily focus on protein-protein
interactions (PPIs) within a single organism (intra-species PPI
prediction). Inter-species PPI prediction including PHIs has not
gained significant share of the research yet. However, a few
studies have been conducted in this field on different PHI
systems using various machine learning techniques®.

The current PHI knowledge suffers from scarcity of available
experimentally-verified PHI data. Therefore, development of
efficient computational approaches to predict PHI data is
required urgently. The experimental PHI data are collected
within a number of databases like PATRICS, VirusMentha?,
VirHostNet® and PHISTO?®. These data can be used to discover
the interaction patterns between pathogen and host proteins in
order to use in computational prediction processes. Discovering
pathogen-host protein binaries as the most probable pairs to
challenging and time consuming. Therefore, rather than interact can be formulated as a binary classification problem, in
which interacting and non-interacting pairs should be
distinguished. To train the model, both positive and negative

samples are required. In the case of negative samples there is
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selecting random samples as non-interacting pairs can be
unpredictable and the results will be dependent on selected
negative class. Here, we propose a novel approach for
computational PHI prediction, which learns interaction pattern
based on available positive samples. In this approach, latent
features are extracted for each of pathogen and host protein,
integrated with explicit features in the form of kernel matrices.
The proposed approach is based on a method presented by
Gonen!0 for embedding heterogeneous data. We consider each
protein of pathogen and host in a K dimensional space and learn
these features using PHI interaction patterns and kernel
matrices designed by similarities among protein features.
Training process tries to map these R dimensional coordinates
from both pathogen and host to an embedded space, in which
close proximity of proteins means higher probability of
interaction. We compare our approach with various state of the
art methods for PHI predictions!%1213, Various experiment
scenarios and evaluation metrics verify outperformance and
validity of our method for diverse PHI systems.

This paper is organized as follows, first we present our method
for predicting protein-protein interactions between viral and
human proteins. Then, we illustrate various features and how
they are designed and used as kernel matrices. Finally, results
of the experiments on various PHI systems and biological
assessments of predicted PHIs are reported at the final section
of this study.

Methods

We address the problem of PHI prediction by projecting
pathogen and host latent features into a unified embedding
space. This embedding is based on available samples of PHIs,
integrated with multiple kernels designed over pathogen and
host protein features.

Figure 1 shows each viral (Vi) and human protein (H;)
represented by a K dimensional latent vector. Adjacent proteins
in the projected unified space are considered to have an
interaction.

As shown in Figure 2, an interaction matrix includes the known
PHIs, set to be ‘1’ and others marked as unknown. It is clear that
relying exclusively on the interaction matrix, could not reveal
the interaction pattern and consequently could not accurately
predict the missing entries. This is due to the fact that in most
of the pathogenic systems, currently we have access only to a
small fraction of interactions, that is, one of the used datasets
11 includes 1035 available PHIs, whose ratio to all possible
interactions, 106720, is about 0.0096. This
extremely sparse matrix.

To overcome this limitation, we feed the model with similarity
kernels, which give different similarity scores for proteins in
each domain.

leads to an

2 | Molecular BioSystems., 2016, 00, 1-3
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Figure 1- Projecting latent features of human and viral proteins into unified space
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We call viral and human proteins, as different domains of the
problem. The idea here is that the similar proteins have similar
interaction behaviour. Similarity measures are designed for viral
and human proteins using different features. Our approach can
be easily extended to consider multiple kernels for each
domain, however, to keep the formulation as simple as
possible, we consider one kernel for each domain.

Viral and human proteins are converted into K-dimensional
vectors in the Euclidean space represented by

By = {en; € RE}, 11”1 , Bn={en: € R, ’ihl (1)

Ny, and N, are the number of viral and human proteins,
respectively. Learning projected coordinates are based on
approximating three scoring functions. As shown in Figure 2, S,
indicates similarity score between viral proteins, Sy indicates
similarity score between human proteins and Sy, as follows:

1 if v; and h; interacting
NA otherwise

Sn = @
Sy, Sk and Sy, are approximated by three kernel functions Ky, Kn
and Ky, respectively. Radial basis functions with kernel width o
are used to approximate similarity scores using projected
coordinates.

