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A simple and facile protocol for palladium-catalyzed ortho-arylation of ferrocenecarboxamides with aryl halides was 

developed with the assistance of the bidentate directing group. The substrate scope could be extended to aryl iodides, 

bromides and even chlorides, as well as heterocyclic halides, affording diarylated products in moderate to good yields.

Introduction 

Ferrocenyl derivatives have wide applications in organic 

synthesis,[1] materials science,[2] medicinal chemistry,[3] and 

biological science[4] due to their unique structures, chemical 

and thermal stabilities, and redox properties. Furthermore, 

some of the ortho-difunctionalized ferrocene can also serve as 

excellent planar chiral ligands in efficient enantioselective 

catalysis.[5] Therefore, many efforts have been devoted to the 

development of economical and environment-friendly routes 

to ortho-functionalized ferrocenyl derivatives.[6] 

During the past decades, transition metal-catalyzed C-H 

functionalization has become a robust and facile tool in 

organic synthesis and a series of transformations from C-H to 

C-C and C-heteroatom bonds have been demonstrated. [7]- [9] In 

particular, the pioneering work of C-H arylation of ferrocenes 

belongs to You and co-workers, who developed a protocol of 

direct arylation of simple arenes with ferrocenyl oxazolines in 

2007 (Scheme 1a), but this reaction employed a stoichiometric 

loading of the palladium salt (1 equiv).[6b] Subsequently, You’s 

group developed another successful palladium-catalyzed C-H 

arylation of N,N-dimethylaminomethyl ferrocene with 

arylboronic acids (Scheme 1b), [6g] albeit some of functionalized 

arylboronic acids are not very cheap and their preparation 

needs a multi-step synthesis. After that, palladium-catalyzed 

intramolecular C-H arylation of ferrocenyl derivatives was 

reported by Gu, [6i] You[6j] and Liu[6l] respectively (Scheme 1c), 

although the starting materials needed to be 

prefunctionalized.  
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Scheme 1 Transition Metal-Promoted C-H Arylation of Ferrocenyl derivatives. 

Just recently, Kumar’s group reported palladium-catalyzed C-H 

arylation of N-(quinolin-8-yl)ferrocenecarboxamide with aryl 

iodides (Scheme 1d). [6o] Nevertheless, aryl iodides are usually 

expensive, not very easily available. Aryl bromides and 

chlorides are much cheaper and commercially available, and 

therefore, using them as the aryl sources would be the 

promising choice. However, the relative reports remain rare 

until now (on the ferrocenyl ring). Our research interest is to 

demonstrate a simple and easy protocol for ortho-arylation on 

the ferrocenyl ring. And we envisioned developing the catalytic 

intermolecular C-H arylation of ferrocenecarboxamides with 

aryl bromides and even some chlorides (Scheme 1e). 

Results and discussion 

We commenced our investigation by the reaction of 

ferrocenecarboxamide [DG= quinolin-8-ylamino moiety (Q- 
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Table 1 Optimization of the reaction conditions
a
 

 

Entry Solvent Base Ligand Yield(%)b 

1 toluene K2CO3 PPh3 8 

2 o-xylene K2CO3 PPh3 30 

3 o-xylene Na2CO3 PPh3 20 

4 o-xylene Cs2CO3 PPh3 Trace 

5 o-xylene K3PO4 PPh3 18 

6 o-xylene KHCO3 PPh3 Trace 

7 o-xylene K2CO3 PPy3 23 

8 o-xylene K2CO3 DPPF 49 

9 o-xylene K2CO3 RuPhos 61 

10 o-xylene K2CO3 XPhos 83 

11 o-xylene K2CO3 XantPhos 42 

12 o-xylene K2CO3 
tBuXPhos 60 

13c o-xylene K2CO3 XPhos 72 

14d o-xylene K2CO3 XPhos 82 

15e o-xylene K2CO3 XPhos 51 

a Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), Catalyst (0.02 mmol), 

Ligand (0.02 mmol), PivOH (0.06 mmol), Base (0.4 mmol) and Solvent (1.0 

mL) under nitrogen at 140 oC for 21 h unless otherwise noted. b Isolated 

yield based on 1a. c Without PivOH. d At 150 oC. e At 130 oC. 

amino)] [10] (1a) with bromobenzene (2a) in toluene in the 

presence of Pd(OAc)2 as the model reaction (Table 1), and the 

desired product 3a was obtained in 8% yield (Table 1, entry 1). 

After extensive solvents were screened, and to our delight, the 

desired product 3a was obtained in 30% yield using o-xylene as 

the solvent (Table 1, entry 2); other solvents such as 1,2-

dichloroethane, dioxane, acetonitrile and DMF could not 

facilitate the reaction (see Supporting Information (SI)). A 

thorough screening of bases revealed that K2CO3 was proved 

to be the most effective base (Table 1, entry 2 vs. entries 3-6). 

When the catalyst was switched to PdCl2, Pd2dba3, 

Pd(CF3COO)2, Ni(OAc)2 and [RuCl2(cymene)]2, they could not 

match the efficacy of Pd(OAc)2 in our reaction, and the 

reaction could not take place at all without catalyst (see SI). 

Moreover, the results demonstrated that the choice of a ligand 

was also crucial, tricyclohexyl phosphine (PPy3), 1,1'-

bis(diphenylphosphino)ferrocene (DPPF), 2-

dicyclohexylphosphino-2',6'-diisopropoxy-1,1'-biphenyl 

(RuPhos), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl 

(XPhos), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene 

(XantPhos) and 2-di-tert-butylphosphino-2',4',6'-trisopropyl-

1,1'-biphenyl (tBuXPhos) were also tested in this 

transformation, in which XPhos gave the best result affording 

the desired product 3a in 83% yield (Table 1, entries 7-12). 

