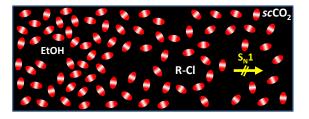

Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.


You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Graphical abstract

No solvent, no reaction: ethanol inhibits $S_N 1$ reactions of alkyl halides in $scCO_2$ by competing with the substrate for solvation.

Organic & Biomolecular Chemistry

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

S_N1 Reactions in Supercritical Carbon Dioxide in the Presence of Alcohols: the Role of Preferential Solvation

Thais Delgado-Abad, Jaime Martínez-Ferrer, Rafael Acerete, Gregorio Asensio, Rossella Mello, María Elena González-Núñez*

Ethanol (**3b**) inhibits $S_N 1$ reactions of alkyl halides **1** in supercritical carbon dioxide ($scCO_2$) and gives no ethers as products. The unexpected behaviour of alcohols **3** in the reaction of alkyl halides **1** with 1,3-dimethoxybenzene (**2**) in $scCO_2$ under different conditions is rationalised in terms of Bronsted and Lewis acid-base equilibria of reagents, intermediates, additives and products in a singular solvent characterised by: i) the strong quadrupole and Lewis acid character of carbon dioxide, which hinders $S_N 2$ paths by strongly solvating basic solutes; ii) the weak Lewis base character of carbon dioxide, which prevents it from behaving as a proton sink; iii) the compressible nature of $scCO_2$, which enhances the impact of preferential solvation on carbon dioxide availability for the solvent-demanding rate determining step.

Introduction

Supercritical carbon dioxide ($scCO_2$) is an alternative solvent for green chemistry characterised by zero dipole moment, very low dielectric constant, and no hydrogen-bonding behaviour, yet is suitable for performing uncatalised S_N1 reactions of alkyl halides $\mathbf{1}^{3a}$ and electrophilic brominations of weakly activated aromatics. The strong quadrupole, and the Lewis acid but non-basic character of carbon dioxide, 3,4 account for the ability of $scCO_2$ to solvate ionic species and to avoid capture by acidic intermediates.

R = PhCHCH₃, PhCH₂, Adamantyl, tert-Butyl; Hal = Cl, Br, ArH = 1,3-Dimethoxybenzene (**2**)

 $\textbf{Scheme 1.} \ \ \text{Reaction of alkyl halides 1} \ \ \text{with aromatic 2} \ \ \text{in } \textit{scCO}_2.$

In the course of our study^{3a} on the reaction of alkyl halides **1** with 1,3-dimethoxybenzene **2** in $scCO_2$, which proceeds through the solvent-promoted ionisation of **1** and capture of carbenium ion **I** by the aromatic (Scheme 1), we noticed that alcohols **3** inhibited the formation of Friedel-Crafts adducts, **4** and **5**, and no ethers **6** formed as products.^{3a} This unexpected behaviour⁵ for a polar, protic and nucleophilic additive prompted us to further explore S_N1 reactions as sensitive probes for solvation in $scCO_2$.⁶ Herein we report on reactions of alkyl halides **1**, 1,3-dimethoxybenzene (**2**), and alcohols **3** in

 $scCO_2$ under different conditions, and disclose the reaction paths involved, as well as the impact of solvation on the product distribution and ionising ability of $scCO_2$. The results revealed that solute-carbon dioxide interactions modify the course of these reactions in relation to conventional solvents, and stressed the relevance of solvation by $scCO_2$ when designing applications of this medium as a solvent for green chemistry.

Results and discussion

The model systems selected for exploring S_N1 reactions in $scCO_2$ were 1-chloro-1-phenylethane (1a) and benzylbromide (1c) as ionogens, 1,3-dimethoxybenzene (2) as aromatic, and 1-phenylethanol (3a) and ethanol (3b) as additives. The reactions were performed and analysed following reported procedures. The experiments performed in view cells showed homogenous reaction mixtures in all cases. Styrene and products derived from CO_2 -capture (carbonates or carboxylic acids) were not detected in the reaction mixtures. The Supplementary Material provides a detailed description of the experimental procedure and the balance of products for the isotopic tracer experiments (Table S1).