Human Proteins
Similarity Kernel
Sh

Human Proteins

wv
c
Viral Proteins | @ .
o 5 Interaction
Similarity Kernel | £ Matrix
SV TE Svh
£

Figure 2- Integrating multiple kernels and interaction matrix to obtain unified space
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Kv = exp (-sz> Vi,j,
||eh,i_eh,j||§ L.
Kp=exp|————| Vij ,

2
|l evi—enjll L
Ky, = exp (— sz) Vi,j (3)

The loss function to simultaneously approximate similarity
functions Sy, Sy and the interaction function S, are formulated
as follows:

— Avh
L= |¢;h|2¢vh(1{vh = Sn)* +
ﬁZ%(Ku - Sv)z +
An

Y onKn — Sp)? (4)

[Pnl
The optimization function is formulated as follows: Minimize £
with respect to E,, E, and o, where ¢,;, ¢, and ¢pare index
sets indicating available indices of Syn, Sy and Sh. Considering
index set ¢, is crucial since Sy, represents all possible
interactions between N, viral and N, human proteins. However
experimentally detected interactions include a very small
fraction of all N,*Ny, indices. Therefore, ¢,nis considered to
indicate which indices are available to be used by training. S,
contains similarity values between viral proteins and ¢,
indicates available indices of S,. Accordingly, Sy and ¢, are
considered for similarity between human proteins. Kernel width
o is not a constant parameter and will be learned during the
optimization process. Our proposed method, adapted multiple
kernel preserving embedding (AMKPE) is an adapted version of
(MKPE) method originally presented by 1© and produces
projected coordinates E, and Ejy, in the target unified space. Ky,
contains the desired output, since it
approximation for the interaction matrix (Syn) and represents
interaction scores for all virus-human protein pairs.

is trained as an

Feature Sets

We use a minimal set of explicit features to show the advantage
of exploiting latent features, extracted from known interaction
patterns. Regarding the scarcity of available feature values,
especially for pathogen proteins, using limited number of
features heals the problem of confronting considerable missing
features. Biological features utilized for PHI prediction are
summarized in 5. We use some of them and add new features,
which have not utilized yet. We make use of latent features
along with explicit features, which lead to a minimal set of
required explicit features in comparison to other approaches.
This is important, since using a large set of features with a small
set of available samples, may end up with overfitting due to
insufficient training data.

Despite we used a collection of features, we report only the
results of features, which contribute most for each pathogenic
system and dataset. In the following section, we introduce

This journal is © The Royal Society of Chemistry 20xx

utilized features and explain how they are prepared for the
experiments.

Sequence Features

There are contradictory reports about the efficiency of features
extracted from protein sequences. Shen 14 uses only sequence
features to predict PPls, whereas other studies!®> claim that
solely depending on sequence features cannot provide
promising results. We should notice that protein sequence is
rather complete and ubiquitous representation of protein
which can shed light on protein functions. In this study, we
create a kernel based feature from protein sequence using the
spectrum kernel 6. Sequence kernels can be described as
follows:
K(x,y) :ZmEMN(m:x)-N(mfy) (5)

Where x and y are protein sequences, M contains all possible
k-mers, m is one pattern of feature space M and N (im, x) is the
number of occurrences of pattern m in sequence x. The kernel
is computed by the dot product of the two-feature vectors for
the sequences, x and y. Kernels are normalized and feature
vectors are scaled to the unit sphere, which represents the
cosine similarity between feature vectors. Kernel normalization
is performed as follows:

k(xy)

K0oy) = rmoxor

(6)

We use mixed spectrum kernel 17 in which multiple length for k-
mers are simultaneously taken into account to compute the
similarity value. We create our mixed kernel (Ksequencek-mers) for
k=1, 2, 3 and 4, then combine using equally weighted sum of
four kernels.

Network Topology Measures

Systems biology exploits a lot of features from networks of
biological nodes. Here, the network is formed by the
interactions between pathogen and host proteins, resulting in a
bipartite graph. Within this network, pathogens tend to target
vital host proteins to maximize their ability to manipulate host
cell mechanisms. Node centrality measures can be an
appropriate measure for identifying such vital proteins. We use
degree centrality of human proteins as the most important
topology feature. Gaussian kernel can be used as follows to
create a kernel matrix using degree values for human proteins
(Degreesy).