PivOH played an important role in the reaction,[10] as the 

pivalate anion might be a key component in C-H bond cleaving, 

which could lower the energy of C-H bond cleavage and act as 

a catalytic proton shuttle[10b]. However, other additives such as 

AcOH, AcOK, and benzoic acid showed the lower effect (see 

SI). And the absence of the PivOH resulted in the decrease of 

the yield of 3a (Table 1, entry 13). When the reaction 

temperature  

Table 2 Substrate scope of aryl bromides.
a, b
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a Reaction conditions: 1a or 4a (0.2 mmol), 2 (0.6 mmol), Pd(OAc)2 (0.02 mmol), 

XPhos (0.02 mmol), PivOH (0.06 mmol), K2CO3 (0.4 mmol) and o-xylene (1.0 mL) 

under nitrogen at 140 oC for 21 h. b Isolated yield based on 1a or 4a. 

was increased to 150 oC or decreased to 130 oC, no much 

better results were observed and the coupling products were 

afforded in 82% and 51%, respectively (Table 1, entries 14 and 

15). In addition, it is worthwhile to mention that the same type 

of product 5a could be obtained in 72% yield when we use the 

2-(pyridine-2-yl)isopropylamino (PIP-amino) [12] moiety as a 

directing group. 

With the optimized reaction conditions in hand, the scope of 

aryl bromides was examined and the results were summarized 

in Table 2. Generally, a variety of aryl bromides bearing 

electron-donating and electron-withdrawing groups are well 

tolerated, generating the desired products in moderate to high 

yields. Whether the directing group is Q-amino or PIP-amino, 

electron-donating substituents (1b-g, R = Me, OMe, and tBu) 

resulted in higher yields than those of the electron-

withdrawing substituents (1h-m, R= CF3, F, Cl, COOMe, and 

NO2). Moreover, a heterocyclic bromide (such as 2-

bromothiophene) could also participate in the coupling, 

producing the target products in moderate yields (3n and 5n). 

Overall, the two bidentate directing groups Q-amino and PIP-

Page 2 of 9RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

amino could work well in this reaction and the results of 

quinolin-8-ylamino moiety as the directing group are a little 

better than those of 2-(pyridine-2-yl)isopropylamino group. 

The molecular structures of 3a
[11] and 5a

[12] were 

unambiguously confirmed by single crystal X-ray diffraction 

study. 

 
Scheme 2. The gram scale reaction. 

To demonstrate the synthetic value of this protocol, a gram-

scale reaction of 1a with 2a was performed (Scheme 2). This 

reaction could generate the desired product in an isolated 

yield of 75%. 

 
Scheme 3. Further functionalization of ferrocenyl derivatives. 

Moreover, 4-iodobromobenzene could also participate in 

the coupling with 1a, generating the desired product 3o in 82% 

yield (Scheme 3). This reaction did not involve the phosphine 

ligand (XPhos) and high temperature (only at 100 oC). It could 

also work well in air, which is easier to operate than that of 

Kumar’s protocol for aryl iodides (at 120 oC under argon).[6o] 

Furthermore, the product 3o was easily converted into the 

interesting more complicated compound 6 in 97% yield. 

 

Scheme 4. The arylation of ferrocenecarboxamides with aryl chlorides. 

Finally, we also explored the reaction of aryl chlorides 

shown in Scheme 4. Both 4-chlorotoluene and 1-(tert-butyl)-4-

chlorobenzene were well tolerated in this reaction, leading to 

the desired products in moderate yields (3b and 3d). 

Conclusions 

In conclusion, we have developed a Pd(II)-catalyzed 

intermolecular ortho C-H arylation of ferrocenecarboxamides 

with aryl halides using the bidentate directing groups, i.e., 

quinolin-8-ylamino and 2-(pyridine-2-yl)isopropylamino 

groups. The protocol exhibites excellent functional group 

tolerance for both electron-rich (e.g., Me, OMe and tBu) and 

electron-poor (e.g., CF3, F, Cl, COOMe and NO2) groups. 

Moreover, gram-scale reaction of this arylation is also 

successfully realized, which demonstrates its potential 

applicable value in organic synthesis. In addition, some aryl 

chlorides could also participate in the coupling, affording the 

desired products in moderate yields. 

Experimental 

General Information 
1H, 13C and 31P NMR spectra were recorded on a Bruker DPX-

400 spectrometer with CDCl3 as the solvent and TMS as an 

internal standard. Melting points were measured using a WC-1 

microscopic apparatus and are uncorrected. Mass spectra 

were measured on an LC-MSD-Trap-XCT instrument. High 

resolution mass spectra were ensured on a MALDI-FTMS. All 

solvents were used directly without further purification. 

Dichloromethane, ethyl acetate, and hexane were used for 

column chromatography. Chemicals were obtained from 

commercial sources and used as-received without further 

purification unless otherwise noted. 

Typical Procedure for the Products 

a) For aryl bromides: A 25 mL Schlenk tube was equipped with 

a magnetic stir bar and charged with 1a or 4a (0.2 mmol), 2a-

2n (0.6 mmol, 3 equiv), K2CO3 (55.3 mg, 0.4 mmol, 2 equiv), 

Pd(OAc)2 (4.5 mg, 0.02 mmol, 10 mol %), XPhos (9.5 mg, 0.02 

mmol, 10 mol %), PivOH (6.2 mg, 0.06 mmol, 30 mol %) in o-

xylene (1.0 mL). The resulting mixture was heated under 

nitrogen at 140 oC for 21 h, and cooled to room temperature. 

Upon completion, CH2Cl2 (20 mL) was added to the reaction 

system, and the resulting mixture was filtered through a pad of 

Celite. The filtrate was extracted with H2O (20 mL), and the 

aqueous layer was extracted with CH2Cl2 (2 × 10 mL). The 

combined organic layer was dried over anhydrous Na2SO4 and 

filtered. After evaporation of the solvent under vacuum, the 

residue was purified by column chromatography on silica gel 

(100‒200 mesh) using hexane-EtOAc as an eluent to afford the 

pure product 3 or 5. 

2,5-diphenyl-N-(quinolin-8-yl)ferrocenecarboxamide (3a): 

Orange solid (84 mg, 83%); mp 184‒185 °C; 1H NMR (400 MHz, 

CDCl3) δ 10.80 (s, 1H), 8.87 (d, J = 7.5 Hz, 1H), 8.57 (d, J = 3.7 Hz, 

1H), 8.11 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 7.5 Hz, 4H), 7.56 (t, J = 

7.6 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.36 (dd, J = 6.3 Hz, J = 2.2 

Hz, 1H), 7.22 (t, J = 7.3 Hz, 4H), 7.15 (t, J = 7.2 Hz, 2H), 4.79 (s, 

2H), 4.44 (s, 5H); 13C NMR (100 MHz, CDCl3) δ 167.9, 147.8, 

138.5, 136.8, 136.0, 134.7, 128.8, 128.0, 127.8, 127.4, 126.7, 

121.4, 116.1, 88.6, 82.2, 72.7, 69.3; HRMS (ESI+) calcd for 

C32H24FeN2O [M+H]+: 509.1311, found: 509.1313. 