$S_N 1$ reactions of alkyl halides 1 and alcohols in $\mathit{sc}CO_2$: reaction pathways

The absence of ethers $\bf 6$ as products from the reactions of alkyl halides $\bf 1$ with aromatic $\bf 2$ in $scCO_2$ in the presence of ethanol $\bf (3b)$ was firstly attributed to solvation by $scCO_2$, which would either prevent alcohol $\bf 3b$ to react with carbocations $\bf I$, or would modify the reaction paths of the intermediate species in relation to those observed in conventional solvents. In order to explore these possibilities, we designed isotopic tracer

a Departamento de Química Orgánica. Facultad de Farmacia. Universidad de Valencia. Avda. Vicente Andrés Estellés s.n. 46100-Burjassot (Valencia). Spain.
 Electronic Supplementary Information (ESI) available: Experimental procedures and spectra. See DOI: 10.1039/x0xx00000x

Scheme 2. Reaction paths proposed for 1-chloro-1-deutero-1-phenylethane (1d-1a), 1-phenylethanol (3a), and 1,3-dimethoxybenzene (2) in scCO₂.

experiments with 1-chloro-1-phenylethane (1a) and 1-phenylethanol (3a) in $scCO_2$ in order to open alternative reaction channels to the intermediate species and track the reaction components under these conditions. Scheme 2 depicts the ionisation and proton-transfer equilibria, and the irreversible aromatic electrophilic substitution paths involved in these reactions.

Reaction of 1-chloro-1-phenylethane (1a) with phenylethanol (3a). Isotopic tracer experiments. The reaction of equimolar amounts of 1-chloro-1-deutero-1-phenylethane (1d-1a) 80 D-atom % and 1-phenylethanol (3a) in scCO₂ at 250 bar and 60°C for 15 h gave 36% of the corresponding ether **6aa** as a mixture of sin- and anti-diastereomers (Run 1, Figure 1). This result shows that solvation by scCO2 does not prevent alcohol 3a from capturing carbocation intermediates 1d-la formed by the solvent-promoted ionisation of alkyl halide 1d-1a (Scheme 2). The reaction of 1-phenylethanol (3a) with alkyl halide 1a to give ether 6aa contrasts with the reluctance of ethanol (3b) to undergo an analogous transformation, and suggests that the ability of alcohol 3 to ionise under these conditions may determine the reaction course.

The formation of ether H,H-6aa in amounts larger than ether H,D-6aa (Entry 1, Figure 1), and the higher conversion rate of alcohol 3a (81%) compared to alkyl halide 1d-1a (25%) (Table S1), indicate the *involvement of acid catalysed dehydration of alcohol 3a under these conditions* (Scheme 2).⁷ The formation of symmetrical ether D,D-6aa (Entry 1, Figure 1) suggests that protonated ether H,D-6aaH⁺ ionises in the reaction medium to release alcohols 3a or 1d-3a and carbocation intermediates Ia or 1d-Ia (Scheme 2).

The reaction of 1-chloro-1-phenylethane (1a) with a twofold excess of 1-deutero-1-phenylethanol (1d-3a) in scCO₂ under the same conditions (Entry 2, Figure 1) followed the

Product distribution (%)
D-label distribution H:D or H,H:H,D:D,D (%)

Run	1	3 (equiv)	1a	3a	sin- 6aa	anti- 6aa
1	1d- 1a	3a (1)	51	13	20	16
80	D atom	ı %	4 3:77	84:16	50:33:17	41:38: 4 1
2	1a	1d- 3a (2)	37	42	11	10
		88 D-atom %	79: 4 1	1 4 :88	3:40:57	<1:39:61

Figure 1. Isotopic tracer experiments for reactions of 1-chloro-1-phenylethane (1a) (0.05 M), and 1-phenylethanol (3a) in $scCO_2$ at 250 bar and 60 °C for 15 h. Isotopic labels were obtained from the relative intensities of the ions [M †] for 1d-1a, 3a, and [M-15 †] for 6aa. The figures are the average of at least three independent experiments within standard deviation of +15 %. Figure 1

same trends. In this case, symmetrical ether D,D-6aa was the major product, with conversions of alkyl halide 1a and alcohol 1d-3a of 8% and 48%, respectively (Table S1).