)

Where og4 is the kernel width and can be estimated using
Jaakkola’s heuristic 18 as an initial guess. We consider all pairs of
protein degrees and compute the differences between all pairs.
The median of these differences is used as a guess for o and can
be computed as follows:

2

1 Degreeshlli
0d

KDegree = exp (_

Ojaakkota = median(||degreey; — degreey j|| Vi, )

®)
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Domain Information

Domains are building blocks of proteins and act as the
mediators of interactions. A large number of studies were
performed using domain-domain interaction knowledge to
predict PHIs 5. In this study, we use domain information in two
manners. Firstly, we collect domains for each protein and create
similarity kernels based on the occurrence of same domains
between protein pairs. The number of same domain occurrence
in each protein pair is computed and normalized to create a
similarity kernel (Kpomain). Due to the scarcity of available
domain information, resulting matrix is sparse. However, it
gives an effective similarity measure for proteins. Secondly, we
count the occurrence of domains in virus-human interacting
protein pairs and find out which domain pairs frequently
occurred in interacting pairs. This can be used as a measure for
evaluating each candidate virus-human protein pair. If the
candidate contains domain pairs, which are frequently
observed in PHIs, it can be considered as a high probable
interaction. The similar idea is used in 1! by inferring virus-host,
domain-domain associations from interacting protein pairs.
They report domain-domain association as one of the best
features for PHI prediction. We use this feature for filtering
semi-final prediction results into a limited list of candidate PHls.
We obtained the list of domains and protein families from
InterPro' database?®. InterPro tries to classify protein families
and domains by integrating different protein family databases
with different biological focuses and approaches.

Pathway Membership

Biological pathway is a graph connecting proteins, which are
involved in a certain biological process. Pathogens tend to
target specific biological processes to use host functions for
their own advantage. Each human protein may be member of
several pathways. We compute a similarity measure between
human proteins based on their membership in different
biological pathways.

We collect the list of pathways for human proteins from
Reactome' database 20, For each protein we consider a binary
feature vector (P) with length of pathways count and set to be
‘1’ each entry that the human protein takes part in the
corresponding pathway.

Kpathway (hi: hj) = count (and (pir pj)) (9)

Where hi and hj are two human proteins, Kyathway (R, Rj)
gives an un-normalized pathway membership similarity value
for two proteins. And (x,y) does a logical ‘and’ between two
binary vectors and set to be one for each entry of returned
vector, where both proteins participate in the corresponding
pathway, and count (x) returns the number of non-zero
elements of vector x, indicating un-normalized similarity value
between two proteins. Kernel values are normalized using

Equation (6).

4 | Molecular BioSystems., 2016, 00, 1-3

Gene Ontology

The Gene Ontology (GO) is a standard for the annotation of
gene products. Extracted features from GO have provided
significant results for pathogen-host and interspecies
interaction prediction 2. Terms of three orthogonal ontologies
including ‘BP’ (biological process), ‘MF’ (molecular function) and
‘CC’ (cellular component) can be used as a basis of computing
quantitative semantic similarity. In this paper, we compute
three similarity kernels based on semantic comparisons of GO
annotations using Wang’s measure 22 which is a graph based
method and uses topology of GO graph structure. This method
exploits both the locations of GO terms in the graph and the
relations with their ancestor terms. We use GOSemSim?23
implementation of this method to compute multiple kernels for
human proteins, as Keo_gp, Kso_mr and Keo_cc.

Datasets

We use three different datasets for evaluation of our method
with state of the art studies for PHI prediction. First virus-host
PPl dataset!!, obtained from VirusMINT"' 24 The dataset
includes several medically significant viral pathogens including
human immunodeficiency virus 1 (HIV-1), simian virus 40
(SV40), hepatitis B virus (HBV), hepatitis C virus (HCV) and
papilloma virus. After eliminating redundant interactions and
those have not any InterPro domain hit, 1035 virus-human
interactions remained out of 2707 initial interactions. This
dataset covers 160 viral proteins and 667 host proteins. Second
dataset!?, contains HCV and human interactions from the IntAct
database'V 25 including PHIs which are annotated as ‘physical
association’ or ‘direct interaction’. It contains 657 interactions
between 52 HCV proteins and 420 human proteins. Third
dataset?6, contains retroviridae-human interactions from
PHISTOY °. It includes 9439 interactions between 292 viral
proteins and 1108 human proteins. Viral pathogens include 12
retroviruses, including Abelson murine leukemia virus, Avian
myeloblastosis virus (AMV), Bovine leukemia virus, Equine
infectious anemia virus, HIV-1, HIV-2, Mason-Pfizer monkey
virus (MPMV), Murine leukemia virus, Primate T-lymphotropic
virus 1, Rous sarcoma virus, Simian foamy virus, Simian
immunodeficiency virus (SIV) and Y73sarcoma virus. Properties
of the datasets are summarized in Table 1.