N-(quinolin-8-yl)-2,5-di-p-tolylferrocenecarboxamide (3b): 

Orange solid (87 mg, 81%); mp 149‒150 °C; 1H NMR (400 MHz, 

CDCl3) δ 10.80 (s, 1H), 8.89 (dd, J = 4.2 Hz, J = 3.3 Hz, 1H), 8.59 

(dd, J = 2.5 Hz, J = 2.2 Hz, 1H), 8.11 (dd, J = 4.9 Hz, J = 3.5 Hz, 

1H), 7.59‒7.49 (m, 6H), 7.36 (dd, J = 6.3 Hz, J = 2.1 Hz, 1H), 

7.02 (d, J = 8.0 Hz, 4H), 4.78 (s, 2H), 4.42 (s, 5H), 2.24 (s, 6H); 
13C NMR (100 MHz, CDCl3) δ 168.1, 147.7, 138.6, 136.3, 136.0, 

134.8, 133.8, 128.7, 128.7, 127.8, 127.4, 121.3, 116.2, 88.5, 

82.1, 72.5, 69.0, 21.0; HRMS (ESI+) calcd for C34H28FeN2O 

[M+H]+: 537.1624, found: 537.1629. 
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N-(quinolin-8-yl)-2,5-di-m-tolylferrocenecarboxamide (3c): 

Orange solid (86 mg, 80%); mp 209‒210 °C; 1H NMR (400 MHz, 

CDCl3) δ 10.78 (s, 1H), 8.85 (d, J = 7.5 Hz, 1H), 8.58 (dd, J = 2.8 

Hz, J = 1.2 Hz, 1H), 8.11 (dd, J = 5.0 Hz, J = 3.5 Hz, 1H), 7.56 (t, J 

= 8.1 Hz, 1H), 7.51‒7.47 (m, 3H), 7.42 (s, 2H), 7.37 (dd, J = 6.3 

Hz, J = 2.1 Hz, 1H), 7.11 (t, J = 7.6 Hz, 2H), 6.95 (d, J = 7.5 Hz, 

2H), 4.75 (s, 2H), 4.42 (s, 5H), 2.21 (s, 6H); 13C NMR (100 MHz, 

CDCl3) δ 168.0, 147.7, 138.5, 137.3, 136.7, 136.0, 134.9, 129.6, 

127.8, 127.5, 127.4, 126.2, 121.3, 121.3, 116.1, 88.7, 82.4, 72.5, 

69.2, 21.3; HRMS (ESI+) calcd for C34H28FeN2O [M+H]+: 

537.1624, found: 537.1628. 

2,5-bis(4-(tert-butyl)phenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (3d): Yellow solid (111 mg, 90%); mp 

279‒282 °C; 1H NMR (400 MHz, CDCl3) δ 10.72 (s, 1H), 8.87 (d, 

J = 7.4 Hz, 1H), 8.52 (d, J = 4.5 Hz, 1H), 8.06 (dd, J = 8.4 Hz, 1H), 

7.59‒7.47 (m, 6H), 7.33 (dd, J = 6.3 Hz, J = 2.1 Hz, 1H), 7.21 (d, J 

= 8.0 Hz, 4H), 4.76 (s, 2H), 4.42 (s, 5H), 1.23 (s, 18H); 13C NMR 

(100 MHz, CDCl3) δ 168.2, 149.5, 147.6, 138.5, 135.9, 134.9, 

133.7, 128.6, 127.7, 127.4, 121.2, 121.1, 116.0, 88.7, 81.5, 72.6, 

69.2, 34.4, 31.2; HRMS (ESI+) calcd for C40H40FeN2O [M+H]+: 

621.2563, found: 621.2569. 

2,5-bis(4-methoxyphenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (3e): Orange solid (99 mg, 87%); mp 

180‒181 °C; 1H NMR (400 MHz, CDCl3) δ 10.80 (s, 1H), 8.88 (dd, 

J = 4.2 Hz, J = 3.3 Hz, 1H), 8.59 (dd, J = 2.8 Hz, J = 1.2 Hz, 1H), 

8.11 (dd, J = 5.0 Hz, J = 3.4 Hz, 1H), 7.58‒7.48 (m, 6H), 7.36 (dd, 

J = 6.3 Hz, J = 2.1 Hz, 1H), 6.76 (d, J = 8.4 Hz, 4H), 4.69 (s, 2H), 

4.40 (s, 5H), 3.70 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 168.2, 

158.5, 147.7, 138.5, 136.0, 134.8, 129.9, 128.9, 127.8, 127.3, 

121.3, 121.3, 116.1, 113.5, 88.4, 81.5, 72.4, 68.8, 55.1; HRMS 

(ESI+) calcd for C34H28FeN2O3 [M+H]+: 569.1522, found: 

569.1524. 

2,5-bis(3-methoxyphenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (3f): Orange solid (95 mg, 84%); mp 

111‒112 °C; 1H NMR (400 MHz, CDCl3) δ 10.90 (s, 1H), 8.88 (dd, 

J = 4.3 Hz, J = 3.2 Hz, 1H), 8.60 (dd, J = 2.8 Hz, J = 1.2 Hz, 1H), 

8.10 (dd, J = 5.0 Hz, J = 3.4 Hz, 1H), 7.57‒7.48 (m, 2H), 7.37 (dd, 

J = 6.3 Hz, J = 2.0 Hz, 1H), 7.25 (d, J = 6.0 Hz, 2H), 7.21 (m, 2H), 

7.13 (t, J = 8.2 Hz, 2H), 6.69 (dd, J = 5.1 Hz, J = 3.1 Hz, 2H), 4.78 

(s, 2H), 4.44 (s, 5H), 3.63 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 

167.9, 159.1, 147.8, 138.5, 138.3, 136.1, 134.8, 128.9, 127.8, 

127.3, 121.5, 121.4, 121.4, 116.1, 114.0, 112.7, 88.2, 82.9, 72.7, 

69.2, 55.0; HRMS (ESI+) calcd for C34H28FeN2O3 [M+H]+: 

569.1522, found: 569.1518. 