Finally, the low isotopic dilution observed for unreacted alkyl halide 1d-1a and alcohol 1d-3a (4-13% and 7-0%, respectively, Table S1) compared to the relatively high extent of ethers 6aa formed (Entries 1 and 2, Figure 1), indicates that chloride anion does not compete efficiently with alcohols 3a to trap carbocation intermediates 1a in $scCO_2$.

Reaction of 1-chloro-1-phenylethane (1a) with 1,3-dimethoxybenzene (2) in the presence of 1-phenylethanol (3a). Isotopic tracer experiments. 1-Chloro-1-phenylethane (1a) reacts quantitatively with aromatic 2 (4 equiv) in $scCO_2$ at 60°C and 250 bar for 5 h to give mono- and di-substituted Friedel-Crafts adducts 4a (82%) and 5a (18%) as mixtures of regioisomers (4a $_{o,p}$) and diastereomers (5 and 5'),

Product distribution (%) I D-label distribution H:D or H,H:H,D:D,D (%)

Run	1	2 (equiv)	1a	3a	4a _{o,p}	4a _{o,o}	5 a	5a'	<i>sin</i> -6aa	anti-6aa
1	1a	4			7 3	9	9	9		
2	1d-1 a	4		16	3 2	6			4	
	80 D-atom %		23:77	90:10	56:44	53:47	30:47:23	32:40:28	50:38:12	50:45:5
	<i>1d</i> -1 a	1	40		20	4	10	10	10	
	80 D-atom %		30:70	90:10	63:37	<i>65:35</i>	41:42:17	41:42:17	50:33:17	52:35:13

Figure 2. Reactions of 1-chloro-1-phenylethane (1a) (0.05) M, 1,3-dimethoxybenzene (2), and 1-phenylethanol (3a) in $scCO_2$ for 5 h (run 1)^{3a} and 15 h (runs 2 and 3). Isotopic labels were obtained from the relative intensities of the ions [M[†]] for 1d-1a, 3a, 4a, and 5a, and [M-15[†]] for 6aa. The figures are the average of at least three independent experiments within standard deviation of ±15 %.

respectively (Entry 1, Figure 2). ^{3a} Conversely, the reaction of equimolar 1-chloro-1-deutero-1-phenylethane (1d-1a) 80 D-atom % and 1-phenylethanol (3a), with 4-fold excess of 1,3-dimethoxybenzene (2) in $scCO_2$ for 15 h under the same conditions (Entry 2, Figure 2) gave monosubstituted Friedel-Crafts adducts 4a (38%), with 44-47 D-atom %, and disubstituted adducts 5a (6 %) with a nearly statistical (1:2:1) H,H:H,D:D,D distribution (Entry 2, Figure 1). Substrate conversions were 42% and 72% for 1d-1a and 3a, respectively (Table S1).

These data evidence that the Friedel-Crafts reaction involves nearly equivalent amounts of carbocations 1d-la and la, and indicate that protonated ether H,D-GaaH⁺ is the major source of electrophilic intermediates for this reaction. Therefore, carbocations 1d-la, formed by the ionisation of alkyl halide 1d-1a, react with alcohol 3a faster than with 1,3-dimethoxybenzene (2) (Scheme 2).

The isotopic traces provide further information on the reaction course in scCO2. Thus the preferential formation of symmetrical H,H-ethers 6aa (Entries 2 and 3, Figure 2), and the conversions of alkyl halide 1d-1a (42%) and alcohol 3a (7 %) (Table S1), once again indicate the involvement of the acid catalysed dehydration of alcohol 3a under these conditions. However, the isotopic labels found for Friedel-Crafts adducts 4a (44-47 D-atom %) and 5a (H,H:H,D:D,D ca. 1:2:1) (Entry 1, Figure 2) suggest that protonated alcohol **3aH**⁺ and ethers **6aaH** from the acid-catalysed dehydration path (Scheme 2) do not play a significant role in the Friedel-Crafts reaction, otherwise the D-labelling for adducts 4a and 5a would be lower than those observed. The results hence suggest that hydrogen chloride formed in the Friedel-Crafts reaction competes efficiently with carbocations Ia and 1d-Ia to trap alcohol **3a**, and that the H-bonding interactions⁸ of protonated species **3aH**⁺ and **6aaH**⁺, with alcohol **3a** facilitate the acidcatalysed dehydration pathway. These interactions are enhanced by the low basicity of carbon dioxide,9 which prevents the solvent from behaving as a proton sink in these reactions.