Table 1. Summary of the employed datasets

w
£ 2
[
5 £, 2E o8
ga © % m s Q5 2
2 c 5= 88 = @ 5
Pathogen Host Eg 82 =23 S5 &
z2 E® T & <E
© =
Q
1- Medically
o i Human 160 667 106720 1035 0.96%
Significant Viruses
2-HCV Human 52 420 21840 657  3.00%
3-Retroviridae
Human 292 1108 323536 9439 2.92%

Viruses

This journal is © The Royal Society of Chemistry 20xx
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Experiments

We conduct different sets of experiments to evaluate our PHI
prediction method. The method has the flexibility to formulate
the problem as a classification problem using both negative and
positive labels, and also formulate the problem without using
negative samples. Most of the previous studies for PHI
prediction are formulated as a classification problem, which
requires negative samples. Unfortunately most of the
databases lack protein pairs which do not have interaction.
Nevertheless, in the first set of experiments we formulate the
problem as a classification problem on the same dataset used
in the state of the art studies 1112 to compare the results of our
method. For prediction of new PHIs, we use a second set of
experiments, in which no negative samples are used. The
second formulation was also compared with the study
proposed in 26 which similarly do not use negative samples by
means of formulating the problem as matrix factorization.

For both settings interaction matrix is reconstructed using
Euclidean distance between projected coordinates of proteins.

Since different evaluation metrics are used for the state of the
art methods, we use same measures to evaluate the accuracy
of our method. The list of the metrics and their computation
formula is presented in Table 2. Parameter set used in the
experiments are as follows, (Avs, Ay, Ap K, Iteration) set to (1, 0.1,
0.1, 10, 100). Magnitude of A, in comparison with A,and A is
reasonable, since the essential part of the objective function is
focusing on Sy which is prior knowledge about available PHIs.
To reconstruct the interaction matrix and predict new PHls, we
can use computed interaction scores of Kyn, since Ky, represents
scores for all virus-human protein pairs, including hided or
previously unknown entries.

Table 2. Evaluation metrics used for PHI prediction

Metric Formula
A TP +TN
ceuracy TP+ FP+ TN + FN
AUC The area under the ROC curve

True Positive (TP) - True Negative (TN)
False Positive (FP) - False Negative (FN)

Formulating PHI Prediction as a Classification Problem

To formulate the problem as a classification problem, we should
modify equation (2) to take into account the possibility of
representing non-interacting protein pairs. Samples of negative
class are denoted by ‘0’, which is in equation (10).

1 if v; and h; interacting
Son=140 if v; and h; not interacting (10)
NA  otherwise

Since non-interacting PPIs are not available for different PHI
systems, providing a negative class is one of the challenges for
PHI prediction. Random sampling from all pathogen-host
protein pairs is a well-accepted method to construct a negative

This journal is © The Royal Society of Chemistry 20xx

class. 27 removed sub-cellular, co-localized pairs from negative
samples and reported better results in comparison to random
sampling. However, this method can be criticized for additional
bias through dominating localization information.

The next issue is selecting the ratio of negative to positive
samples. It should be noted that using very unbalanced ratio
may introduce a biased model. In this study, we chose 1:1 and
1:4 for Dataset 1 and Dataset 2, respectively. This is equal to the
ratios used in 11 and 12 to provide a fare comparison.

Medically Significant Viruses

The first set of experiments was conducted on several medically
significant viral pathogens. We compare our results with the
study, which used the same dataset. Results of our 5-fold cross
validation experiments with combination of different kernels
are shown in Table3 . Results of the proposed method are
significantly better than those of 1.