2,5-bis(3,5-dimethylphenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (3g): Orange solid (87 mg, 77%); mp 

189‒190 °C; 1H NMR (400 MHz, CDCl3) δ 10.78 (s, 1H), 8.84 (d, 

J = 7.5 Hz, 1H), 8.60 (dd, J = 2.8 Hz, J = 1.2 Hz, 1H), 8.12 (dd, J = 

4.8 Hz, J = 3.4 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.50 (m, 1H), 

7.38 (dd, J = 6.3 Hz, J = 2.1 Hz, 1H), 7.26 (s, 4H), 6.77 (s, 2H), 

4.73 (s, 2H), 4.44 (s, 5H), 2.18 (s, 12H); 13C NMR (100 MHz, 

CDCl3) δ 168.1, 147.7, 138.6, 137.2, 136.6, 135.9, 135.0, 128.5, 

127.8, 127.4, 126.9, 121.3, 121.2, 116.0, 88.8, 82.5, 72.6, 69.1, 

21.2; HRMS (ESI+) calcd for C36H32FeN2O [M+H]+: 565.1937, 

found: 565.1938. 

N-(quinolin-8-yl)-2,5-bis(4-

(trifluoromethyl)phenyl)ferrocenecarboxamide (3h): Orange 

solid (97 mg, 75%); mp 168‒169 °C; 1H NMR (400 MHz, CDCl3) 

δ 10.70 (s, 1H), 8.83 (dd, J = 4.2 Hz, J = 2.9 Hz, 1H), 8.51 (dd, J = 

2.9 Hz, J = 1.3 Hz, 1H), 8.14 (dd, J = 4.9 Hz, J = 3.4 Hz, 1H), 7.75 

(d, J = 8.4 Hz, 4H), 7.61‒7.53 (m, 2H), 7.47 (d, J = 8.4 Hz, 4H), 

7.38 (dd, J = 6.3 Hz, J = 2.1 Hz, 1H), 4.87 (s, 2H), 4.43 (s, 5H); 13C 

NMR (100 MHz, CDCl3) δ 167.1, 147.9, 141.0, 138.4, 136.2, 

134.3, 129.0, 128.9 (q, JC-F = 33.1 Hz), 127.9, 127.3, 125.0 (q, JC-

F = 3.7 Hz), 123.0 (q, JC-F = 272.5 Hz), 121.9, 121.5, 116.3, 87.3, 

82.5, 73.1, 70.0; HRMS (ESI+) calcd for C34H22F6FeN2O [M+H]+: 

645.1059, found: 645.1057. 

2,5-bis(4-fluorophenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (3i): Yellow solid (84 mg, 77%); mp 

165‒166 °C; 1H NMR (400 MHz, CDCl3) δ 10.72 (s, 1H), 8.84 (dd, 

J = 4.3 Hz, J = 3.1 Hz, 1H), 8.59 (dd, J = 2.8 Hz, J = 1.4 Hz, 1H), 

8.13 (dd, J = 4.8 Hz, J = 3.5 Hz, 1H), 7.62‒7.59 (m, 4H), 

7.56‒7.51 (m, 2H), 7.39 (dd, J = 6.2 Hz, J = 2.1 Hz, 1H), 6.92 (t, J 

= 8.7 Hz, 4H), 4.72 (s, 2H), 4.40 (s, 5H); 13C NMR (100 MHz, 

CDCl3) δ 167.6, 161.9 (d, JC-F = 247.7 Hz), 147.8, 138.4, 136.1, 

134.5, 132.6, 132.6, 130.4 (d, JC-F = 8.3 Hz), 127.9, 127.4, 121.6, 

121.5, 116.1, 114.9 (d, JC-F = 21.6 Hz), 87.9, 81.8, 72.7, 69.3; 

HRMS (ESI+) calcd for C32H22F2FeN2O [M+H]+: 545.1122, found: 

545.1118. 

2,5-bis(4-chlorophenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (3j): Orange solid (92 mg, 80%); mp 

213‒214 °C; 1H NMR (400 MHz, CDCl3) δ 10.73 (s, 1H), 8.84 (dd, 

J = 4.4 Hz, J = 3.0 Hz, 1H), 8.59 (dd, J = 2.9 Hz, J = 1.3 Hz, 1H), 

8.13 (dd, J = 4.9 Hz, J = 3.4 Hz, 1H), 7.59‒7.52 (m, 6H), 7.39 (dd, 

J = 6.2 Hz, J = 2.1 Hz, 1H), 7.18 (d, J = 8.0 Hz, 4H), 4.76 (s, 2H), 

4.41 (s, 5H); 13C NMR (100 MHz, CDCl3) δ 167.4, 147.9, 138.4, 

136.1, 135.4, 134.4, 132.6, 130.0, 128.2, 127.9, 127.3, 121.7, 

121.5, 116.2, 87.5, 82.1, 72.7, 69.4; HRMS (ESI+) calcd for 

C32H22Cl2FeN2O [M+H]+: 577.0531, found: 577.0531. 

dimethyl-4,4'-(2-(quinolin-8-ylcarbamoyl)ferrocene-1,3-

diyl)dibenzoate (3k): Orange solid (67 mg, 54%); mp 

197‒199 °C; 1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 8.84 (dd, 

J = 4.4 Hz, J = 3.0 Hz, 1H), 8.55 (dd, J = 2.5 Hz, J = 2.2 Hz, 1H), 

8.12 (dd, J = 4.9 Hz, J = 3.4 Hz, 1H), 7.88 (d, J = 8.4 Hz, 4H), 7.68 

(d, J = 8.4 Hz, 4H), 7.59‒7.51 (m, 2H), 7.36 (dd, J = 6.2 Hz, J = 

2.1 Hz, 1H), 4.88 (s, 2H), 4.42 (s, 5H), 3.85 (s, 6H); 13C NMR 

(100 MHz, CDCl3) δ 167.2, 166.8, 147.9, 138.4, 136.2, 134.4, 

129.3, 128.5, 128.4, 127.9, 127.4, 121.8, 121.5, 116. 3, 87.2, 

83.1, 73.0, 69.9, 51.9; HRMS (ESI+) calcd for C36H28FeN2O5 

[M+H]+: 625.1420, found: 625.1421. 