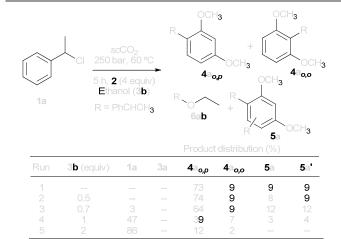


Figure 3. Reactions of 1-chloro-1-phenylethane (1a) (0.05) M and ethanol (3b) with 1,3-dimethoxybenzene (2) (4 equiv) in $scCO_2$. The figures are the average of at least three independent experiments within standard deviation of ± 15 %.

The reactions performed with equimolar amounts of ionogen 1d-1a, alcohol 3a and 1,3-dimethoxybenzene (2) (Entry 3, Figure 2) led to Friedel-Crafts adducts 4a with 37-35 D-atom %, respectively, and disubstituted adducts 5a in the ca. 2:2:1 H,H:H,D:D,D distribution. The conversions of 1d-1a and 3a were 40% and 95%, respectively (Table S1). These isotopic traces reveal the increased competitiveness of alcohol 3a in relation to 1,3-dimethoxybenzene (2) to trap carbocations 1d-1a and 1a compared to the reactions performed with a 4-fold excess of 2 (Entry 2, Figure 2).

The isotopic dilutions found for the unreacted substrates in these reactions (Entries 2 and 3, Figure 2) were 4-13% for alkyl halide 1d-1a, and were negligible for alcohol 3a (Table S1).

Friedel-Crafts reactions of alkyl halide 1a in the presence of ethanol (3b). The Friedel-Crafts reactions of alkyl halide **1a** with aromatic **2** in $scCO_2$ in the presence of ethanol **(3b)** followed a different course (Figure 3). Thus increasing

Scheme 3. Prevailing reaction path for 1-chloro-1-phenylethane **(1a)**, 1,3-dimethoxybenzene **(2)** and ethanol **(3b)** in scCO₂.

amounts of ethanol (**3b**) above 0.5 equiv progressively inhibited the conversion of alkyl halide **1a** (Entries 2-5, Figure 3). Ethyl 1-phenylethyl ether (**6ab**), 1-phenylethanol (**3a**), and ethyl-substituted Friedel-Crafts adducts **4b** and **5b** were not found as products under these conditions. These results can now be interpreted with the information collected from the isotopic tracer experiments (Scheme 3).

Protonated ether ${\bf 6abH}^{+}$ is the source of carbocation intermediates ${\bf Ia}$ for Friedel-Crafts reactions in the presence of ethanol (${\bf 3b}$) (Scheme 3). Absence of 1-phenylethanol (${\bf 3a}$) as a product in these reactions (Scheme 3) shows that S_N2 nucleophilic displacements on the highly electrophilic primary carbon atom of ${\bf 6abH}^{+}$ by either alcohol ${\bf 3b}$ or chloride anion do not compete with unimolecular pathways under these conditions (Scheme 3). Solvation by carbon dioxide probably hinders nucleophiles to approach electrophilic ${\bf sp}^3$ carbon atoms in a ${\bf S}_N2$ fashion.

This fact limits the reaction paths available for protonated ether ${\bf 6abH}^+$ to the back-ionisation and proton transfer to ethanol ${\bf (3b)}$, and those for ${\bf 3bH}^+$ to the back proton transfer to ether ${\bf 6ab}$ (Scheme 3) since neither ${\bf 6abH}^+$ nor ${\bf 3bH}^+$ undergoes S_N2 or S_N1 reactions at the primary carbon atom under these conditions (Scheme 3). Accordingly, the reaction funnels towards the irreversible electrophilic aromatic substitution with aromatic (2) (Scheme 3), which makes ethyl 1-phenylethyl ether (${\bf 6ab}$) formation unfeasible. Conversely, the reactions with 1-phenyl-1-ethanol (${\bf 3a}$) as an additive (Figure 2) have unimolecular paths available to deplete protonated alcohol ${\bf 3aH}^+$ from the solution due to the stability of secondary benzylic carbocation ${\bf Ia}$ (Scheme 2).