Table3 . Classification results for medically significant viruses

Pathogen Proteins Human Proteins Accuracy AUC
Kernel Kernel (%)

- - 60.6 0.656

Kpbomain Ksequencek-mers 79.6 0.832

Kbomain Kpegree 74.6 0.817

Kpomain Keo_cc 77.3 0.827

Ksequencek-mers Ksequencek-mers 75.7 0.812

Ksequencek-mers Kdegree 73.9 0.815

Ksequencek-mers Keo_cc 76.5 0.820

Results of * 72.4 0.76

Hepatitis C Virus- Human PPIs

Hepatitis C virus (HCV) causes mostly chronical liver infection
which leads to long-term serious health problems and even
death. About 3% of the world population are chronically
infected by HCV and thousands of deaths are reported annually
caused by HCV 12, Dataset 2 contains available HCV-human PPIs
and are used in our experiment. We compare the accuracy of
our results with the last reported study 2. It should be noted
that the reported accuracy metric is sensitive to the ratio of
positive to negative class. For a fare comparison, we use the
same ratio of 1:4. Results of our 10-fold cross validation
experiments with combination of different kernels are shown in
Table 4. The reported accuracy value in 12is 0.83 .

Table 4. Classification results for HCV

Pathogen Proteins Human Proteins  Accuracy AUC
Kernel Kernel (%)

= - 65.1 0.643

Kbomain Ksequencek-mers 87.6 0.870

Kbomain Kbegree 88.0 0.857

Kbomain Keo_cc 88.3 0.873

Ksequencek-mers Ksequencek-mers 87.7 0.872

Ksequencek-mers Kaegree 88.4 0.868

Ksequencek-mers Keo_cc 88.1 0.872

Results of *? 83 -

Molecular BioSystems., 2016, 00, 1-3 | 5
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Formulating PHI Prediction using Positive and Unlabelled Data

The superiority of our method is presented in the classification
formulation. However, as discussed before, considering the
obstacles for selecting dependable negative samples, we put
aside random negative samples to predict new interactions. We
change the formulation as shown in equation (11).

1 if v; and h; interacting

. (11)
NA otherwise

Son = {
We sort the non-interacting pairs based on their Euclidean
distances resulted in the embedding space and select the top N
pair with the smallest distances. To evaluate the performance
of our method in the new formulation, we compare the results
using another evaluation method. 26 uses ‘Hit Rate’ to measure
performance of their model. ‘Hit Rate’ can be defined as
equation (12).

hitrate = IDcandNDrest|
[Dtest|

(12)

Where Diest contains indices of hided actual PHIs from Syn. We
try to check if the method can distinguish hided actual PHIs from
other unknown indices. Entries of reconstructed interaction
matrix will be sorted based on the computed interaction score.
The method is expected to place indices of hided actual PHIs
within the top ranks by giving them a large score. We pick | Diest |
top ranked entries, called as Dcang to see which fraction of hided
actual PHIs are discovered among the top ranked indices. It
should be noted that the top results may contain actual PHls,
which are not discovered yet.The model counts only the hided
actual PHIs which place at the top. However, this method of
evaluation is also implemented for similar areas like drug-target
interaction prediction 28.

Furthermore, for each pathogen protein, we order all of the
human proteins based on the predicted value of interaction
probability. Then, for every pathogen—human interaction pairs
of hidden part, we record the rank of the human proteins.
Having a rank 1 for the target human protein between 1108
proteins means an ideal prediction result. We set the threshold
r and computed the percentage of hided interactions which
gained the rank lower thanr.

This gives the performance of the method for recovering a
hided interaction in the top-r predictions for a specific pathogen
protein. We compute same results for each human protein.
Considering different sample sizes for pathogen and human
proteins, we set r to be 15 and 50 respectively. Clearly small
values of r will be valuable for biologists. Recently 2° used this
measure for evaluation of gen-disease association prediction.
We apply different sets of kernels on Data set 3 and report the
results in Table5 .

We apply two kinds of kernels for pathogen proteins, where
Kpomain performs better by taking an average value of all
performance measures presented in Table 5.