2,5-bis(4-nitrophenyl)-N-(quinolin-8-yl)ferrocenecarboxamide 

(3l): Dark red solid (67 mg, 56%); mp 223‒226 °C; 1H NMR (400 

MHz, CDCl3) δ 10.75 (s, 1H), 8.83 (dd, J = 4.4 Hz, J = 2.5 Hz, 1H), 

8.55 (dd, J = 2.9 Hz, J = 1.3 Hz, 1H), 8.15 (dd, J = 4.9 Hz, J = 3.4 

Hz, 1H), 8.07 (d, J = 8.4 Hz, 4H), 7.78 (d, J = 8.4 Hz, 4H), 

7.62‒7.55 (m, 2H), 7.39 (dd, J = 6.2 Hz, J = 2.1 Hz, 1H), 4.97 (s, 

2H), 4.46 (s, 5H); 13C NMR (100 MHz, CDCl3) δ 166.5, 148.0, 

146.5, 144.7, 138.3, 136.5, 134.0, 129.2, 128.0, 127.4, 123.4, 

122.3, 121.7, 116.4, 86.4, 83.4, 73.4, 70.6; HRMS (ESI+) calcd 

for C32H22FeN4O5 [M+H]+: 599.1012, found: 599.1009. 

2,5-bis(3-nitrophenyl)-N-(quinolin-8-yl)ferrocenecarboxamide 

(3m): Dark red solid (56 mg, 47%); mp 165‒166 °C; 1H NMR 

(400 MHz, CDCl3) δ 10.68 (s, 1H), 8.79 (dd, J = 4.4 Hz, J = 2.8 Hz, 

1H), 8.54 (t, J = 2.0 Hz, 1H), 8.51 (dd, J = 2.9 Hz, J = 1.3 Hz, 1H), 
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8.13 (dd, J = 5.0 Hz, J = 3.4 Hz, 1H), 8.02‒8.00 (m, 2H), 

7.95‒7.92 (m, 2H), 7.59‒7.51 (m, 2H), 7.39‒7.33 (m, 3H), 4.94 

(s, 2H), 4.48 (s, 5H); 13C NMR (100 MHz, CDCl3) δ 166.6, 148.1, 

148.0, 138.9, 138.3, 136.3, 134.7, 134.0, 129.0, 127.8, 127.4, 

123.6, 122.0, 121.8, 121.6, 116.4, 86.8, 82.2, 73.1, 70.3; HRMS 

(ESI+) calcd for C32H22FeN4O5 [M+H]+: 599.1012, found: 

599.1013. 

N-(quinolin-8-yl)-2,5-di(thiophen-2-yl)ferrocenecarboxamide 

(3n): Orange solid (43 mg, 41%); mp 170‒171 °C; 1H NMR (400 

MHz, CDCl3) δ 11.13 (s, 1H), 8.95 (dd, J = 4.3 Hz, J = 3.2 Hz, 1H), 

8.70 (dd, J = 2.8 Hz, J = 1.3 Hz, 1H), 8.16 (dd, J = 4.8 Hz, J = 3.5 

Hz, 1H), 7.62‒7.53 (m, 2H), 7.42 (dd, J = 6.2 Hz, J = 2.1 Hz, 1H), 

7.22 (d, J = 3.5 Hz, 2H), 7.14 (d, J = 5.1 Hz, 2H), 6.82 (dd, J = 4.4 

Hz, J = 0.7 Hz, 2H), 4.79 (s, 2H), 4.51 (s, 5H); 13C NMR (100 MHz, 

CDCl3) δ 166.9, 148.0, 139.7, 138.6, 136.2, 134.8, 128.0, 127.5, 

127.2, 126.0, 124.5, 121.7, 121.6, 116.4, 82.8, 81.2, 73.3, 69.4; 

HRMS (ESI+) calcd for C28H20FeN2OS2 [M+H]+: 521.0439, found: 

521.0435. 

2,5-bis(4-bromophenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (3o): Orange solid (109 mg, 82%); 

mp 229‒230 °C; 1H NMR (400 MHz, CDCl3) δ 10.71 (s, 1H), 8.82 

(dd, J = 4.4 Hz, J = 2.8 Hz, 1H), 8.59 (dd, J = 2.9 Hz, J = 1.3 Hz, 

1H), 8.14 (dd, J = 4.9 Hz, J = 3.4 Hz, 1H), 7.59‒7.48 (m, 6H), 

7.40 (dd, J = 6.2 Hz, J = 2.0 Hz, 1H), 7.33 (d, J = 8.6 Hz, 4H), 4.74 

(s, 2H), 4.40 (s, 5H); 13C NMR (100 MHz, CDCl3) δ 167.4, 148.0, 

138.5, 136.2, 135.9, 134.5, 131.2, 130.4, 128.0, 127.4, 121.8, 

121.6, 120.8, 116.3, 87.6, 82.1, 72.9, 69.5; HRMS (ESI+) calcd 

for C32H22Br2FeN2O [M+H]+: 664.9521, found: 664.9524. 

2,5-diphenyl-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5a): Yellow solid (72 mg, 72%); mp 

143‒144 °C; 1H NMR (400 MHz, CDCl3) δ 8.70 (s, 1H), 8.36 (d, J 

= 3.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 5H), 7.32‒7.11 (m, 8H), 4.66 (s, 

2H), 4.29 (s, 5H), 1.77 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 

167.6, 164.4, 147.2, 137.3, 136.9, 128.8, 127.8, 126.6, 121.7, 

119.4, 87.6, 85.0, 72.4, 68.1, 57.1, 26.9; HRMS (ESI+) calcd for 

C31H28FeN2O [M+H]+: 501.1624, found: 501.1624. 

N-(2-(pyridin-2-yl)propan-2-yl)-2,5-di-p-

tolylferrocenecarboxamide (5b): Yellow solid (74 mg, 70%); 

mp 179‒180 °C; 1H NMR (400 MHz, CDCl3) δ 8.72 (s, 1H), 

8.41‒8.39 (m, 1H), 7.69‒7.64 (m, 1H), 7.55 (d, J = 8.2 Hz, 4H), 

7.34 (d, J = 8.4 Hz, 1H), 7.16‒7.13 (m, 1H), 7.07 (d, J = 8.2 Hz, 

4H), 4.63 (s, 2H), 4.30 (s, 5H), 2.31 (s, 6H), 1.77 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ 167.8, 164.5, 147.2, 136.9, 136.1, 

134.2, 128.6, 128.5, 121.6, 119.4, 87.5, 84.7, 72.2, 67.8, 57.1, 

26.9, 21.1; HRMS (ESI+) calcd for C33H32FeN2O [M+H]+: 

529.1937, found: 529.1936. 