$S_N 1$ reactions of alkyl halides 1 and alcohols in $\mathit{sc}CO_2$: preferential solvation

The results reported in Figures 1-3 have shown that alcohols **3** react with carbocation intermediates **Ia** formed by the $scCO_2$ -promoted ionisation of **1a** faster than 1,3-dimethoxybenzene (**2**), and that the irreversible Friedel-Crafts reaction with 1,3-dimethoxybenzene (**2**) involves carbocations **Ia** formed from a series of competitive ionisation and protontransfer reversible processes (Schemes 2 and 3). The reaction paths depicted in Schemes 2 and 3 do not account, however,

for the low isotopic dilution found for unreacted substrates 1d-1a and 3a (Table S1), the low conversions of alkyl halide 1a (Figures 1 and 2; Table S1), nor for the progressive reaction inhibition promoted by increasing amounts of ethanol (3b) (Figure 3). These results rather suggest that alcohols 3 inhibit the ionisation of alkyl halide 1a in scCO2, a notion which apparently contradicts the well-established behaviour of alcohols ${\bf 3}$ as solvents for $S_N{\bf 1}$ reactions. 2,5 Nevertheless, it is known that ethanol (3b) behaves as an electrophilic catalyst for S_N1 reactions in non-polar non-protic solvents,^{5d} yet inhibits S_N1 reactions in solvents which are stronger H-bond donors than itself. 10 For instance, the solvolysis of alkyl halides 1 in binary mixtures water:3b^{10a} and fluorinated alcohols:3b,^{10b} become progressively slower with increasing amounts of ethanol (3b). The same trend is known for acetone, dimethylsulfoxide, and for dioxane as cosolvents for S_N1 reactions in aqueous medium.11

The changes in the reaction rates and equilibria promoted by additives or cosolvents are generally attributed to competitive substrate-solvent, substrate-cosolute, and cosolute-solvent interactions. This concept suggests that alcohols 3 may hinder the highly solvent-demanding rate-determining step of S_N1 reactions in $scCO_2$ by competing with alkyl halides 1 for solvation. Properties of $scCO_2$, such as compressibility, densities lower than for liquid solvents within the 75-250 bar range, and density inhomogeneities promoted by specific solute-solvent and solvent-solvent interactions, would enhance the effect of alcohols 3 on these reactions. In order to explore this possibility, we performed the reaction of benzyl bromide (1c), 1,3-dimethoxybenzene (2) and ethanol (3b) in $scCO_2$ under different conditions (Equation 1, Table 1).

Friedel-Crafts reactions of alkyl halide 1c in the presence of ethanol (3b). Benzyl bromide (1c) proved to be more sensitive to ethanol (3b) than 1-chloro-1-phenylethane (1a) (Table 1). Thus 0.7 equivalents of ethanol (3b) sufficed to suppress the reaction for 1c (Entry 9, Table 1), while more than 2 equiv were required to achieve the same effect for 1a (Entry 5, Figure 3). This result suggests a stronger solvent-demand in the rate-determining step for benzyl bromide (1c) than for 1-chloro-1-phenylethane (1a), in agreement with the different stabilities of primary and secondary benzylic carbocations, Ic < Ia.

The results showed that reaction efficiency depended on both ethanol (**3b**) and benzyl bromide (**1c**) concentrations (Table 1). Thus reactions with molar ratio **1c:3b** 1:0.5 proceeded for [**3b**] = 0.025 M, but not for [**3b**] = 0.05 M (Entries 6 and 11, Table 1), while the reactions with **1c:3b** molar ratio 1:1 did not proceed at all, not even for [**3b**] = 0.025 M (Entries 5,8,13, Table 1). These trends strongly suggest that ethanol (**3b**) competes with alkyl halide **1c** for solvation. ¹⁵

Scheme 4 illustrates the solvation equilibriums¹⁵ for alkyl halide **1** and ethanol (**3b**) (Steps 1, 2), the exchange of carbon dioxide molecules clustered around **1c** and **3b** (Step 3), and the integration of further carbon dioxide molecules into the solvation shell of alkyl halide **1** (Step 4) required in the rate-

Organic & Biomolecular Chemistry

Table 1. Reaction of benzyl bromide (1c) with 1,3-dimethoxybenzene (2) in $scCO_2$, in the presence of ethanol (3b). a