6 | Molecular BioSystems., 2016, 00, 1-3

Molecular BioSystems

Table5 . Performance results for Data Set 3 using different kernels

Pathogen Human Hit among Hit among
Proteins Proteins top15 top50 AUC Hit Rate
kernel kernel pathogen (%) host (%)
Kbomain Ksequencek-mers 41 85 0.93 0.82
Kbomain Kpegree 41 84 0.79 0.76
Kbomain Keo_cc 42 85 0.85 0.77
Kbomain Keo_mr 41 83 0.74 0.76
Kbomain Kao_sp 41 86 092 0.81
Kpomain Kpathway 40 85 0.93 0.82
Kpomain Kbomain 41 86 0.93 0.81
Average 41 85 0.87 0.79
K -mers K -mers 40 85 0.91 0.82
Ksequencek-mers Kpegree 41 82 0.67 0.70
Ksequencek-mers Keo_cc 40 85 0.75 0.75
Ksequencek-mers Keo_mr 40 82 0.56 0.66
Ksequencek-mers Keo_pp 40 86 0.89 0.82
Ksequencek-mers Kpathway 39 85 090 0.82
Ksequencek-mers Kpomain 40 85 0.90 0.82
Average 40 84 0.80 0.77

Hit rate results of %5: PMF is 0.73 ,similarity based PMF is 0.61

We chose thresholds in such a way that, it indicates about 5%
of all sample sizes. In other words, 15 and 50 are about 5% of
pathogen (292) and human (1108) proteins. To be clear, 85% of
hided interactions were discovered in the top 50 predictions
between 1108 samples (top 5%). This measure for human
proteins is about 41%. It means that 41% of hided interactions
for human proteins are discovered in the top 15 predictions
between 292 pathogen proteins (top 5%). As illustrated in Table
5, pathway kernels and similarities created using biological
process terms clearly outperform other kernels.

Similarity based probabilistic matrix factorization (SPMF) is used
by Li2® and compared with PMF and standard matrix
factorization for evaluating the results. We compare our results
with their two best methods including PMF and SPMF (Figure
3). Similarity-based PMF outperforms PMF when the
considerable fraction of training data is hided (i.e. more than
80%). While AMKPE is constantly superior to both methods for
all ratios of hided data, for this comparison we selected
Ksequencek-mers kernels for pathogen (K,) and human proteins (Ks).
Li26 uses similarity matrices computed based on sequence
alignment for both pathogen and host proteins.

To show the superiority of our method using the same similarity
matrices, we apply Ksequencek-mers kernels to recompute the
results for SPMF and PMF. Based on the results in Figure 3,
AMKPE clearly outperforms two other methods, especially
when the training set is very sparse.

This journal is © The Royal Society of Chemistry 20xx
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Figure 3- Hit rate comparison for probabilistic matrix factorization (PMF), similarity based
PMF and the proposed method (AMKPE)

Validating reported AUC measures

To evaluate stability of the reported AUC values, we use
repeated K-fold cross validation along with bootstrapping.
Totally, 50 iterations of K-fold cross validations are conducted.
For every fold, 95% confidence interval is computed using 500
bootstrap resamples. We conduct this set of experiments for
best kernel of each data set. Figure 4 depicts the results for data
set 1, where 50*5-fold experiments are conducted and
AUC(base) refers to the result achieved by!!.

Summary of the sampling study are represented by Table 6.
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Figure 4. Sorted Confidence Intervals and estimated AUCs of various samples for medically m__m]mr—’—/_/_,_/.mm-m
significant viruses ./_////l. HUMAN

Table 6. Summary of sampling study for AUC metric

Data Set Mean Confidence Mean Confidence Mean
Interval Lower Bound Interval Upper Bound AUC
Medically
Significant 0.791 0.876 0.837
Viruses
HCV 0.787 0.925 0.872
Reg.ovmdae 0.906 0.929 0.919
iruses

Figure 5- Sample predicted Interactions between viral proteins (Left nodes) and human
proteins for Medically significant viruses (a), HCV (b) and Retroviridae Viruses (c)

This journal is © The Royal Society of Chemistry 20xx Molecular BioSystems., 2016, 00, 1-3 | 7
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Prediction Results

We make use of the available PHI samples beside the unlabelled
data to discover interaction patterns. This method of positive
unlabelled (PU) learning was also conducted within a previous
study 2° for predicting gene-disease associations. To predict
new PHls, we use all available interactions without hiding any
sample. We construct a prediction matrix for each data set using
their positive available PHIs integrated with all human proteins
extracted from PHISTO. The final prediction matrix includes
7529 human proteins against viral proteins of each data set.
This is an interesting task, since most of the previous studies
consider a limited set of human proteins for PHI prediction. To
report predicted samples, we extract the top five probable
human proteins, which gained the highest scores for viral
proteins within the reconstructed interaction score matrix (Kyn).
Final candidate PHIs are extracted by integrating different
matrices computed using various kernels.