N-(2-(pyridin-2-yl)propan-2-yl)-2,5-di-m-

tolylferrocenecarboxamide (5c): Orange solid (73 mg, 69%); 

mp 141‒142 °C; 1H NMR (400 MHz, CDCl3) δ 8.80 (s, 1H), 8.41 

(d, J = 4.6 Hz, 1H), 7.69‒7.65 (m, 1H), 7.48 (s, 1H), 7.46 (s, 3H), 

7.34 (d, J = 8.0 Hz, 1H), 7.18‒7.13 (m, 3H), 7.01 (d, J = 7.4 Hz, 

2H), 4.65 (s, 2H), 4.30 (s, 5H), 2.31 (s, 6H), 1.80 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ 167.7, 164.5, 147.2, 137.2, 137.1, 

137.0, 129.4, 127.7, 127.3, 125.9, 121.7, 119.4, 87.6, 85.1, 72.3, 

68.0, 57.2, 26.9, 21.4; HRMS (ESI+) calcd for C33H32FeN2O 

[M+H]+: 529.1937, found: 529.1938. 

2,5-bis(4-(tert-butyl)phenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5d): Orange solid (87 mg, 71%); mp 

151‒153 °C; 1H NMR (400 MHz, CDCl3) δ 8.51 (s, 1H), 8.39‒8.37 

(m, 1H), 7.66‒7.62 (m, 1H), 7.58‒7.55 (m, 4H), 7.32 (d, J = 8.1 

Hz, 1H), 7.29‒7.27 (m, 4H), 7.14‒7.11 (m, 1H), 4.63 (s, 2H), 

4.29 (s, 5H), 1.79 (s, 6H), 1.30 (s, 18H); 13C NMR (100 MHz, 

CDCl3) δ 167.7, 164.5, 149.3, 147.2, 136.8, 134.1, 128.6, 124.6, 

121.5, 119.3, 87.8, 84.0, 72.3, 68.0, 57.1, 34.4, 31.3, 26.9; 

HRMS (ESI+) calcd for C39H44FeN2O [M+H]+: 613.2876, found: 

613.2880. 

2,5-bis(4-methoxyphenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5e): Orange solid (88 mg, 79%); mp 

203‒205 °C; 1H NMR (400 MHz, CDCl3) δ 8.69 (s, 1H), 8.40‒8.39 

(m, 1H), 7.68‒7.64 (m, 1H), 7.58‒7.54 (m, 4H), 7.33 (d, J = 8.2 

Hz, 1H), 7.16‒7.12 (m, 1H), 6.82‒6.78 (m, 4H), 4.58 (s, 2H), 

4.37 (s, 5H), 3.78 (s, 6H), 1.79 (s, 6H); 13C NMR (100 MHz, CDCl3) 

δ 167.9, 164.5, 158.4, 147.2, 136.9, 129.8, 121.6, 119.4, 113.3, 

87.4, 84.3, 72.1, 67.6, 57.1, 55.2, 27.0; HRMS (ESI+) calcd for 

C33H32FeN2O3 [M+H]+: 561.1836, found: 561.1830. 

2,5-bis(3-methoxyphenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5f): Orange solid (87 mg, 78%); mp 

127‒128 °C; 1H NMR (400 MHz, CDCl3) δ 8.77 (s, 1H), 8.41 (d, J 

= 4.4 Hz, 1H), 7.68‒7.64 (m, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.28 (s, 

1H), 7.26 (s, 3H), 7.21‒7.13 (m, 3H), 6.79‒6.76 (m, 2H), 4.67 (s, 

2H), 4.34 (s, 5H), 3.79 (s, 6H), 1.80 (s, 6H); 13C NMR (100 MHz, 

CDCl3) δ 167.5, 164.3, 159.0, 147.1, 138.6, 136.9, 128.7, 121.6, 

121.4, 119.3, 114.4, 112.3, 87.5, 85.4, 72.4, 68.1, 57.1, 55.1, 

26.9; HRMS (ESI+) calcd for C33H32FeN2O3 [M+H]+: 561.1836, 

found: 561.1836. 

2,5-bis(3,5-dimethylphenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5g): Orange solid (76 mg, 68%); mp 

162‒164 °C; 1H NMR (400 MHz, CDCl3) δ 8.89 (s, 1H), 8.45‒7.43 

(m, 1H), 7.71‒7.66 (m, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.29 (s, 4H), 

7.18‒7.15 (m, 1H), 6.86 (s, 2H), 4.64 (s, 2H), 4.33 (s, 5H), 2.30 

(s, 12H), 1.83 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 167.7, 164.6, 

147.1, 137.1, 137.0, 137.0, 128.3, 126.6, 121.7, 119.3, 87.5, 

85.3, 72.2, 67.8, 57.2, 26.9, 21.2; HRMS (ESI+) calcd for 

C35H36FeN2O [M+H]+: 557.2250, found: 557.2251. 

N-(2-(pyridin-2-yl)propan-2-yl)-2,5-bis(4-

(trifluoromethyl)phenyl)ferrocenecarboxamide (5h): Orange 

solid (77 mg, 61%); mp 152‒154 °C; 1H NMR (400 MHz, CDCl3) 

δ 8.93 (s, 1H), 8.34‒8.33 (m, 1H), 7.75 (d, J = 8.1 Hz, 4H), 

7.72‒7.68 (m, 1H), 7.51 (d, J = 8.2 Hz, 4H), 7.36 (d, J = 8.1 Hz, 

1H), 7.18‒7.15 (m, 1H), 4.76 (s, 2H), 4.32 (s, 5H), 1.80 (s, 6H); 
13C NMR (100 MHz, CDCl3) δ 167.0, 164.0, 147.1, 141.5, 137.2, 

128.8, 128.6 (q, JC-F = 31.1 Hz), 124.8 (q, JC-F = 3.7 Hz), 124.3 (q, 

JC-F = 272.0 Hz), 122.0, 119.4, 86.2, 85.4, 72.7, 68.9, 57.2, 26.9; 

HRMS (ESI+) calcd for C33H26F6FeN2O [M+H]+: 637.1372, found: 

637.1372. 