Run	Molar ratio	[1c] (M)	[3b] (M)	Conv. (%)
	1c:3b			
1 ^b		0.1		98
2 ^b		0.05		98
3 ^b		0.025		99
$4^{b,c}$		0.05		99
5	1:1	0.1	0.1	
6	1:0.5	0.1	0.05	
7	1:0.25	0.1	0.025	76
8	1:1	0.05	0.05	
9	1:0.7	0.05	0.035	
10	1:0.6	0.05	0.03	76
11	1:0.5	0.05	0.025	77
12	1:0.25	0.05	0.0125	83
13	1:1	0.025	0.025	
14 ^d	1:0.5	0.025	0.0125	59

^a Reactions performed with molar ratio **1c:2 1:4**, for **15** h. The figures are the average of at least three independent experiments within standard deviation of ± 15 %. ^b Typical product distribution: **4c**_{0,p} **82** %, **4c**_{0,o} **6** %, **5c 6** %, and **5c' 6** %. ^c Reaction at 90 bar. ^d Molar ratio **1c:2 1:8**.

determining step (Step 5). Steps 4 and 5 are expected to be strongly sensitive to the cosolutes that compete with the alkyl halide 1c for solvation. By assuming that the concentration of carbon dioxide available for alkyl halide 1 is roughly that which remains after the solvation of alcohol 3b, the rate law for a simplified scheme with equations 1,2,4 and 5 (Scheme 4), shows that the order for ethanol (3b) depends on the solvation requirement of alkyl halide 1 in the rate-determining step (Scheme 4). Therefore, the impact of alcohol 3b on the reaction depends on carbocation stability, the leaving group ability of the halide anion, and the solvation demand of the ion pairs. Accordingly, 1-chloro-1-phenylethane (1a) was found to be less sensitive to ethanol (3b) than benzyl bromide (1c) (Figure 3, Table 1).

Ethanol **(3b)** exerts stronger interactions with carbon dioxide than alkyl halides **1** and 1,3-dimethoxybenzene **(2)** given its stronger basic and H-bond donor character. Hence the solvation shell for **3b** would be larger than for **1** (n > m), and the solvent exchange equilibrium would favour the solvation of **3b** (Step 3, Scheme 4). In this way, ethanol **(3b)** rarefies the reaction medium and renders it less efficient to perform the solvent-demanding ionisation of **1** and the dissociation of the resulting ion pair (Scheme 4). The ability of a cosolute to perturb S_N1 reactions in $scCO_2$ would then depend on its basicity. Accordingly, reactions would be insensitive to phenol To increasing concentrations of aromatic **2** (Entries 1-3, Table 1), while readily inhibited by

- (6) $[R^+ \cdot t CO_2] + 2 \xrightarrow{fast}$ Products $v = K_1 K_4 K_5 [RX] \cdot [CO_2[m^{+s} = K_1 K_4 K_5 [RX] \cdot \{[CO_2[_0 n [EtOH]]\}^{m+s}]$

Scheme 4. Mechanistic scheme with solvation equilibria for the reaction of alkyl halide $\mathbf{1}$ (X = Cl, Br) with 1,3-dimethoxybenzene (2) in $scCO_2$ in the presence of ethanol (3b). The rate law applies to equations 1, 2, 4, and 5, by considering the actual concentration of CO_2 available for solvation of alkyl halide $\mathbf{1}$ as that remaining after solvation of ethanol (3b).

tertiary amines or water. 3a It is noteworthy that solvation in $scCO_2$ could involve solute-solvent interactions that are not directly related to basicity. For instance, fluorinated solutes are commonly called " CO_2 -philic" for the ability of fluorine atoms to interact with carbon dioxide. 18 Actually, we found that 2,2,2-trifluoroethanol inhibits the ionisation of alkyl halides 1 as efficiently as ethanol (3b) or water.

The reaction of benzyl bromide (1c) with 1,3-dimethoxybenzene (2) at 60° C in scCO $_2$ in the presence of ethanol (3b) was found to be pressure-insensitive within the 100-250 bar range for [1c] = 0.05 M and ratios 1c:3b 1:0.5, 1:0.6 and 1:0.7. This result relates to the dependence of the size of the solvation shells on pressure, which follows the same pace as the bulk density within this range. Thus raising pressure does not provide larger amounts of uncoordinated carbon dioxide molecules available for solvation of 1c since the size of the clusters around the solutes also increases.