These lists are further filtered based on the domain-domain
associations observed within experimentally verified PHls.

In other words, filtered results include only candidates which
contain a verified domain-domain association within the
domain pairs of candidate PHIs. Sample filtered predicted
interactions are depicted in Figure 5.

Assessment of Predicted Interactions

We perform GO enrichment analysis for virus-targeted human
proteins within the predicted PHIs, using PANTHER tool3°. The
top enriched process terms for human proteins, which are
predicted to interact with viral proteins, are presented in Table 7-
9.

We combine all predicted human proteins for our three data
sets and classify them using PANTHER classification system
which is shown in Figure 6. The results of GO enrichment
analysis and PANTHER classification of the predicted interacting
human proteins, based on their functional properties, reflect
some of the known facts about the virus-targeted human
proteins obtained from the available experimental virus-human
PHI data3132:33, The largest fraction of the predicted human
proteins function as "nucleic acid binding", "transcription
factor”, and "enzyme modulator" within the human cellular
processes related to cell cycle and metabolism (Figure 6). The
following classified terms (cytoskeletal protein, hydrolase,
signalling protein, etc.) for the predicted interacting human
proteins give insights on the viral infection strategies, i.e.
through functional properties of the human proteins viruses
attack. Metabolic processes and protein transport related terms
are the top enriched GO processes for HCV-targeted human
proteins (Table 8), whereas RNA processing related terms are
for Retroviruses-targeted ones (Table 9). On the other hand,
specific metabolic and cellular processes related terms were
enriched for the predicted human proteins interacting with
medically important viruses (Table 7).
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Table 7. The enriched GO terms in human proteins predicted to interact with medically
significant viruses

Biological process term P value
positive regulation of macromolecule metabolic process 1.4E-14
regulation of protein modification process 1.1E-12
positive regulation of gene expression 2.1E-12
positive regulation of nitrogen compound metabolic process 2.9E-12
positive regulation of transcription 3.6E-12
positive regulation of nucleobase, nucleoside, nucleotide and 1.8E-11
nucleic acid metabolic process

cell cvcle 2.0E-11
positive regulation of cellular biosynthetic process 2.0E-11
positive regulation of biosynthetic process 3.2E-11
negative regulation of macromolecule metabolic process 4.7E-11

Table 8. Enriched GO terms in human proteins predicted to interact with HCV

Biological process term Pvalue
response to organic substance 7.1E-5
negative regulation of cellular protein metabolic process 3.8E-4
negative regulation of protein metabolic process 4.9E-4
intracellular transport 6.6E-4
response to virus 6.9E-4
regulation of cellular protein metabolic process 7.4E-4
response to cytokine stimulus 1.0E-3
membrane organization 1.3E-3
regulation of cell proliferation 1.7E-3
protein localization 2.3E-3

Table 9. Enriched GO terms in human proteins predicted to interact with Retroviruses

Biological process term P value
mRNA processing 2.0E-14
RNA processing 5.2E-14
RNA splicing 1.3E-13
mRNA metabolic process 2.4E-13
cell cycle 4.1E-12
RNA splicing, via transesterification reactions with bulged 1.8E-11
adenosine as nucleophile

nuclear mRNA splicing, via spliceosome 1.8E-11
RNA splicing, via transesterification reactions 1.8E-11
cell cycle process 6.3E-10
mitotic cell cycle 2.6E-9

This journal is © The Royal Society of Chemistry 20xx
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Figure 6- Classification of viruses-targeted human proteins in the predicted PHIs

A final assessment is conducted by comparison of the enriched
GO terms in the sets of human proteins within the predicted
and experimental PHI data. It should be noted that, in this
comparison we use the predicted interacting human proteins
which are new, i.e. they are not included within the
experimentally-found PHIs. This comparison was performed to
show the functional similarities between the predicted new
virus-targeted human proteins and the previously reported
ones within the experimental data. About 50% of the enriched
terms in the set of predicted human proteins are within the
results for the set of experimentally-verified interacting human
proteins with the HCV. This value for medically significant
viruses and Retroviruses are about 80 and 59 per cent,
respectively. We select the top 10 common enriched terms,
which have the smallest p-values for comparing the proportion
of genes annotated to the term for the sets of predicted and
experimental interacting human proteins.