2,5-bis(4-fluorophenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5i): Yellow solid (72 mg, 67%); mp 

177‒179 °C; 1H NMR (400 MHz, CDCl3) δ 8.80 (s, 1H), 8.38‒8.37 

(m, 1H), 7.71‒7.66 (m, 1H), 7.62‒7.57 (m, 4H), 7.34 (d, J = 8.1 

Hz, 1H), 7.18‒7.14 (m, 1H), 6.98‒6.92 (m, 4H), 4.61 (s, 2H), 

4.29 (s, 5H), 1.78 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 167.4, 

164.2, 161.7 (d, JC-F = 246.6 Hz), 147.1, 137.1, 133.1, 133.1, 

130.2 (d, JC-F = 8.0 Hz), 121.8, 119.4, 114.7 (d, JC-F = 21.3 Hz), 
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86.9, 84.7, 72.3, 68.1, 57.1, 26.9; HRMS (ESI+) calcd for 

C31H26F2FeN2O [M+H]+: 537.1436, found: 537.1440. 

2,5-bis(4-chlorophenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5j): Orange solid (78 mg, 69%); mp 

169‒170 °C; 1H NMR (400 MHz, CDCl3) δ 8.85 (s, 1H), 8.38 (d, J 

= 4.4 Hz, 1H), 7.71‒7.68 (m, 1H), 7.55 (d, J = 8.5 Hz, 4H), 7.35 

(d, J = 8.2 Hz, 1H), 7.22 (d, J = 8.5 Hz, 4H), 7.17 (dd, J = 6.0 Hz, J 

= 0.9 Hz, 1H), 4.64 (s, 2H), 4.28 (s, 5H), 1.79 (s, 6H); 13C NMR 

(100 MHz, CDCl3) δ 167.2, 164.1, 147.1, 137.1, 135.9, 132.3, 

129.9, 128.0, 121.9, 119.4, 86.4, 85.0, 72.5, 68.2, 57.2, 26.9; 

HRMS (ESI+) calcd for C31H26Cl2FeN2O [M+H]+: 569.0845, found: 

569.0850. 

dimethyl-4,4'-(2-(2-(pyridin-2-yl)propan-2-

ylcarbamoyl)ferrocene-1,3-diyl)dibenzoate (5k): Orange solid 

(60 mg, 49%); mp 157‒159 °C; 1H NMR (400 MHz, CDCl3) δ 8.98 

(s, 1H), 8.35 (d, J = 4.2 Hz, 1H), 7.92 (d, J = 8.5 Hz, 4H), 

7.70‒7.66 (m, 5H), 7.36 (d, J = 8.1 Hz, 1H), 7.15 (dd, J = 5.9 Hz, J 

= 1.0 Hz, 1H), 4.77 (s, 2H), 4.29 (s, 5H), 3.88 (s, 6H), 1.81 (s, 6H); 
13C NMR (100 MHz, CDCl3) δ 167.1, 167.0, 164.1, 147.1, 142.8, 

137.2, 129.2, 128.3, 121.9, 119.4, 86.4, 86.0, 72.7, 68.8, 57.3, 

52.0, 26.9; HRMS (ESI+) calcd for C35H32FeN2O5 [M+H]+: 

617.1734, found: 617.1738. 

2,5-bis(4-nitrophenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5l): Dark red solid (48 mg, 41%); mp 

162‒164 °C; 1H NMR (400 MHz, CDCl3) δ 9.09 (s, 1H), 8.32 (d, J 

= 4.3 Hz, 1H), 8.12 (d, J = 8.8 Hz, 4H), 7.75‒7.71 (m, 5H), 7.39 

(d, J = 8.4 Hz, 1H), 7.18 (dd, J = 6.3 Hz, J = 0.9 Hz, 1H), 4.87 (s, 

2H), 4.34 (s, 5H), 1.83 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 

166.5, 163.7, 147.0, 146.4, 145.3, 137.5, 128.9, 123.3, 122.2, 

119.5, 86.3, 85.3, 73.1, 69.6, 57.3, 26.9; HRMS (ESI+) calcd for 

C31H26FeN4O5 [M+H]+: 591.1326, found: 591.1328. 

2,5-bis(3-nitrophenyl)-N-(2-(pyridin-2-yl)propan-2-

yl)ferrocenecarboxamide (5m): Orange solid (44 mg, 37%); mp 

127‒128 °C; 1H NMR (400 MHz, CDCl3) δ 9.24 (s, 1H), 8.50 (t, J 

= 1.9 Hz, 2H), 8.29 (d, J = 4.3 Hz, 1H), 8.07‒7.92 (m, 2H), 7.93 

(d, J = 8.0 Hz, 2H), 7.73‒7.69 (m, 1H), 7.42 (t, J = 8.2 Hz, 2H), 

7.37 (d, J = 8.4 Hz, 1H), 7.17‒7.14 (m, 1H), 4.82 (s, 2H), 4.36 (s, 

5H), 1.82 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 166.4, 163.9, 

148.1, 146.9, 139.5, 137.4, 134.5, 128.8, 123.4, 122.0, 121.6, 

119.5, 85.7, 85.3, 72.8, 69.1, 57.3, 26.9; HRMS (ESI+) calcd for 

C31H26FeN4O5 [M+H]+: 591.1326, found: 591.1328. 

N-(2-(pyridin-2-yl)propan-2-yl)-2,5-di(thiophen-2-

yl)ferrocenecarboxamide (5n): Orange solid (31 mg, 30%); mp 

101‒102 °C; 1H NMR (400 MHz, CDCl3) δ 9.20 (s, 1H), 8.45‒8.43 

(m, 1H), 7.72‒7.68 (m, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.22 (dd, J = 

2.4 Hz, J = 1.2 Hz, 2H), 7.18‒7.15 (m, 3H), 6.88 (dd, J = 4.4 Hz, J 

= 0.8 Hz, 2H), 4.68 (s, 2H), 4.37 (s, 5H), 1.87 (s, 6H); 13C NMR 

(100 MHz, CDCl3) δ 166.7, 164.5, 147.1, 140.1, 137.1, 127.0, 

125.8, 124.2, 121.8, 119.5, 84.9, 80.5, 73.0, 68.6, 57.3, 27.0; 

HRMS (ESI+) calcd for C27H24FeN2OS2 [M+H]+: 513.0753, found: 

513.0753. 