If alcohol **3** does not fully prevent the ionisation of alkyl halide **1** (Figure 3), the subsequent reactions generate hydrogen halides, which readily ionise in the reaction medium (Schemes 2 and 3). Since these ionic species introduce further solvation equilibriums and displace the alkyl halide ionisation equilibrium to the left-hand side (Step 5, Scheme 4), the $S_N 1$ reactions of alkyl halides **1** in $scCO_2$ in the presence of alcohols **3** are expected to autoinhibit to an extent that depends on the solvation requirements of alkyl halide **1**, alcohol **3**, halide anions X^- , protonated intermediates, and side products (ethers, water), in agreement with the experimental observations (Figures 1, 2 and 3, Table 1).

These results showed that the S_N1 reactions of alkyl halides **1** in $scCO_2$ are extremely sensitive to cosolutes that are able to exert strong interactions with carbon dioxide. Therefore, alcohols **3**, water, amines, phosphines, ketones, esters or fluorinated compounds, among others, must be rigorously excluded from the reaction medium in order to obtain reproducible results. In the Supplementary Material we provide detailed experimental procedures that address avoiding reaction medium contamination while performing these reactions.

Organic & Biomolecular Chemistry

Conclusions

In summary, the unexpected behaviour of ethanol (3b) in the S_N1 reactions of alkyl halides 1 with 1,3-dimethoxybenzene (2) in scCO2 namely, reluctance to form ethers and reaction rate inhibition, is the result of the Brønsted and Lewis acid-base equilibria that take place in a peculiar reaction medium in which: i) the strong quadrupole and Lewis acid character of carbon dioxide hinders S_N2 paths by strongly solvating basic and nucleophilic solutes; ii) the weak Lewis base character of carbon dioxide prevents it from behaving as a proton sink; iii) the compressible nature of scCO2 enhances the impact of preferential solvation on carbon dioxide availability for the solvent-demanding rate-determining step. Thus the $S_N\mathbf{1}$ reactions of alkyl halides 1 in scCO2 are inhibited in the presence of cosolutes that are able to exert stronger interactions with the solvent than substrates 1. The same behaviour is known for the $S_N\mathbf{1}$ reactions of alkyl halides $\mathbf{1}$ in an aqueous medium in the presence of additives. The results reported herein reveal that scCO2 is a remarkably structured solvent² capable of promoting and sustaining ionic reactions and is, therefore, not at all similar to n-hexane or carbon tetrachloride as commonly regarded.

Acknowledgements

Financial support from the Spanish Ministerio de Economía y Competitividad (CTQ2013-47180-P), and Fondos FEDER is gratefully acknowledged. TDA thanks the Spanish Ministerio de Educación, Cultura y Deporte for fellowships. We thank the SCSIE (Universidad de Valencia) for access to its instrumental facilities.

Notes and references

- a) Handbook of Green Chemistry Vol. 4 Supercritical Solvents, eds. W. Leitner and P. G. Jessop, Wiley-VCH, New York, 2010.
 b) Green Chemistry Using Liquid and Supercritical Carbon Dioxide, eds. J. M. DeSimone and W. Tumas, Oxford University Press, Oxford, 2003. c) E. J. Beckman, J. Supercritical Fluids, 2004, 28, 121. d) C. M. Rayner, Org. Proc. Res. Dev., 2007, 11, 121-132.
- C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, 4th Edition, Wiley-VCH, Weinheim, 2011.
- a) T. Delgado-Abad, J. Martínez-Ferrer, A. Caballero, A. Olmos, R. Mello, M. E. González-Núñez and G. Asensio, Angew. Chem. Int. Ed., 2013, 52, 13298-13301. b) T. Delgado-Abad, J. Martínez-Ferrer, J. Reig-López, R. Mello, R. Acerete, G. Asensio and M. E. González-Núñez, RSC Adv., 2014, 4, 51016-51021.
- 4 a) P. Raveendran, Y. Ikushima and S. L. Wallen, Acc. Chem. Res., 2005, 38, 478-485. b) S. Kazarian, M. F. Vincent, F. V. Bright, C. L. Liotta and C. A. Eckert, J. Am. Chem. Soc., 1996, 118, 1729-1736.
- 5 a) F- A- Carey and R. J. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, 4th Edition, Kluwer/Plenum, New York, 2000. Chapter 5. b) T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic

- Chemistry" 3rd Edition, Harper & Row Publishers, New York, 1987. Chapters 4 and 5. d) K. Okamoto, *Pure Appl. Chem.*, 1984, **56**, 1797-1808.
- 6 J. F. Brennecke and J. E. Chateauneuf, Chem. Rev., 1999, 99, 433-452.
- 7 W. K. Gray, F. R. Smail, M. G. Hitzler, S. K. Ross, and M. Poliakoff, J. Am. Chem. Soc. 1999, 121, 10711-10718.
- a) F. Lafrad, A. Idrissi and T. Tassaing, J. Supercrit. Fluids, 2014, 94, 65-70. b) S. Reiser, N. McCann, M. Horsch and H. Hasse, J. Supercrit. Fluids, 2012, 68, 94-103. c) W. Xu, J. Yang and Y. Hu, J. Phys. Chem. B, 2009, 113, 4781-4789. d) M. Saharay and S. Balasubramanian, J Phys. Chem. B, 2006, 110, 3782-3790. e) P. Lalanne, T. Tassaing, Y. Danten, F. Cansell, S. C. Tucker and M. Besnard, J. Phys. Chem. A, 2004, 108, 2617-2624. f) Y. Danten, T. Tassaing and M. Besnard, J. Phys. Chem. A, 2002, 106, 11831-11840.
- 9 S. G. Lias, J. F. Liebman and R. D. Levin, J. Phys. Chem. Ref. Data, 1984, 13, 695-808.
- 10 a) T. W. Bentley and G. E. Carter, J. Am. Chem. Soc., 1982, 104, 5741-5747. b) T. W. Bentley, G. Llewellyn and Z. H. Ryu, J. Org. Chem., 1998, 63, 4654-4659.
- 11 D. J. Raber, R. C. Bingham, J. M. Harris, J. L. Fry and P. v. R. Schleyer, *J. Am. Chem. Soc.*, 1970, **92**, 5977-5981.
- a) S. Gupta, S. Rafiq, M. Kundu and P. Sen, J. Phys. Chem. B, 2012, 116, 1345-1355. b) J. L. Cook, S. A. Hunter, C. M. R. Low, A. Perez-Velasco and J. G. Vinter, Angew. Chem. Int. Ed., 2008, 47, 6275-6277. c) J. L. Cook, S. A. Hunter, C. M. R. Low, A. Perez-Velasco and J. G. Vinter, Angew. Chem. Int. Ed., 2007, 46, 3706-3709. d) A. Bagno, G. Scorrano and S. Stiz, J. Am. Chem. Soc., 1997, 119, 2299-2300. e) C. H. Langford and J. P. K. Tong, Acc. Chem. Res., 1977, 10, 258-264.
- 13 a) R. Span and W. Wagner, J. Phys. Chem. Ref. Data 1996, 25, 1509-1596. b) E. W. Lemmon, M. O. McLinden and D.G. Friend, "Thermophysical Properties of Fluid Systems" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W.G. Mallard, Eds. National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, [Retrieved May 2nd, 2016].
- 14 a) S. C. Tucker, *Chem. Rev.*, **1999**, *99*, 391-418. b) O. Kajimoto, *Chem. Rev.*, **1999**, *99*, 355-389.
- 15 N. Nunes, C. Ventura, F. Martins and R. E. Leitao, *J. Phys. Chem. B*, 2009, **113**, 3071-3079.
- 16 This process is analogous to the salting-out effect, i.e. the diminished solubility of non-electrolytes in the presence of ionic solutes with highly structured solvation shells.²
- 17 $S_N 1$ reactions in $scCO_2$ in the presence of phenol proceed efficiently to give Friedel-Crafts products derived from 1,3-dimethoxybenzene (2) and phenol. These results have not been included in the present study since phenol catalyzes $S_N 1$ reactions in non-polar non-protic solvents through hydrogen bonding (see reference 5d).
- 18 J. Peach and J. Eastoe, Beilstein J. Org. Chem. 2014, 10, 1878-1895.