To perform the same comparison after filtering, we use only the
filtered results. Surprisingly, 95% of enriched terms for the set
of predicted human proteins are within the enriched terms for
experimentally interacting human proteins.

Discussion

Computational methods for PHI prediction utilize the known
interactions and information on protein sequences and network
topology measures. Some studies revealed the usual behaviors
of pathogen proteins such as having a tendency to target hub
and bottleneck proteins in the human PPl network 34 31,35 32,
However, they are not the sole targeted human proteins 36 and
some pathogenic systems such as HIV tends to target the
peripheral human proteins 21. We generate a specific kernel
using degree values of proteins in the human intranetwork of
PPIs to make use of the diverse viral behaviors.

Binary classification is the usual approach for PHI prediction, in
which both positive and negative samples are required. PHI
databases report only interacting proteins as positive samples
without listing non-interacting pairs. Consequences of selecting

This journal is © The Royal Society of Chemistry 20xx

random samples as non-interacting pairs may be unpredictable
and the results are dependent on the selected negative class.
This challenge motivated researchers to overcome this problem
by removing the dependence on the negative data3’-*l. They
integrate bi-clustering with association rule mining, utilizing
only positive samples to predict virus-human interactions.
Same challenge is addressed by Li26 which uses similarity
matrices to enrich sparse interaction matrix and consequently
discover the interaction pattern using matrix factorization. They
use a primitive sequence based similarity matrix which only
shows its effect when a significant fraction of data set is hided.
Our approach learns the interaction pattern based on available
positive samples without the need for negative samples,
exploiting effective genomic features. According to the
presented results in Figure 3, our approach shows significant
improvements in comparison to the results achieved in 26.
Domains, as building blocks of proteins and mediators of
interactions, have crucial roles for predicting intraspecies PPls
4243 As one of the initial approaches, 44 makes use of protein
domain profiles for prediction of PHls.
interactions by means of Pfam domains are evaluated by Dyer4>
to predict and rank bacteria—human PPIs. Here, we make use of
domain profiles to create similarity kernels based on the
occurrence of same domains between protein pairs. This kernel
is created for both pathogen and human proteins. As we can see
in Table5 , the efficiency of domain kernels for prediction of
PHIs may be significant in some pathogen systems. Furthermore
domain-domain associations are used as the metric for filtering
predicted candidate PHls.

From the biological point of view, the findings about the
predicted PHIs presented in Figures 6-9 and in Tables 7-9, give
additional support for the reliability of the computational PHI
prediction results. First of all, the observation in Figure 6 is that
nucleic acid binding proteins, transcription factors and enzyme
modulators constitute the largest fraction of the virus-targeted
human proteins within the predicted results. These human
proteins were extensively reported as the main targets of viral
pathogens within the experimental PHI data 31733, For the case
of GO enrichment results (Tables 7-9), viruses are observed to
attack human metabolic and cellular processes for exploitation,
since they lack their own metabolism and machineries for viral
genetic material transcription and translation. Specifically for

Domain-domain

RNA viruses/Retroviruses, RNA processing and intracellular
transport/localization are obtained as the top enriched GO
terms. The GO enrichment results coincide considerably for the
virus-targeted human proteins within the predicted and
experimental PHIs (Figures 7-9).
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Conclusions

In this paper, we present a new approach for computational
prediction of pathogen-host protein-protein interactions.
Distinguished aspect of the method is relieving the need for 5
samples of non-interacting protein pairs. Furthermore, the
presented approach needs a minimum number of features, as it
requires only one similarity kernel for both pathogen and host g
proteins generated using single features. This is significant,
since we would encounter numerous missing feature values
along with increasing number of features. This is due to the fact
that, except sequence-based features, values for most of ¢
protein features do not exist especially for pathogen proteins.

We make use of interacting samples enriched with genomic and
topological similarity kernels to discover interaction patterns
within virus-human protein-protein interactions. Pathway 10
membership and domain similarity kernels are effective
features for PHIs as illustrated based on different experiments.
Besides the negative-sample-free approach, we formulate the 11
problem as a binary classification to compare the performance

of the method with the state of the art approaches mostly
presented in this formulation. Performance results of both 12
formulations, present at least 10% improvements in
comparison with the state of the art methods.
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