b) For gram reaction: A 100 mL Schlenk tube was equipped 

with a magnetic stir bar and charged with 1a (1.07 g, 3.0 

mmol), 2a (0.945 mL, 9.0 mmol, 3 equiv), K2CO3 (829.5 mg, 6.0 

mmol, 2 equiv), Pd(OAc)2 (67.5 mg, 0.3 mmol, 10 mol %), 

XPhos (142.5 mg, 0.3 mmol, 10 mol %), PivOH (93.0 mg, 0.9 

mmol, 30 mol %) in o-xylene (15 mL). The resulting mixture 

was heated under nitrogen at 140 oC for 21 h, and cooled to 

room temperature. Upon completion, CH2Cl2 (100 mL) was 

added to the reaction system, and the resulting mixture was 

filtered through a pad of Celite. The filtrate was extracted with 

H2O (50 mL), and the aqueous layer was extracted with CH2Cl2 

(2 × 50 mL). The combined organic layer was dried over 

anhydrous Na2SO4 and filtered. After evaporation of the 

solvent under vacuum, the residue was purified by column 

chromatography on silica gel (100‒200 mesh) using hexane-

EtOAc as an eluent to afford the pure product 3a. 

c) For aryl iodide: A 10 mL round-bottomed flask was 

equipped with a magnetic stir bar and charged with 1a (71.2 

mg, 0.2 mmol), aryl iodide(0.6 mmol, 3 equiv), K2CO3 (55.3 mg, 

0.4 mmol, 2 equiv), Pd(OAc)2 (4.5 mg, 0.02 mmol, 10 mol %), 

PivOH (6.2 mg, 0.06 mmol, 30 mol %) in o-xylene (1.0 mL). The 

resulting mixture was heated under air at 100 oC for 21 h, and 

cooled to room temperature. Upon completion, CH2Cl2 (20 mL) 

was added to the reaction system, and the resulting mixture 

was filtered through a pad of Celite. The filtrate was extracted 

with H2O (20 mL), and the aqueous layer was extracted with 

CH2Cl2 (2 × 10 mL). The combined organic layer was dried over 

anhydrous Na2SO4 and filtered. After evaporation of the 

solvent under vacuum, the residue was purified by column 

chromatography on silica gel (100‒200 mesh) using hexane-

EtOAc as an eluent to afford the pure product 3. 

d) For aryl chlorides: A 25 mL Schlenk tube was equipped with 

a magnetic stir bar and charged with 1a (71.2 mg, 0.2 mmol), 

aryl chlorides (1 mL), K2CO3 (55.3 mg, 0.4 mmol, 2 equiv), 

Pd(OAc)2 (4.5 mg, 0.02 mmol, 10 mol %), ligand (9.5 mg, 0.02 

mmol, 10 mol %) and PivOH (6.2 mg, 0.06 mmol, 30 mol %). 

The resulting mixture was heated under nitrogen at 190 oC for 

21 h, and cooled to room temperature. Upon completion, 

CH2Cl2 (20 mL) was added to the reaction system, and the 

resulting mixture was filtered through a pad of Celite. The 

filtrate was extracted with H2O (20 mL), and the aqueous layer 

was extracted with CH2Cl2 (2 × 10 mL). The combined organic 

layer was dried over anhydrous Na2SO4 and filtered. After 

evaporation of the solvent under vacuum, the residue was 

purified by column chromatography on silica gel (100‒200 

mesh) using hexane-EtOAc as an eluent to afford the pure 

product 3. 

e) For the product 6: A 25 mL Schlenk tube was equipped with 

a magnetic stir bar and charged with 3o (33.2 mg, 0.05 mmol), 

diphenylphosphine oxide (40.5 mg, 0.2 mmol, 4 equiv), K3PO4 

(42.5 mg, 0.2 mmol, 4 equiv), Pd(PPh3)2Cl2 (3.5 mg, 0.005 

mmol, 10 mol %) in dioxane (1.0 mL). The resulting mixture 

was heated under nitrogen at 110 oC for 24 h, and cooled to 

room temperature. Upon completion, CH2Cl2 (20 mL) was 

added to the reaction system, and the resulting mixture was 

filtered through a pad of Celite. The filtrate was extracted with 

H2O (20 mL), and the aqueous layer was extracted with CH2Cl2 

(2 × 10 mL). The combined organic layer was dried over 

anhydrous Na2SO4 and filtered. After evaporation of the 

solvent under vacuum, the residue was purified by column 

chromatography on silica gel (100‒200 mesh) using hexane-

EtOAc as an eluent to afford the pure product 6. 
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2,5-bis(4-(diphenylphosphoryl)phenyl)-N-(quinolin-8-

yl)ferrocenecarboxamide (6): Orange solid (44 mg, 97%); mp 

139‒141 °C; 1H NMR (400 MHz, CDCl3) δ 10.76 (s, 1H), 

8.80‒8.76 (m, 1H), 8.58 (dd, J = 2.9 Hz, J = 1.3 Hz, 1H), 8.15 (dd, 

J = 4.9 Hz, J = 3.4 Hz, 1H), 7.71 (dd, J = 5.4 Hz, J = 2.9 Hz, 4H), 

7.59‒7.47 (m, 18H), 7.41‒7.33 (m, 9H), 4.87 (s, 2H), 4.39 (s, 

5H); 13C NMR (100 MHz, CDCl3) δ 167.3, 148.1, 141.3, 141.3, 

138.4, 136.2, 134.3, 132.9, 132.8, 132.1, 132.0, 132.0, 131.9, 

131.9, 131.8, 131.1, 130.0, 128.8, 128.7, 128.5, 128.5, 128.4, 

128.4, 127.9, 127.4, 121.8, 121.7, 116.2, 87.3, 82.5, 73.1, 70.2; 
31P NMR (163 MHz, CDCl3) δ 29.02; HRMS (ESI+) calcd for 

C56H42FeN2O3P2 [M+H]+: 909.2093, found: 909.2093. 
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Palladium-Catalyzed Direct C-H Arylation of Ferrocenecarboxamides 

with Aryl Halides 

Huijie Qiao, Suyan Sun, Fan Yang, Yu Zhu, Weiguo Zhu, Yusheng Wu, and Yangjie Wu
 

A simple and facile protocol for palladium-catalyzed ortho-arylation of ferrocenecarboxamides with aryl halides was developed 

with the assistance of the bidentate directing group. 
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